File size: 16,908 Bytes
18b3855 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import asyncio
import json
import os
from enum import Enum
from pydantic import BaseModel, Field
from typing import Dict, Any, Callable, Literal, Optional, Union, List
from chutes.image import Image
from chutes.image.standard.vllm import VLLM
from chutes.chute import Chute, ChutePack, NodeSelector
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
class DefaultRole(Enum):
user = "user"
assistant = "assistant"
class ChatMessage(BaseModel):
role: str
content: str
class Logprob(BaseModel):
logprob: float
rank: Optional[int] = None
decoded_token: Optional[str] = None
class ResponseFormat(BaseModel):
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[Dict] = None
class BaseRequest(BaseModel):
model: str
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0.0
response_format: Optional[ResponseFormat] = None
seed: Optional[int] = Field(None, ge=0, le=9223372036854775807)
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
best_of: Optional[int] = None
use_beam_search: bool = False
top_k: int = -1
min_p: float = 0.0
repetition_penalty: float = 1.0
length_penalty: float = 1.0
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
prompt_logprobs: Optional[int] = None
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class TokenizeRequest(BaseRequest):
model: str
prompt: str
add_special_tokens: bool
class DetokenizeRequest(BaseRequest):
model: str
tokens: List[int]
class ChatCompletionRequest(BaseRequest):
messages: List[ChatMessage]
class CompletionRequest(BaseRequest):
prompt: str
class ChatCompletionLogProb(BaseModel):
token: str
logprob: float = -9999.0
bytes: Optional[List[int]] = None
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
top_logprobs: List[ChatCompletionLogProb] = Field(default_factory=list)
class ChatCompletionLogProbs(BaseModel):
content: Optional[List[ChatCompletionLogProbsContent]] = None
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
logprobs: Optional[ChatCompletionLogProbs] = None
finish_reason: Optional[str] = "stop"
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionResponse(BaseModel):
id: str
object: Literal["chat.completion"] = "chat.completion"
created: int
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
class TokenizeResponse(BaseRequest):
count: int
max_model_len: int
tokens: List[int]
class DetokenizeResponse(BaseRequest):
prompt: str
class DeltaMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
logprobs: Optional[ChatCompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionStreamResponse(BaseModel):
id: str
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class CompletionLogProbs(BaseModel):
text_offset: List[int] = Field(default_factory=list)
token_logprobs: List[Optional[float]] = Field(default_factory=list)
tokens: List[str] = Field(default_factory=list)
top_logprobs: List[Optional[Dict[str, float]]] = Field(default_factory=list)
class CompletionResponseChoice(BaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"
),
)
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
class CompletionResponse(BaseModel):
id: str
object: str = "text_completion"
created: int
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionResponseStreamChoice(BaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"
),
)
class CompletionStreamResponse(BaseModel):
id: str
object: str
created: int
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class VLLMChute(ChutePack):
chat: Callable
completion: Callable
chat_stream: Callable
completion_stream: Callable
models: Callable
def build_vllm_chute(
username: str,
model_name: str,
node_selector: NodeSelector,
image: str | Image = VLLM,
tagline: str = "",
readme: str = "",
concurrency: int = 32,
engine_args: Dict[str, Any] = {},
revision: str = None,
):
if engine_args.get("revision"):
raise ValueError("revision is now a top-level argument to build_vllm_chute!")
if not revision:
from chutes.chute.template.helpers import get_current_hf_commit
suggested_commit = None
try:
suggested_commit = get_current_hf_commit(model_name)
except Exception:
...
suggestion = (
"Unable to fetch the current refs/heads/main commit from HF, please check the model name."
if not suggested_commit
else f"The current refs/heads/main commit is: {suggested_commit}"
)
raise ValueError(
f"You must specify revision= to properly lock a model to a given huggingface revision. {suggestion}"
)
chute = Chute(
username=username,
name=model_name,
tagline=tagline,
readme=readme,
image=image,
node_selector=node_selector,
concurrency=concurrency,
standard_template="vllm",
revision=revision,
)
# Semi-optimized defaults for code starts (but not overall perf once hot).
defaults = {}
for key, value in defaults.items():
if key not in engine_args:
engine_args[key] = value
# Minimal input schema with defaults.
class MinifiedMessage(BaseModel):
role: DefaultRole = DefaultRole.user
content: str = Field("")
class MinifiedStreamChatCompletion(BaseModel):
messages: List[MinifiedMessage] = [MinifiedMessage()]
temperature: float = Field(0.7)
seed: int = Field(42)
stream: bool = Field(True)
max_tokens: int = Field(1024)
model: str = Field(model_name)
class MinifiedChatCompletion(MinifiedStreamChatCompletion):
stream: bool = Field(False)
# Minimal completion input.
class MinifiedStreamCompletion(BaseModel):
prompt: str
temperature: float = Field(0.7)
seed: int = Field(42)
stream: bool = Field(True)
max_tokens: int = Field(1024)
model: str = Field(model_name)
class MinifiedCompletion(MinifiedStreamCompletion):
stream: bool = Field(False)
@chute.on_startup()
async def initialize_vllm(self):
nonlocal engine_args
nonlocal model_name
nonlocal image
# Imports here to avoid needing torch/vllm/etc. to just perform inference/build remotely.
import torch
import multiprocessing
from vllm import AsyncEngineArgs, AsyncLLMEngine
import vllm.entrypoints.openai.api_server as vllm_api_server
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
import vllm.version as vv
# Force download in initializer with some retries.
from huggingface_hub import snapshot_download
download_path = None
for attempt in range(5):
download_kwargs = {}
if self.revision:
download_kwargs["revision"] = self.revision
try:
print(f"Attempting to download {model_name} to cache...")
download_path = await asyncio.to_thread(
snapshot_download, repo_id=model_name, **download_kwargs
)
print(f"Successfully downloaded {model_name} to {download_path}")
break
except Exception as exc:
print(f"Failed downloading {model_name} {download_kwargs or ''}: {exc}")
await asyncio.sleep(60)
if not download_path:
raise Exception(f"Failed to download {model_name} after 5 attempts")
try:
from vllm.entrypoints.openai.serving_engine import BaseModelPath
except Exception:
from vllm.entrypoints.openai.serving_models import (
BaseModelPath,
OpenAIServingModels,
)
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization,
)
# Reset torch.
torch.cuda.empty_cache()
torch.cuda.init()
torch.cuda.set_device(0)
multiprocessing.set_start_method("spawn", force=True)
# Tool args.
if chat_template := engine_args.pop("chat_template", None):
if len(chat_template) <= 1024 and os.path.exists(chat_template):
with open(chat_template) as infile:
chat_template = infile.read()
extra_args = dict(
tool_parser=engine_args.pop("tool_call_parser", None),
enable_auto_tools=engine_args.pop("enable_auto_tool_choice", False),
chat_template=chat_template,
chat_template_content_format=engine_args.pop("chat_template_content_format", None),
)
# Configure engine arguments
gpu_count = int(os.getenv("CUDA_DEVICE_COUNT", str(torch.cuda.device_count())))
engine_args = AsyncEngineArgs(
model=model_name,
tensor_parallel_size=gpu_count,
**engine_args,
)
# Initialize engine directly in the main process
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
model_config = await self.engine.get_model_config()
base_model_paths = [
BaseModelPath(name=chute.name, model_path=chute.name),
]
self.include_router(vllm_api_server.router)
extra_token_args = {}
version_parts = vv.__version__.split(".")
old_vllm = False
if (
not vv.__version__.startswith("0.1.dev")
and int(version_parts[0]) == 0
and int(version_parts[1]) < 7
):
old_vllm = True
if old_vllm:
extra_args["lora_modules"] = []
extra_args["prompt_adapters"] = []
extra_token_args["lora_modules"] = []
extra_args["base_model_paths"] = base_model_paths
else:
extra_args["models"] = OpenAIServingModels(
engine_client=self.engine,
model_config=model_config,
base_model_paths=base_model_paths,
lora_modules=[],
)
extra_token_args.update(
{
"chat_template": extra_args.get("chat_template"),
"chat_template_content_format": extra_args.get("chat_template_content_format"),
}
)
vllm_api_server.chat = lambda s: OpenAIServingChat(
self.engine,
model_config=model_config,
response_role="assistant",
request_logger=None,
return_tokens_as_token_ids=True,
**extra_args,
)
vllm_api_server.completion = lambda s: OpenAIServingCompletion(
self.engine,
model_config=model_config,
request_logger=None,
return_tokens_as_token_ids=True,
**{
k: v
for k, v in extra_args.items()
if k
not in (
"chat_template",
"chat_template_content_format",
"tool_parser",
"enable_auto_tools",
)
},
)
models_arg = base_model_paths if old_vllm else extra_args["models"]
vllm_api_server.tokenization = lambda s: OpenAIServingTokenization(
self.engine,
model_config,
models_arg,
request_logger=None,
**extra_token_args,
)
self.state.openai_serving_tokenization = OpenAIServingTokenization(
self.engine,
model_config,
models_arg,
request_logger=None,
**extra_token_args,
)
setattr(self.state, "enable_server_load_tracking", False)
if not old_vllm:
self.state.openai_serving_models = extra_args["models"]
def _parse_stream_chunk(encoded_chunk):
chunk = encoded_chunk if isinstance(encoded_chunk, str) else encoded_chunk.decode()
if "data: {" in chunk:
return json.loads(chunk[6:])
return None
@chute.cord(
passthrough_path="/v1/chat/completions",
public_api_path="/v1/chat/completions",
method="POST",
passthrough=True,
stream=True,
input_schema=ChatCompletionRequest,
minimal_input_schema=MinifiedStreamChatCompletion,
)
async def chat_stream(encoded_chunk) -> ChatCompletionStreamResponse:
return _parse_stream_chunk(encoded_chunk)
@chute.cord(
passthrough_path="/v1/completions",
public_api_path="/v1/completions",
method="POST",
passthrough=True,
stream=True,
input_schema=CompletionRequest,
minimal_input_schema=MinifiedStreamCompletion,
)
async def completion_stream(encoded_chunk) -> CompletionStreamResponse:
return _parse_stream_chunk(encoded_chunk)
@chute.cord(
passthrough_path="/v1/chat/completions",
public_api_path="/v1/chat/completions",
method="POST",
passthrough=True,
input_schema=ChatCompletionRequest,
minimal_input_schema=MinifiedChatCompletion,
)
async def chat(data) -> ChatCompletionResponse:
return data
@chute.cord(
path="/do_tokenize",
passthrough_path="/tokenize",
public_api_path="/tokenize",
method="POST",
passthrough=True,
input_schema=TokenizeRequest,
minimal_input_schema=TokenizeRequest,
)
async def do_tokenize(data) -> TokenizeResponse:
return data
@chute.cord(
path="/do_detokenize",
passthrough_path="/detokenize",
public_api_path="/detokenize",
method="POST",
passthrough=True,
input_schema=DetokenizeRequest,
minimal_input_schema=DetokenizeRequest,
)
async def do_detokenize(data) -> DetokenizeResponse:
return data
@chute.cord(
passthrough_path="/v1/completions",
public_api_path="/v1/completions",
method="POST",
passthrough=True,
input_schema=CompletionRequest,
minimal_input_schema=MinifiedCompletion,
)
async def completion(data) -> CompletionResponse:
return data
@chute.cord(
passthrough_path="/v1/models",
public_api_path="/v1/models",
public_api_method="GET",
method="GET",
passthrough=True,
)
async def get_models(data):
return data
return VLLMChute(
chute=chute,
chat=chat,
chat_stream=chat_stream,
completion=completion,
completion_stream=completion_stream,
models=get_models,
)
|