Update README.md
Browse files
README.md
CHANGED
@@ -39,7 +39,7 @@ Building on these advances, **Ovis2.5-9B** achieves an average score of 78.3 on
|
|
39 |
|
40 |
**Key Features**
|
41 |
* **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling.
|
42 |
-
* **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT.
|
43 |
* **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR.
|
44 |
* **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability.
|
45 |
|
@@ -55,15 +55,51 @@ First, install the required dependencies:
|
|
55 |
pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3
|
56 |
pip install flash-attn==2.7.0.post2 --no-build-isolation
|
57 |
```
|
58 |
-
Then, run the following code
|
59 |
```python
|
60 |
import torch
|
61 |
import requests
|
62 |
from PIL import Image
|
63 |
from transformers import AutoModelForCausalLM
|
64 |
|
65 |
-
MODEL_PATH = "AIDC-AI/Ovis2.5-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
model = AutoModelForCausalLM.from_pretrained(
|
69 |
MODEL_PATH,
|
@@ -71,6 +107,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
71 |
trust_remote_code=True
|
72 |
).cuda()
|
73 |
|
|
|
|
|
74 |
messages = [{
|
75 |
"role": "user",
|
76 |
"content": [
|
@@ -82,7 +120,7 @@ messages = [{
|
|
82 |
input_ids, pixel_values, grid_thws = model.preprocess_inputs(
|
83 |
messages=messages,
|
84 |
add_generation_prompt=True,
|
85 |
-
enable_thinking=
|
86 |
)
|
87 |
input_ids = input_ids.cuda()
|
88 |
pixel_values = pixel_values.cuda() if pixel_values is not None else None
|
@@ -92,7 +130,11 @@ outputs = model.generate(
|
|
92 |
inputs=input_ids,
|
93 |
pixel_values=pixel_values,
|
94 |
grid_thws=grid_thws,
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
|
98 |
response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
39 |
|
40 |
**Key Features**
|
41 |
* **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling.
|
42 |
+
* **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT. *Thinking budget* supported.
|
43 |
* **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR.
|
44 |
* **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability.
|
45 |
|
|
|
55 |
pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3
|
56 |
pip install flash-attn==2.7.0.post2 --no-build-isolation
|
57 |
```
|
58 |
+
Then, run the following code. The thinking and thinking budget logic can be applied in the same way for multi-image, video and pure text scenarios.
|
59 |
```python
|
60 |
import torch
|
61 |
import requests
|
62 |
from PIL import Image
|
63 |
from transformers import AutoModelForCausalLM
|
64 |
|
65 |
+
MODEL_PATH = "AIDC-AI/Ovis2.5-9B"
|
66 |
+
# Controls whether to enable thinking mode.
|
67 |
+
enable_thinking = True
|
68 |
+
# NOTE: The thinking budget mechanism is effective only when
|
69 |
+
# enable_thinking and enable_thinking_budget are both True.
|
70 |
+
# Setting enable_thinking=True and enable_thinking_budget=False
|
71 |
+
# enables thinking without budget. In such case the model might
|
72 |
+
# spend a lot of tokens in the thinking phase and could be slow.
|
73 |
+
enable_thinking_budget = True
|
74 |
+
# max_new_tokens is the upper limit for thinking and non-thinking tokens combined.
|
75 |
+
# MUST ensure that max_new_tokens > thinking_budget + 25
|
76 |
+
# when using the thinking budget mechanism.
|
77 |
+
max_new_tokens = 3072
|
78 |
+
thinking_budget = 2048
|
79 |
+
|
80 |
+
# The implementation of thinking budget involves two-phase generation,
|
81 |
+
# which is incompatible with the official transformers TextIteratorStreamer.
|
82 |
+
# Hence we modified the streaming class. Could comment this part out if
|
83 |
+
# not using thinking budget. See the commented lines below that involve
|
84 |
+
# "streamer" for usage.
|
85 |
+
from transformers import TextIteratorStreamer
|
86 |
+
class MyTextIteratorStreamer(TextIteratorStreamer):
|
87 |
+
def manual_end(self):
|
88 |
+
"""Flushes any remaining cache and prints a newline to stdout."""
|
89 |
+
# Flush the cache, if it exists
|
90 |
+
if len(self.token_cache) > 0:
|
91 |
+
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
|
92 |
+
printable_text = text[self.print_len :]
|
93 |
+
self.token_cache = []
|
94 |
+
self.print_len = 0
|
95 |
+
else:
|
96 |
+
printable_text = ""
|
97 |
+
|
98 |
+
self.next_tokens_are_prompt = True
|
99 |
+
self.on_finalized_text(printable_text, stream_end=True)
|
100 |
+
|
101 |
+
def end(self):
|
102 |
+
pass
|
103 |
|
104 |
model = AutoModelForCausalLM.from_pretrained(
|
105 |
MODEL_PATH,
|
|
|
107 |
trust_remote_code=True
|
108 |
).cuda()
|
109 |
|
110 |
+
# streamer = MyTextIteratorStreamer(model.text_tokenizer, skip_prompt=True, skip_special_tokens=True)
|
111 |
+
|
112 |
messages = [{
|
113 |
"role": "user",
|
114 |
"content": [
|
|
|
120 |
input_ids, pixel_values, grid_thws = model.preprocess_inputs(
|
121 |
messages=messages,
|
122 |
add_generation_prompt=True,
|
123 |
+
enable_thinking=enable_thinking
|
124 |
)
|
125 |
input_ids = input_ids.cuda()
|
126 |
pixel_values = pixel_values.cuda() if pixel_values is not None else None
|
|
|
130 |
inputs=input_ids,
|
131 |
pixel_values=pixel_values,
|
132 |
grid_thws=grid_thws,
|
133 |
+
enable_thinking=enable_thinking,
|
134 |
+
enable_thinking_budget=enable_thinking_budget,
|
135 |
+
max_new_tokens=max_new_tokens,
|
136 |
+
thinking_budget=thinking_budget,
|
137 |
+
# streamer=streamer
|
138 |
)
|
139 |
|
140 |
response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|