File size: 21,702 Bytes
2a06cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips # pip install lpips
# --------------------------- Параметры ---------------------------
ds_path = "/workspace/png"
project = "sdxl_vae"
batch_size = 1
base_learning_rate = 1e-6
min_learning_rate = 8e-7
num_epochs = 8
sample_interval_share = 20
use_wandb = True
save_model = True
use_decay = True
optimizer_type = "adam8bit"
dtype = torch.float32
# model_resolution — то, что подавается в VAE (низкое разрешение)
model_resolution = 768 # бывший `resolution`
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
high_resolution = 768 # >>> CHANGED: обучаемся на входах 1024 -> даунсемплим до 512 для модели
limit = 0
save_barrier = 1.03
warmup_percent = 0.01
percentile_clipping = 95
beta2 = 0.97
eps = 1e-6
clip_grad_norm = 1.0
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
gradient_accumulation_steps = 16
generated_folder = "samples"
save_as = "sdxl_vae_new"
perceptual_loss_weight = 0.03 # начальное значение веса (будет перезаписываться каждый шаг)
num_workers = 0
device = None # accelerator задаст устройство
# --- Параметры динамической нормализации LPIPS
lpips_ratio = 0.9 #percent lpips in loss
min_perceptual_weight = 0.1 # минимальный предел веса
max_perceptual_weight = 99 # максимальный предел веса (защита от взрывов)
# --------------------------- параметры препроцессинга ---------------------------
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1024
Path(generated_folder).mkdir(parents=True, exist_ok=True)
accelerator = Accelerator(
mixed_precision=mixed_precision,
gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device
# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
wandb.init(project=project, config={
"batch_size": batch_size,
"base_learning_rate": base_learning_rate,
"num_epochs": num_epochs,
"optimizer_type": optimizer_type,
"model_resolution": model_resolution,
"high_resolution": high_resolution,
"gradient_accumulation_steps": gradient_accumulation_steps,
})
# --------------------------- VAE ---------------------------
vae = AutoencoderKL.from_pretrained(project).to(dtype)
#vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
# >>> CHANGED: заморозка всех параметров, затем разморозка mid_block + up_blocks[-2:]
for p in vae.parameters():
p.requires_grad = False
decoder = getattr(vae, "decoder", None)
if decoder is None:
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
unfrozen_param_names = []
if not hasattr(decoder, "up_blocks"):
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
# >>> CHANGED: размораживаем последние 2 up_blocks (как просил) и mid_block
n_up = len(decoder.up_blocks)
start_idx = 0 #max(0, n_up - 2)
for idx in range(start_idx, n_up):
block = decoder.up_blocks[idx]
for name, p in block.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
if hasattr(decoder, "mid_block"):
for name, p in decoder.mid_block.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(f"decoder.mid_block.{name}")
else:
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
print(" ", nm)
# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
trainable_module = vae.decoder
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
class PngFolderDataset(Dataset):
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
# >>> CHANGED: default resolution argument is high-resolution (1024)
self.root_dir = root_dir
self.resolution = resolution
self.paths = []
# collect png files recursively
for root, _, files in os.walk(root_dir):
for fname in files:
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
self.paths.append(os.path.join(root, fname))
# optional limit
if limit:
self.paths = self.paths[:limit]
# verify images and keep only valid ones
valid = []
for p in self.paths:
try:
with Image.open(p) as im:
im.verify() # fast check for truncated/corrupted images
valid.append(p)
except (OSError, UnidentifiedImageError):
# skip corrupted image
continue
self.paths = valid
if len(self.paths) == 0:
raise RuntimeError(f"No valid PNG images found under {root_dir}")
# final shuffle for randomness
random.shuffle(self.paths)
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
p = self.paths[idx % len(self.paths)]
# open and convert to RGB; ensure file is closed promptly
with Image.open(p) as img:
img = img.convert("RGB")
# return PIL image (collate will transform)
if not resize_long_side or resize_long_side <= 0:
return img
w, h = img.size
long = max(w, h)
if long <= resize_long_side:
return img
scale = resize_long_side / float(long)
new_w = int(round(w * scale))
new_h = int(round(h * scale))
return img.resize((new_w, new_h), Image.LANCZOS)
# --------------------------- Датасет и трансформы ---------------------------
def random_crop(img, sz):
w, h = img.size
if w < sz or h < sz:
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
x = random.randint(0, max(1, img.width - sz))
y = random.randint(0, max(1, img.height - sz))
return img.crop((x, y, x + sz, y + sz))
tfm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# build dataset using high_resolution crops
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit) # >>> CHANGED
if len(dataset) < batch_size:
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
# collate_fn кропит до high_resolution
def collate_fn(batch):
imgs = []
for img in batch: # img is PIL.Image
img = random_crop(img, high_resolution) # >>> CHANGED: crop high-res
imgs.append(tfm(img))
return torch.stack(imgs)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
# --------------------------- Оптимизатор ---------------------------
def get_param_groups(module, weight_decay=0.001):
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
decay_params = []
no_decay_params = []
for n, p in module.named_parameters():
if not p.requires_grad:
continue
if any(nd in n for nd in no_decay):
no_decay_params.append(p)
else:
decay_params.append(p)
return [
{"params": decay_params, "weight_decay": weight_decay},
{"params": no_decay_params, "weight_decay": 0.0},
]
def create_optimizer(name, param_groups):
if name == "adam8bit":
return bnb.optim.AdamW8bit(
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
)
raise ValueError(name)
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)
# --------------------------- Подготовка Accelerate (вместе) ---------------------------
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # число optimizer.step() за эпоху
total_steps = steps_per_epoch * num_epochs
def lr_lambda(step):
if not use_decay:
return 1.0
x = float(step) / float(max(1, total_steps))
warmup = float(warmup_percent)
min_ratio = float(min_learning_rate) / float(base_learning_rate)
if x < warmup:
return min_ratio + (1.0 - min_ratio) * (x / warmup)
decay_ratio = (x - warmup) / (1.0 - warmup)
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
scheduler = LambdaLR(optimizer, lr_lambda)
# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]
# --------------------------- Сэмплы и LPIPS helper ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
tensors = []
for img in pil_imgs:
img = random_crop(img, high_resolution) # >>> CHANGED: high-res fixed samples
tensors.append(tfm(img))
return torch.stack(tensors).to(accelerator.device, dtype)
fixed_samples = get_fixed_samples()
_lpips_net = None
def _get_lpips():
global _lpips_net
if _lpips_net is None:
# lpips uses its internal vgg, but we use it as-is.
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
return _lpips_net
@torch.no_grad()
def generate_and_save_samples(step=None):
try:
temp_vae = accelerator.unwrap_model(vae).eval()
lpips_net = _get_lpips()
with torch.no_grad():
# >>> CHANGED: use high-res fixed_samples, downsample to model_res for encoding
orig_high = fixed_samples # already on device
# make low-res input for model
if model_resolution==high_resolution:
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
else:
orig_low =orig_high
# ensure dtype matches model params to avoid dtype mismatch
model_dtype = next(temp_vae.parameters()).dtype
orig_low = orig_low.to(dtype=model_dtype)
latent_dist = temp_vae.encode(orig_low).latent_dist
latents = latent_dist.mean
rec = temp_vae.decode(latents).sample # expected to be upscaled to high_res
# make sure rec is float32 in range [0,1] for saving
# if rec spatial size differs from orig_high, resize rec to orig_high
if rec.shape[-2:] != orig_high.shape[-2:]:
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
rec_img = ((rec.float() / 2.0 + 0.5).clamp(0, 1) * 255).cpu().numpy()
for i in range(rec_img.shape[0]):
arr = rec_img[i].transpose(1, 2, 0).astype(np.uint8)
Image.fromarray(arr).save(f"{generated_folder}/sample_{step if step is not None else 'init'}_{i}.jpg", quality=95)
# LPIPS на полном изображении (high-res)
lpips_scores = []
for i in range(rec.shape[0]):
orig_full = orig_high[i:i+1] # [B, C, H, W], in [-1,1]
rec_full = rec[i:i+1]
# ensure same spatial size/dtype
if rec_full.shape[-2:] != orig_full.shape[-2:]:
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
rec_full = rec_full.to(torch.float32)
orig_full = orig_full.to(torch.float32)
lpips_val = lpips_net(orig_full, rec_full).item()
lpips_scores.append(lpips_val)
avg_lpips = float(np.mean(lpips_scores))
if use_wandb and accelerator.is_main_process:
wandb.log({
"generated_images": [wandb.Image(Image.fromarray(rec_img[i].transpose(1,2,0).astype(np.uint8))) for i in range(rec_img.shape[0])],
"lpips_mean": avg_lpips
}, step=step)
finally:
gc.collect()
torch.cuda.empty_cache()
if accelerator.is_main_process and save_model:
print("Генерация сэмплов до старта обучения...")
generate_and_save_samples(0)
accelerator.wait_for_everyone()
# --------------------------- Тренировка ---------------------------
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
for epoch in range(num_epochs):
vae.train()
batch_losses = []
batch_losses_mae = []
batch_losses_lpips = []
batch_losses_perc = []
batch_grads = []
for imgs in dataloader:
with accelerator.accumulate(vae):
# imgs: high-res tensor from dataloader ([-1,1]), move to device
imgs = imgs.to(accelerator.device)
# >>> CHANGED: create low-res input for model by downsampling high-res crop
if model_resolution==high_resolution:
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
else:
imgs_low = imgs
# ensure dtype matches model params to avoid float/half mismatch
model_dtype = next(vae.parameters()).dtype
if imgs_low.dtype != model_dtype:
imgs_low_model = imgs_low.to(dtype=model_dtype)
else:
imgs_low_model = imgs_low
# Encode/decode on low-res input
latent_dist = vae.encode(imgs_low_model).latent_dist
latents = latent_dist.mean
rec = vae.decode(latents).sample # rec is expected to be high-res (upscaled)
# If rec isn't the same spatial size as original high-res input, resize to high-res
if rec.shape[-2:] != imgs.shape[-2:]:
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
# Now compute losses **on high-res** (rec vs imgs)
rec_f32 = rec.to(torch.float32)
imgs_f32 = imgs.to(torch.float32)
# MAE
mae_loss = F.l1_loss(rec_f32, imgs_f32)
# LPIPS (ensure float32)
lpips_loss = _get_lpips()(rec_f32, imgs_f32).mean()
# dynamic perceptual weighting (same as before)
if float(mae_loss.detach().cpu().item()) > 1e-12:
desired_multiplier = lpips_ratio / max(1.0 - lpips_ratio, 1e-12)
new_weight = (mae_loss.item() / float(lpips_loss.detach().cpu().item())) * desired_multiplier
else:
new_weight = perceptual_loss_weight
perceptual_loss_weight = float(np.clip(new_weight, min_perceptual_weight, max_perceptual_weight))
batch_losses_perc.append(perceptual_loss_weight)
if len(batch_losses_perc) >= sample_interval:
avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
else:
avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
total_loss = mae_loss + avg_perc * lpips_loss
if torch.isnan(total_loss) or torch.isinf(total_loss):
print("NaN/Inf loss – stopping")
raise RuntimeError("NaN/Inf loss")
accelerator.backward(total_loss)
grad_norm = torch.tensor(0.0, device=accelerator.device)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
progress.update(1)
# --- Логирование ---
if accelerator.is_main_process:
try:
current_lr = optimizer.param_groups[0]["lr"]
except Exception:
current_lr = scheduler.get_last_lr()[0]
batch_losses.append(total_loss.detach().item())
batch_losses_mae.append(mae_loss.detach().item())
batch_losses_lpips.append(lpips_loss.detach().item())
batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
if use_wandb and accelerator.sync_gradients:
wandb.log({
"mae_loss": mae_loss.detach().item(),
"lpips_loss": lpips_loss.detach().item(),
"perceptual_loss_weight": avg_perc,
"total_loss": total_loss.detach().item(),
"learning_rate": current_lr,
"epoch": epoch,
"grad_norm": batch_grads[-1],
}, step=global_step)
# периодические сэмплы и чекпоинты
if global_step > 0 and global_step % sample_interval == 0:
# делаем генерацию и лог только в main process (генерация использует fixed_samples high-res)
if accelerator.is_main_process:
generate_and_save_samples(global_step)
accelerator.wait_for_everyone()
# сколько микро-батчей нужно взять для усреднения
n_micro = sample_interval * gradient_accumulation_steps
# защищаем от выхода за пределы
if len(batch_losses) >= n_micro:
avg_loss = float(np.mean(batch_losses[-n_micro:]))
avg_loss_mae = float(np.mean(batch_losses_mae[-n_micro:]))
avg_loss_lpips = float(np.mean(batch_losses_lpips[-n_micro:]))
else:
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
avg_loss_mae = float(np.mean(batch_losses_mae)) if batch_losses_mae else float("nan")
avg_loss_lpips = float(np.mean(batch_losses_lpips)) if batch_losses_lpips else float("nan")
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
if accelerator.is_main_process:
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
if save_model and avg_loss < min_loss * save_barrier:
min_loss = avg_loss
accelerator.unwrap_model(vae).save_pretrained(save_as)
if use_wandb:
wandb.log({"interm_loss": avg_loss,"interm_loss_mae": avg_loss_mae,"interm_loss_lpips": avg_loss_lpips, "interm_grad": avg_grad}, step=global_step)
if accelerator.is_main_process:
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
if use_wandb:
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
print("Training finished – saving final model")
if save_model:
accelerator.unwrap_model(vae).save_pretrained(save_as)
accelerator.free_memory()
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
print("Готово!") |