File size: 21,702 Bytes
2a06cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path

import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips   # pip install lpips

# --------------------------- Параметры ---------------------------
ds_path            = "/workspace/png"
project            = "sdxl_vae"
batch_size         = 1
base_learning_rate = 1e-6
min_learning_rate  = 8e-7
num_epochs         = 8
sample_interval_share = 20
use_wandb          = True
save_model         = True
use_decay          = True
optimizer_type     = "adam8bit"
dtype              = torch.float32
# model_resolution — то, что подавается в VAE (низкое разрешение)
model_resolution   = 768   # бывший `resolution`
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
high_resolution    = 768  # >>> CHANGED: обучаемся на входах 1024 -> даунсемплим до 512 для модели
limit              = 0
save_barrier       = 1.03
warmup_percent     = 0.01
percentile_clipping = 95
beta2              = 0.97
eps                = 1e-6
clip_grad_norm     = 1.0
mixed_precision    = "no"   # или "fp16"/"bf16" при поддержке
gradient_accumulation_steps = 16
generated_folder   = "samples"
save_as            = "sdxl_vae_new"
perceptual_loss_weight = 0.03  # начальное значение веса (будет перезаписываться каждый шаг)
num_workers        = 0
device = None  # accelerator задаст устройство

# --- Параметры динамической нормализации LPIPS 
lpips_ratio = 0.9 #percent lpips in loss

min_perceptual_weight = 0.1    # минимальный предел веса
max_perceptual_weight = 99     # максимальный предел веса (защита от взрывов)

# --------------------------- параметры препроцессинга ---------------------------
resize_long_side = 1280  # если None или 0 — ресайза не будет; рекомендовано 1024

Path(generated_folder).mkdir(parents=True, exist_ok=True)

accelerator = Accelerator(
    mixed_precision=mixed_precision,
    gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device

# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)

torch.backends.cudnn.benchmark = True

# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
    wandb.init(project=project, config={
        "batch_size": batch_size,
        "base_learning_rate": base_learning_rate,
        "num_epochs": num_epochs,
        "optimizer_type": optimizer_type,
        "model_resolution": model_resolution,
        "high_resolution": high_resolution,
        "gradient_accumulation_steps": gradient_accumulation_steps,
    })

# --------------------------- VAE ---------------------------
vae = AutoencoderKL.from_pretrained(project).to(dtype)
#vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)

# >>> CHANGED: заморозка всех параметров, затем разморозка mid_block + up_blocks[-2:]
for p in vae.parameters():
    p.requires_grad = False

decoder = getattr(vae, "decoder", None)
if decoder is None:
    raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")

unfrozen_param_names = []

if not hasattr(decoder, "up_blocks"):
    raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")

# >>> CHANGED: размораживаем последние 2 up_blocks (как просил) и mid_block
n_up = len(decoder.up_blocks)
start_idx = 0 #max(0, n_up - 2)
for idx in range(start_idx, n_up):
    block = decoder.up_blocks[idx]
    for name, p in block.named_parameters():
        p.requires_grad = True
        unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")

if hasattr(decoder, "mid_block"):
    for name, p in decoder.mid_block.named_parameters():
        p.requires_grad = True
        unfrozen_param_names.append(f"decoder.mid_block.{name}")
else:
    print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")

print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
    print("  ", nm)

# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
trainable_module = vae.decoder

# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
class PngFolderDataset(Dataset):
    def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
        # >>> CHANGED: default resolution argument is high-resolution (1024)
        self.root_dir = root_dir
        self.resolution = resolution
        self.paths = []
        # collect png files recursively
        for root, _, files in os.walk(root_dir):
            for fname in files:
                if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
                    self.paths.append(os.path.join(root, fname))
        # optional limit
        if limit:
            self.paths = self.paths[:limit]
        # verify images and keep only valid ones
        valid = []
        for p in self.paths:
            try:
                with Image.open(p) as im:
                    im.verify()  # fast check for truncated/corrupted images
                valid.append(p)
            except (OSError, UnidentifiedImageError):
                # skip corrupted image
                continue
        self.paths = valid
        if len(self.paths) == 0:
            raise RuntimeError(f"No valid PNG images found under {root_dir}")
        # final shuffle for randomness
        random.shuffle(self.paths)

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, idx):
        p = self.paths[idx % len(self.paths)]
        # open and convert to RGB; ensure file is closed promptly
        with Image.open(p) as img:
            img = img.convert("RGB")
            # return PIL image (collate will transform)
            if not resize_long_side or resize_long_side <= 0:
                return img
            w, h = img.size
            long = max(w, h)
            if long <= resize_long_side:
                return img
            scale = resize_long_side / float(long)
            new_w = int(round(w * scale))
            new_h = int(round(h * scale))
            return img.resize((new_w, new_h), Image.LANCZOS)

# --------------------------- Датасет и трансформы ---------------------------

def random_crop(img, sz):
    w, h = img.size
    if w < sz or h < sz:
        img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
    x = random.randint(0, max(1, img.width - sz))
    y = random.randint(0, max(1, img.height - sz))
    return img.crop((x, y, x + sz, y + sz))

tfm = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

# build dataset using high_resolution crops
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)  # >>> CHANGED
if len(dataset) < batch_size:
    raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")

# collate_fn кропит до high_resolution
def collate_fn(batch):
    imgs = []
    for img in batch:  # img is PIL.Image
        img = random_crop(img, high_resolution)   # >>> CHANGED: crop high-res
        imgs.append(tfm(img))
    return torch.stack(imgs)

dataloader = DataLoader(
    dataset,
    batch_size=batch_size,
    shuffle=True,
    collate_fn=collate_fn,
    num_workers=num_workers,
    pin_memory=True,
    drop_last=True
)

# --------------------------- Оптимизатор ---------------------------
def get_param_groups(module, weight_decay=0.001):
    no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
    decay_params = []
    no_decay_params = []
    for n, p in module.named_parameters():
        if not p.requires_grad:
            continue
        if any(nd in n for nd in no_decay):
            no_decay_params.append(p)
        else:
            decay_params.append(p)
    return [
        {"params": decay_params, "weight_decay": weight_decay},
        {"params": no_decay_params, "weight_decay": 0.0},
    ]

def create_optimizer(name, param_groups):
    if name == "adam8bit":
        return bnb.optim.AdamW8bit(
            param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
        )
    raise ValueError(name)

param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)

# --------------------------- Подготовка Accelerate (вместе) ---------------------------
batches_per_epoch = len(dataloader)  # число микро-батчей (dataloader steps)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))  # число optimizer.step() за эпоху
total_steps = steps_per_epoch * num_epochs

def lr_lambda(step):
    if not use_decay:
        return 1.0
    x = float(step) / float(max(1, total_steps))
    warmup = float(warmup_percent)
    min_ratio = float(min_learning_rate) / float(base_learning_rate)
    if x < warmup:
        return min_ratio + (1.0 - min_ratio) * (x / warmup)
    decay_ratio = (x - warmup) / (1.0 - warmup)
    return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))

scheduler = LambdaLR(optimizer, lr_lambda)

# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)

trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]

# --------------------------- Сэмплы и LPIPS helper ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
    idx = random.sample(range(len(dataset)), min(n, len(dataset)))
    pil_imgs = [dataset[i] for i in idx]  # dataset returns PIL.Image
    tensors = []
    for img in pil_imgs:
        img = random_crop(img, high_resolution)  # >>> CHANGED: high-res fixed samples
        tensors.append(tfm(img))
    return torch.stack(tensors).to(accelerator.device, dtype)

fixed_samples = get_fixed_samples()

_lpips_net = None
def _get_lpips():
    global _lpips_net
    if _lpips_net is None:
        # lpips uses its internal vgg, but we use it as-is.
        _lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
    return _lpips_net

@torch.no_grad()
def generate_and_save_samples(step=None):
    try:
        temp_vae = accelerator.unwrap_model(vae).eval()
        lpips_net = _get_lpips()
        with torch.no_grad():
            # >>> CHANGED: use high-res fixed_samples, downsample to model_res for encoding
            orig_high = fixed_samples  # already on device
            # make low-res input for model
            if model_resolution==high_resolution:
                orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
            else:
                orig_low =orig_high 

            # ensure dtype matches model params to avoid dtype mismatch
            model_dtype = next(temp_vae.parameters()).dtype
            orig_low = orig_low.to(dtype=model_dtype)

            latent_dist = temp_vae.encode(orig_low).latent_dist
            latents = latent_dist.mean
            rec = temp_vae.decode(latents).sample  # expected to be upscaled to high_res

        # make sure rec is float32 in range [0,1] for saving
        # if rec spatial size differs from orig_high, resize rec to orig_high
        if rec.shape[-2:] != orig_high.shape[-2:]:
            rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)

        rec_img = ((rec.float() / 2.0 + 0.5).clamp(0, 1) * 255).cpu().numpy()
        for i in range(rec_img.shape[0]):
            arr = rec_img[i].transpose(1, 2, 0).astype(np.uint8)
            Image.fromarray(arr).save(f"{generated_folder}/sample_{step if step is not None else 'init'}_{i}.jpg", quality=95)

        # LPIPS на полном изображении (high-res)
        lpips_scores = []
        for i in range(rec.shape[0]):
            orig_full = orig_high[i:i+1]  # [B, C, H, W], in [-1,1]
            rec_full  = rec[i:i+1]
            # ensure same spatial size/dtype
            if rec_full.shape[-2:] != orig_full.shape[-2:]:
                rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
            rec_full = rec_full.to(torch.float32)
            orig_full = orig_full.to(torch.float32)
            lpips_val = lpips_net(orig_full, rec_full).item()
            lpips_scores.append(lpips_val)
        avg_lpips = float(np.mean(lpips_scores))
        if use_wandb and accelerator.is_main_process:
            wandb.log({
                "generated_images": [wandb.Image(Image.fromarray(rec_img[i].transpose(1,2,0).astype(np.uint8))) for i in range(rec_img.shape[0])],
                "lpips_mean": avg_lpips
            }, step=step)
    finally:
        gc.collect()
        torch.cuda.empty_cache()

if accelerator.is_main_process and save_model:
    print("Генерация сэмплов до старта обучения...")
    generate_and_save_samples(0)

accelerator.wait_for_everyone()

# --------------------------- Тренировка ---------------------------

progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))

for epoch in range(num_epochs):
    vae.train()
    batch_losses = []
    batch_losses_mae = []
    batch_losses_lpips = []
    batch_losses_perc = []
    batch_grads = []
    for imgs in dataloader:
        with accelerator.accumulate(vae):
            # imgs: high-res tensor from dataloader ([-1,1]), move to device
            imgs = imgs.to(accelerator.device)

            # >>> CHANGED: create low-res input for model by downsampling high-res crop
            if model_resolution==high_resolution:
                imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
            else:
                imgs_low = imgs

            # ensure dtype matches model params to avoid float/half mismatch
            model_dtype = next(vae.parameters()).dtype
            if imgs_low.dtype != model_dtype:
                imgs_low_model = imgs_low.to(dtype=model_dtype)
            else:
                imgs_low_model = imgs_low

            # Encode/decode on low-res input
            latent_dist = vae.encode(imgs_low_model).latent_dist
            latents = latent_dist.mean
            rec = vae.decode(latents).sample  # rec is expected to be high-res (upscaled)

            # If rec isn't the same spatial size as original high-res input, resize to high-res
            if rec.shape[-2:] != imgs.shape[-2:]:
                rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)

            # Now compute losses **on high-res** (rec vs imgs)
            rec_f32 = rec.to(torch.float32)
            imgs_f32 = imgs.to(torch.float32)

            # MAE
            mae_loss = F.l1_loss(rec_f32, imgs_f32)

            # LPIPS (ensure float32)
            lpips_loss = _get_lpips()(rec_f32, imgs_f32).mean()
            
            # dynamic perceptual weighting (same as before)
            if float(mae_loss.detach().cpu().item()) > 1e-12:
                desired_multiplier = lpips_ratio / max(1.0 - lpips_ratio, 1e-12)
                new_weight = (mae_loss.item() / float(lpips_loss.detach().cpu().item())) * desired_multiplier
            else:
                new_weight = perceptual_loss_weight
            
            perceptual_loss_weight = float(np.clip(new_weight, min_perceptual_weight, max_perceptual_weight))
            batch_losses_perc.append(perceptual_loss_weight)
            if len(batch_losses_perc) >= sample_interval:
                avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
            else:
                avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))

            total_loss = mae_loss + avg_perc * lpips_loss

            if torch.isnan(total_loss) or torch.isinf(total_loss):
                print("NaN/Inf loss – stopping")
                raise RuntimeError("NaN/Inf loss")

            accelerator.backward(total_loss)

            grad_norm = torch.tensor(0.0, device=accelerator.device)
            if accelerator.sync_gradients:
                grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad(set_to_none=True)

                global_step += 1
                progress.update(1)

            # --- Логирование ---
            if accelerator.is_main_process:
                try:
                    current_lr = optimizer.param_groups[0]["lr"]
                except Exception:
                    current_lr = scheduler.get_last_lr()[0]

                batch_losses.append(total_loss.detach().item())
                batch_losses_mae.append(mae_loss.detach().item())
                batch_losses_lpips.append(lpips_loss.detach().item())
                batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))

                if use_wandb and accelerator.sync_gradients:
                    wandb.log({
                        "mae_loss": mae_loss.detach().item(),
                        "lpips_loss": lpips_loss.detach().item(),
                        "perceptual_loss_weight": avg_perc,
                        "total_loss": total_loss.detach().item(),
                        "learning_rate": current_lr,
                        "epoch": epoch,
                        "grad_norm": batch_grads[-1],
                    }, step=global_step)

            # периодические сэмплы и чекпоинты
            if global_step > 0 and global_step % sample_interval == 0:
                # делаем генерацию и лог только в main process (генерация использует fixed_samples high-res)
                if accelerator.is_main_process:
                    generate_and_save_samples(global_step)

                accelerator.wait_for_everyone()
                
                # сколько микро-батчей нужно взять для усреднения
                n_micro = sample_interval * gradient_accumulation_steps
                # защищаем от выхода за пределы
                if len(batch_losses) >= n_micro:
                    avg_loss = float(np.mean(batch_losses[-n_micro:]))
                    avg_loss_mae = float(np.mean(batch_losses_mae[-n_micro:]))
                    avg_loss_lpips = float(np.mean(batch_losses_lpips[-n_micro:]))
                else:
                    avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
                    avg_loss_mae = float(np.mean(batch_losses_mae)) if batch_losses_mae else float("nan")
                    avg_loss_lpips = float(np.mean(batch_losses_lpips)) if batch_losses_lpips else float("nan")

                avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0

                if accelerator.is_main_process:
                    print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
                    if save_model and avg_loss < min_loss * save_barrier:
                        min_loss = avg_loss
                        accelerator.unwrap_model(vae).save_pretrained(save_as)
                    if use_wandb:
                        wandb.log({"interm_loss": avg_loss,"interm_loss_mae": avg_loss_mae,"interm_loss_lpips": avg_loss_lpips, "interm_grad": avg_grad}, step=global_step)

    if accelerator.is_main_process:
        epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
        print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
        if use_wandb:
            wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)

# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
    print("Training finished – saving final model")
    if save_model:
        accelerator.unwrap_model(vae).save_pretrained(save_as)

accelerator.free_memory()
if torch.distributed.is_initialized():
    torch.distributed.destroy_process_group()
print("Готово!")