File size: 11,991 Bytes
bf7a967
 
 
 
 
 
 
4744909
bf7a967
 
 
 
 
 
4744909
bf7a967
 
4744909
 
 
 
 
bf7a967
 
 
4744909
 
 
bf7a967
4744909
bf7a967
4744909
 
 
 
bf7a967
 
4744909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4744909
 
 
bf7a967
 
4744909
 
 
bf7a967
 
 
 
 
 
 
 
 
 
 
4744909
bf7a967
 
 
 
 
 
 
 
 
 
 
 
 
 
4744909
 
 
 
 
bf7a967
 
 
 
 
 
 
4744909
 
 
 
 
bf7a967
4744909
bf7a967
4744909
 
 
 
 
 
bf7a967
4744909
 
 
 
 
 
bf7a967
 
 
 
 
 
4744909
bf7a967
 
 
4744909
bf7a967
4744909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7a967
 
 
 
 
 
4744909
bf7a967
 
 
 
4744909
 
bf7a967
 
 
4744909
 
bf7a967
 
 
4744909
bf7a967
4744909
bf7a967
4744909
bf7a967
4744909
bf7a967
 
4744909
bf7a967
4744909
 
bf7a967
4744909
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import torch
import torch.nn.functional as F
import lpips
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop,ToPILImage 
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
import random

# --------------------------- Параметры ---------------------------
DEVICE = "cuda"
DTYPE = torch.float16
IMAGE_FOLDER = "/workspace/alchemist" #wget https://huggingface.co/datasets/AiArtLab/alchemist/resolve/main/alchemist.zip
MIN_SIZE = 1280
CROP_SIZE = 512
BATCH_SIZE = 5
MAX_IMAGES = 100
NUM_WORKERS = 4
NUM_SAMPLES_TO_SAVE = 10  # Сколько примеров сохранить (0 - не сохранять)
SAMPLES_FOLDER = "vaetest"

# Список VAE для тестирования
VAE_LIST = [

#    ("stable-diffusion-v1-5/stable-diffusion-v1-5", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
#    ("cross-attention/asymmetric-autoencoder-kl-x-1-5", AsymmetricAutoencoderKL, "cross-attention/asymmetric-autoencoder-kl-x-1-5", None),
    ("madebyollin/sdxl-vae-fp16", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
#    ("AiArtLab/sdxs", AutoencoderKL, "AiArtLab/sdxs", "vae"),
    ("AiArtLab/sdxl_vae", AutoencoderKL, "AiArtLab/sdxl_vae", None),
#    ("AiArtLab/sdxl_vae_asym", AsymmetricAutoencoderKL, "AiArtLab/sdxl_vae", "asymmetric_vae"),
    ("AiArtLab/sdxl_vae_asym_new", AsymmetricAutoencoderKL, "AiArtLab/sdxl_vae", "asymmetric_vae_new"),
#    ("KBlueLeaf/EQ-SDXL-VAE", AutoencoderKL, "KBlueLeaf/EQ-SDXL-VAE", None),
#    ("FLUX.1-schnell-vae", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
]

# --------------------------- Sobel Edge Detection ---------------------------
# Определяем фильтры Собеля глобально
_sobel_kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).view(1, 1, 3, 3)
_sobel_ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32).view(1, 1, 3, 3)

def sobel_edges(x: torch.Tensor) -> torch.Tensor:
    """
    Вычисляет карту границ с помощью оператора Собеля
    x: [B,C,H,W] в диапазоне [-1,1]
    Возвращает: [B,C,H,W] - магнитуда градиента
    """
    C = x.shape[1]
    kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
    ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
    gx = F.conv2d(x, kx, padding=1, groups=C)
    gy = F.conv2d(x, ky, padding=1, groups=C)
    return torch.sqrt(gx * gx + gy * gy + 1e-12)

def compute_edge_loss(real: torch.Tensor, fake: torch.Tensor) -> float:
    """
    Вычисляет Edge Loss между реальным и сгенерированным изображением
    real, fake: [B,C,H,W] в диапазоне [0,1]
    Возвращает: скалярное значение loss
    """
    # Конвертируем в [-1,1] для sobel_edges
    real_norm = real * 2 - 1
    fake_norm = fake * 2 - 1
    
    # Получаем карты границ
    edges_real = sobel_edges(real_norm)
    edges_fake = sobel_edges(fake_norm)
    
    # L1 loss между картами границ
    return F.l1_loss(edges_fake, edges_real).item()

# --------------------------- Dataset ---------------------------
class ImageFolderDataset(Dataset):
    def __init__(self, root_dir, extensions=('.png',), min_size=1024, crop_size=512, limit=None):
        self.root_dir = root_dir
        self.min_size = min_size
        self.crop_size = crop_size
        self.paths = []
        
        print("Сканирование папки...")
        for root, _, files in os.walk(root_dir):
            for fname in files:
                if fname.lower().endswith(extensions):
                    self.paths.append(os.path.join(root, fname))
        
        if limit:
            self.paths = self.paths[:limit]
        
        print("Проверка изображений...")
        valid = []
        for p in tqdm(self.paths, desc="Проверка"):
            try:
                with Image.open(p) as im:
                    im.verify()
                valid.append(p)
            except:
                continue
        self.paths = valid
        
        if len(self.paths) == 0:
            raise RuntimeError(f"Не найдено валидных изображений в {root_dir}")
        
        random.shuffle(self.paths)
        print(f"Найдено {len(self.paths)} изображений")
        
        self.transform = Compose([
            Resize(min_size, interpolation=Image.LANCZOS),
            CenterCrop(crop_size),
            ToTensor(),
        ])
    
    def __len__(self):
        return len(self.paths)
    
    def __getitem__(self, idx):
        path = self.paths[idx]
        with Image.open(path) as img:
            img = img.convert("RGB")
            return self.transform(img)

# --------------------------- Функции ---------------------------
def process(x):
    return x * 2 - 1

def deprocess(x):
    return x * 0.5 + 0.5

def _sanitize_name(name: str) -> str:
    return name.replace('/', '_').replace('-', '_')

# --------------------------- Основной код ---------------------------
if __name__ == "__main__":
    if NUM_SAMPLES_TO_SAVE > 0:
        os.makedirs(SAMPLES_FOLDER, exist_ok=True)
        
    dataset = ImageFolderDataset(
        IMAGE_FOLDER, 
        extensions=('.png',), 
        min_size=MIN_SIZE,
        crop_size=CROP_SIZE,
        limit=MAX_IMAGES
    )
    
    dataloader = DataLoader(
        dataset,
        batch_size=BATCH_SIZE,
        shuffle=False,
        num_workers=NUM_WORKERS,
        pin_memory=True,
        drop_last=False
    )
    
    lpips_net = lpips.LPIPS(net="vgg").eval().to(DEVICE).requires_grad_(False)
    
    print("\nЗагрузка VAE моделей...")
    vaes = []
    names = []
    
    for name, vae_class, model_path, subfolder in VAE_LIST:
        try:
            print(f"  Загружаю {name}...")
            # Исправлена загрузка для variant
            if "sdxs" in model_path:
                vae = vae_class.from_pretrained(model_path, subfolder=subfolder, variant="fp16")
            else:
                vae = vae_class.from_pretrained(model_path, subfolder=subfolder)
            vae = vae.to(DEVICE, DTYPE).eval()
            vaes.append(vae)
            names.append(name)
        except Exception as e:
            print(f"  ❌ Ошибка загрузки {name}: {e}")
    
    print("\nОценка метрик...")
    results = {name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "count": 0} for name in names}

    to_pil = ToPILImage()

    # >>>>>>>> ОСНОВНЫЕ ИЗМЕНЕНИЯ ЗДЕСЬ (KISS) <<<<<<<<
    with torch.no_grad():
        images_saved = 0  # считаем именно КОЛ-ВО ИЗОБРАЖЕНИЙ, а не сохранённых файлов
        for batch in tqdm(dataloader, desc="Обработка батчей"):
            batch = batch.to(DEVICE)                                # [B,3,H,W] в [0,1]
            test_inp = process(batch).to(DTYPE)                     # [-1,1] для энкодера

            # 1) считаем реконструкции для всех VAE на весь батч
            recon_list = []
            for vae in vaes:
                latent = vae.encode(test_inp).latent_dist.mode()
                dec = vae.decode(latent).sample.float()             # [-1,1] (как правило)
                recon = deprocess(dec).clamp(0.0, 1.0)              # -> [0,1], clamp убирает артефакты
                recon_list.append(recon)

            # 2) обновляем метрики (по каждой VAE)
            for recon, name in zip(recon_list, names):
                for i in range(batch.shape[0]):
                    img_orig = batch[i:i+1]
                    img_recon = recon[i:i+1]
                    mse = F.mse_loss(img_orig, img_recon).item()
                    psnr = 10 * torch.log10(1 / torch.tensor(mse)).item()
                    lpips_val = lpips_net(img_orig, img_recon, normalize=True).mean().item()
                    edge_loss = compute_edge_loss(img_orig, img_recon)
                    results[name]["mse"] += mse
                    results[name]["psnr"] += psnr
                    results[name]["lpips"] += lpips_val
                    results[name]["edge"] += edge_loss
                    results[name]["count"] += 1

            # 3) сохраняем ровно NUM_SAMPLES_TO_SAVE изображений (orig + все VAE + общий коллаж)
            if NUM_SAMPLES_TO_SAVE > 0:
                for i in range(batch.shape[0]):
                    if images_saved >= NUM_SAMPLES_TO_SAVE:
                        break
                    idx_str = f"{images_saved + 1:03d}"

                    # original
                    orig_pil = to_pil(batch[i].detach().float().cpu())
                    orig_pil.save(os.path.join(SAMPLES_FOLDER, f"{idx_str}_orig.png"))

                    # per-VAE decodes
                    tiles = [orig_pil]
                    for recon, name in zip(recon_list, names):
                        recon_pil = to_pil(recon[i].detach().cpu())
                        recon_pil.save(os.path.join(
                            SAMPLES_FOLDER, f"{idx_str}_decoded_{_sanitize_name(name)}.png"
                        ))
                        tiles.append(recon_pil)

                    # общий коллаж: [orig | vae1 | vae2 | ...]
                    collage_w = CROP_SIZE * len(tiles)
                    collage_h = CROP_SIZE
                    collage = Image.new("RGB", (collage_w, collage_h))
                    x = 0
                    for tile in tiles:
                        collage.paste(tile, (x, 0))
                        x += CROP_SIZE
                    collage.save(os.path.join(SAMPLES_FOLDER, f"{idx_str}_all.png"))

                    images_saved += 1


    # Усреднение результатов
    for name in names:
        count = results[name]["count"]
        results[name]["mse"] /= count
        results[name]["psnr"] /= count
        results[name]["lpips"] /= count
        results[name]["edge"] /= count
    
    # Вывод абсолютных значений
    print("\n=== Абсолютные значения ===")
    for name in names:
        print(f"{name:30s}: MSE: {results[name]['mse']:.3e}, PSNR: {results[name]['psnr']:.4f}, "
              f"LPIPS: {results[name]['lpips']:.4f}, Edge: {results[name]['edge']:.4f}")
    
    # Вывод таблицы с процентами
    print("\n=== Сравнение с первой моделью (%) ===")
    print(f"| {'Модель':30s} | {'MSE':>10s} | {'PSNR':>10s} | {'LPIPS':>10s} | {'Edge':>10s} |")
    print(f"|{'-'*32}|{'-'*12}|{'-'*12}|{'-'*12}|{'-'*12}|")
    
    baseline = names[0]
    for name in names:
        # Для MSE, LPIPS и Edge: меньше = лучше, поэтому инвертируем
        mse_pct = (results[baseline]["mse"] / results[name]["mse"]) * 100
        # Для PSNR: больше = лучше
        psnr_pct = (results[name]["psnr"] / results[baseline]["psnr"]) * 100
        # Для LPIPS и Edge: меньше = лучше
        lpips_pct = (results[baseline]["lpips"] / results[name]["lpips"]) * 100
        edge_pct = (results[baseline]["edge"] / results[name]["edge"]) * 100
        
        if name == baseline:
            print(f"| {name:30s} | {'100%':>10s} | {'100%':>10s} | {'100%':>10s} | {'100%':>10s} |")
        else:
            print(f"| {name:30s} | {f'{mse_pct:.1f}%':>10s} | {f'{psnr_pct:.1f}%':>10s} | "
                  f"{f'{lpips_pct:.1f}%':>10s} | {f'{edge_pct:.1f}%':>10s} |")
    
    print("\n✅ Готово!")