File size: 11,991 Bytes
bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 bf7a967 4744909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import os
import torch
import torch.nn.functional as F
import lpips
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop,ToPILImage
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
import random
# --------------------------- Параметры ---------------------------
DEVICE = "cuda"
DTYPE = torch.float16
IMAGE_FOLDER = "/workspace/alchemist" #wget https://huggingface.co/datasets/AiArtLab/alchemist/resolve/main/alchemist.zip
MIN_SIZE = 1280
CROP_SIZE = 512
BATCH_SIZE = 5
MAX_IMAGES = 100
NUM_WORKERS = 4
NUM_SAMPLES_TO_SAVE = 10 # Сколько примеров сохранить (0 - не сохранять)
SAMPLES_FOLDER = "vaetest"
# Список VAE для тестирования
VAE_LIST = [
# ("stable-diffusion-v1-5/stable-diffusion-v1-5", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
# ("cross-attention/asymmetric-autoencoder-kl-x-1-5", AsymmetricAutoencoderKL, "cross-attention/asymmetric-autoencoder-kl-x-1-5", None),
("madebyollin/sdxl-vae-fp16", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
# ("AiArtLab/sdxs", AutoencoderKL, "AiArtLab/sdxs", "vae"),
("AiArtLab/sdxl_vae", AutoencoderKL, "AiArtLab/sdxl_vae", None),
# ("AiArtLab/sdxl_vae_asym", AsymmetricAutoencoderKL, "AiArtLab/sdxl_vae", "asymmetric_vae"),
("AiArtLab/sdxl_vae_asym_new", AsymmetricAutoencoderKL, "AiArtLab/sdxl_vae", "asymmetric_vae_new"),
# ("KBlueLeaf/EQ-SDXL-VAE", AutoencoderKL, "KBlueLeaf/EQ-SDXL-VAE", None),
# ("FLUX.1-schnell-vae", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
]
# --------------------------- Sobel Edge Detection ---------------------------
# Определяем фильтры Собеля глобально
_sobel_kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).view(1, 1, 3, 3)
_sobel_ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32).view(1, 1, 3, 3)
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
"""
Вычисляет карту границ с помощью оператора Собеля
x: [B,C,H,W] в диапазоне [-1,1]
Возвращает: [B,C,H,W] - магнитуда градиента
"""
C = x.shape[1]
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
gx = F.conv2d(x, kx, padding=1, groups=C)
gy = F.conv2d(x, ky, padding=1, groups=C)
return torch.sqrt(gx * gx + gy * gy + 1e-12)
def compute_edge_loss(real: torch.Tensor, fake: torch.Tensor) -> float:
"""
Вычисляет Edge Loss между реальным и сгенерированным изображением
real, fake: [B,C,H,W] в диапазоне [0,1]
Возвращает: скалярное значение loss
"""
# Конвертируем в [-1,1] для sobel_edges
real_norm = real * 2 - 1
fake_norm = fake * 2 - 1
# Получаем карты границ
edges_real = sobel_edges(real_norm)
edges_fake = sobel_edges(fake_norm)
# L1 loss между картами границ
return F.l1_loss(edges_fake, edges_real).item()
# --------------------------- Dataset ---------------------------
class ImageFolderDataset(Dataset):
def __init__(self, root_dir, extensions=('.png',), min_size=1024, crop_size=512, limit=None):
self.root_dir = root_dir
self.min_size = min_size
self.crop_size = crop_size
self.paths = []
print("Сканирование папки...")
for root, _, files in os.walk(root_dir):
for fname in files:
if fname.lower().endswith(extensions):
self.paths.append(os.path.join(root, fname))
if limit:
self.paths = self.paths[:limit]
print("Проверка изображений...")
valid = []
for p in tqdm(self.paths, desc="Проверка"):
try:
with Image.open(p) as im:
im.verify()
valid.append(p)
except:
continue
self.paths = valid
if len(self.paths) == 0:
raise RuntimeError(f"Не найдено валидных изображений в {root_dir}")
random.shuffle(self.paths)
print(f"Найдено {len(self.paths)} изображений")
self.transform = Compose([
Resize(min_size, interpolation=Image.LANCZOS),
CenterCrop(crop_size),
ToTensor(),
])
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
path = self.paths[idx]
with Image.open(path) as img:
img = img.convert("RGB")
return self.transform(img)
# --------------------------- Функции ---------------------------
def process(x):
return x * 2 - 1
def deprocess(x):
return x * 0.5 + 0.5
def _sanitize_name(name: str) -> str:
return name.replace('/', '_').replace('-', '_')
# --------------------------- Основной код ---------------------------
if __name__ == "__main__":
if NUM_SAMPLES_TO_SAVE > 0:
os.makedirs(SAMPLES_FOLDER, exist_ok=True)
dataset = ImageFolderDataset(
IMAGE_FOLDER,
extensions=('.png',),
min_size=MIN_SIZE,
crop_size=CROP_SIZE,
limit=MAX_IMAGES
)
dataloader = DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS,
pin_memory=True,
drop_last=False
)
lpips_net = lpips.LPIPS(net="vgg").eval().to(DEVICE).requires_grad_(False)
print("\nЗагрузка VAE моделей...")
vaes = []
names = []
for name, vae_class, model_path, subfolder in VAE_LIST:
try:
print(f" Загружаю {name}...")
# Исправлена загрузка для variant
if "sdxs" in model_path:
vae = vae_class.from_pretrained(model_path, subfolder=subfolder, variant="fp16")
else:
vae = vae_class.from_pretrained(model_path, subfolder=subfolder)
vae = vae.to(DEVICE, DTYPE).eval()
vaes.append(vae)
names.append(name)
except Exception as e:
print(f" ❌ Ошибка загрузки {name}: {e}")
print("\nОценка метрик...")
results = {name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "count": 0} for name in names}
to_pil = ToPILImage()
# >>>>>>>> ОСНОВНЫЕ ИЗМЕНЕНИЯ ЗДЕСЬ (KISS) <<<<<<<<
with torch.no_grad():
images_saved = 0 # считаем именно КОЛ-ВО ИЗОБРАЖЕНИЙ, а не сохранённых файлов
for batch in tqdm(dataloader, desc="Обработка батчей"):
batch = batch.to(DEVICE) # [B,3,H,W] в [0,1]
test_inp = process(batch).to(DTYPE) # [-1,1] для энкодера
# 1) считаем реконструкции для всех VAE на весь батч
recon_list = []
for vae in vaes:
latent = vae.encode(test_inp).latent_dist.mode()
dec = vae.decode(latent).sample.float() # [-1,1] (как правило)
recon = deprocess(dec).clamp(0.0, 1.0) # -> [0,1], clamp убирает артефакты
recon_list.append(recon)
# 2) обновляем метрики (по каждой VAE)
for recon, name in zip(recon_list, names):
for i in range(batch.shape[0]):
img_orig = batch[i:i+1]
img_recon = recon[i:i+1]
mse = F.mse_loss(img_orig, img_recon).item()
psnr = 10 * torch.log10(1 / torch.tensor(mse)).item()
lpips_val = lpips_net(img_orig, img_recon, normalize=True).mean().item()
edge_loss = compute_edge_loss(img_orig, img_recon)
results[name]["mse"] += mse
results[name]["psnr"] += psnr
results[name]["lpips"] += lpips_val
results[name]["edge"] += edge_loss
results[name]["count"] += 1
# 3) сохраняем ровно NUM_SAMPLES_TO_SAVE изображений (orig + все VAE + общий коллаж)
if NUM_SAMPLES_TO_SAVE > 0:
for i in range(batch.shape[0]):
if images_saved >= NUM_SAMPLES_TO_SAVE:
break
idx_str = f"{images_saved + 1:03d}"
# original
orig_pil = to_pil(batch[i].detach().float().cpu())
orig_pil.save(os.path.join(SAMPLES_FOLDER, f"{idx_str}_orig.png"))
# per-VAE decodes
tiles = [orig_pil]
for recon, name in zip(recon_list, names):
recon_pil = to_pil(recon[i].detach().cpu())
recon_pil.save(os.path.join(
SAMPLES_FOLDER, f"{idx_str}_decoded_{_sanitize_name(name)}.png"
))
tiles.append(recon_pil)
# общий коллаж: [orig | vae1 | vae2 | ...]
collage_w = CROP_SIZE * len(tiles)
collage_h = CROP_SIZE
collage = Image.new("RGB", (collage_w, collage_h))
x = 0
for tile in tiles:
collage.paste(tile, (x, 0))
x += CROP_SIZE
collage.save(os.path.join(SAMPLES_FOLDER, f"{idx_str}_all.png"))
images_saved += 1
# Усреднение результатов
for name in names:
count = results[name]["count"]
results[name]["mse"] /= count
results[name]["psnr"] /= count
results[name]["lpips"] /= count
results[name]["edge"] /= count
# Вывод абсолютных значений
print("\n=== Абсолютные значения ===")
for name in names:
print(f"{name:30s}: MSE: {results[name]['mse']:.3e}, PSNR: {results[name]['psnr']:.4f}, "
f"LPIPS: {results[name]['lpips']:.4f}, Edge: {results[name]['edge']:.4f}")
# Вывод таблицы с процентами
print("\n=== Сравнение с первой моделью (%) ===")
print(f"| {'Модель':30s} | {'MSE':>10s} | {'PSNR':>10s} | {'LPIPS':>10s} | {'Edge':>10s} |")
print(f"|{'-'*32}|{'-'*12}|{'-'*12}|{'-'*12}|{'-'*12}|")
baseline = names[0]
for name in names:
# Для MSE, LPIPS и Edge: меньше = лучше, поэтому инвертируем
mse_pct = (results[baseline]["mse"] / results[name]["mse"]) * 100
# Для PSNR: больше = лучше
psnr_pct = (results[name]["psnr"] / results[baseline]["psnr"]) * 100
# Для LPIPS и Edge: меньше = лучше
lpips_pct = (results[baseline]["lpips"] / results[name]["lpips"]) * 100
edge_pct = (results[baseline]["edge"] / results[name]["edge"]) * 100
if name == baseline:
print(f"| {name:30s} | {'100%':>10s} | {'100%':>10s} | {'100%':>10s} | {'100%':>10s} |")
else:
print(f"| {name:30s} | {f'{mse_pct:.1f}%':>10s} | {f'{psnr_pct:.1f}%':>10s} | "
f"{f'{lpips_pct:.1f}%':>10s} | {f'{edge_pct:.1f}%':>10s} |")
print("\n✅ Готово!")
|