sdxl_vae / eval_imagenet.py
recoilme's picture
asym
bf7a967
import warnings
import logging
import torch
import torch.nn.functional as F
import torch.utils.data as data
import lpips
from tqdm import tqdm
from torchvision.transforms import (
Compose,
Resize,
ToTensor,
CenterCrop,
)
from diffusers import AutoencoderKL
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
warnings.filterwarnings(
"ignore",
".*Found keys that are not in the model state dict but in the checkpoint.*",
)
DEVICE = "cuda"
DTYPE = torch.float16
SHORT_AXIS_SIZE = 256
NAMES = [
"madebyollin/sdxl-vae-fp16-fix",
"KBlueLeaf/EQ-SDXL-VAE ",
"AiArtLab/simplevae ",
]
BASE_MODELS = [
"madebyollin/sdxl-vae-fp16-fix",
"KBlueLeaf/EQ-SDXL-VAE",
"AiArtLab/simplevae",
]
SUB_FOLDERS = [None, None, "sdxl_vae"]
CKPT_PATHS = [
None,
None,
None,
]
USE_APPROXS = [False, False, False]
def process(x):
return x * 2 - 1
def deprocess(x):
return x * 0.5 + 0.5
import torch.utils.data as data
from datasets import load_dataset
class ImageNetDataset(data.IterableDataset):
def __init__(self, split, transform=None, max_len=10, streaming=True):
self.split = split
self.transform = transform
self.dataset = load_dataset("evanarlian/imagenet_1k_resized_256", split=split, streaming=streaming)
self.max_len = max_len
self.iterator = iter(self.dataset)
def __iter__(self):
for i, entry in enumerate(self.iterator):
if self.max_len and i >= self.max_len:
break
img = entry["image"]
target = entry["label"]
if self.transform is not None:
img = self.transform(img)
yield img, target
if __name__ == "__main__":
lpips_loss = torch.compile(
lpips.LPIPS(net="vgg").eval().to(DEVICE).requires_grad_(False)
)
@torch.compile
def metrics(inp, recon):
mse = F.mse_loss(inp, recon)
psnr = 10 * torch.log10(1 / mse)
return (
mse.cpu(),
psnr.cpu(),
lpips_loss(inp, recon, normalize=True).mean().cpu(),
)
transform = Compose(
[
Resize(SHORT_AXIS_SIZE),
CenterCrop(SHORT_AXIS_SIZE),
ToTensor(),
]
)
valid_dataset = ImageNetDataset("val", transform=transform, max_len=50000, streaming=True)
valid_loader = data.DataLoader(
valid_dataset,
batch_size=4,
shuffle=False,
num_workers=2,
pin_memory=True,
pin_memory_device=DEVICE,
)
# Проверяем, что данные грузятся
for batch in valid_loader:
print("Batch shape:", batch[0].shape)
break
logger.info("Loading models...")
vaes = []
for base_model, sub_folder, ckpt_path, use_approx in zip(
BASE_MODELS, SUB_FOLDERS, CKPT_PATHS, USE_APPROXS
):
vae = AutoencoderKL.from_pretrained(base_model, subfolder=sub_folder)
if use_approx:
vae.decoder = LatentApproxDecoder(
latent_dim=vae.config.latent_channels,
out_channels=3,
shuffle=2,
)
vae.decode = lambda x: vae.decoder(x)
vae.get_last_layer = lambda: vae.decoder.conv_out.weight
if ckpt_path:
LatentTrainer.load_from_checkpoint(
ckpt_path, vae=vae, map_location="cpu", strict=False
)
vae = vae.to(DTYPE).eval().requires_grad_(False).to(DEVICE)
vae.encoder = torch.compile(vae.encoder)
vae.decoder = torch.compile(vae.decoder)
vaes.append(torch.compile(vae))
logger.info("Running Validation")
total = 0
all_latents = [[] for _ in range(len(vaes))]
all_mse = [[] for _ in range(len(vaes))]
all_psnr = [[] for _ in range(len(vaes))]
all_lpips = [[] for _ in range(len(vaes))]
for idx, batch in enumerate(tqdm(valid_loader)):
image = batch[0].to(DEVICE)
test_inp = process(image).to(DTYPE)
batch_size = test_inp.size(0)
for i, vae in enumerate(vaes):
latent = vae.encode(test_inp).latent_dist.mode()
recon = deprocess(vae.decode(latent).sample.float())
all_latents[i].append(latent.cpu().float())
mse, psnr, lpips_ = metrics(image, recon)
all_mse[i].append(mse.cpu() * batch_size)
all_psnr[i].append(psnr.cpu() * batch_size)
all_lpips[i].append(lpips_.cpu() * batch_size)
total += batch_size
for i in range(len(vaes)):
all_latents[i] = torch.cat(all_latents[i], dim=0)
all_mse[i] = torch.stack(all_mse[i]).sum() / total
all_psnr[i] = torch.stack(all_psnr[i]).sum() / total
all_lpips[i] = torch.stack(all_lpips[i]).sum() / total
logger.info(
f" - {NAMES[i]}: MSE: {all_mse[i]:.3e}, PSNR: {all_psnr[i]:.4f}, "
f"LPIPS: {all_lpips[i]:.4f}"
)
logger.info("End")