sdxl_vae / train_sdxl_vae_my.py
recoilme's picture
asym
bf7a967
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips # pip install lpips
# --------------------------- Параметры ---------------------------
ds_path = "/workspace/png"
project = "asymmetric_vae"
batch_size = 2
base_learning_rate = 1e-6
min_learning_rate = 8e-7
num_epochs = 8
sample_interval_share = 10
use_wandb = True
save_model = True
use_decay = True
asymmetric = True
optimizer_type = "adam8bit"
dtype = torch.float32
# model_resolution — то, что подавается в VAE (низкое разрешение)
model_resolution = 512 # бывший `resolution`
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
high_resolution = 1024
limit = 0
save_barrier = 1.03
warmup_percent = 0.01
percentile_clipping = 95
beta2 = 0.97
eps = 1e-6
clip_grad_norm = 1.0
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
gradient_accumulation_steps = 8
generated_folder = "samples"
save_as = "asymmetric_vae_new"
perceptual_loss_weight = 0.03 # начальное значение веса (будет перезаписываться каждый шаг)
num_workers = 0
device = None # accelerator задаст устройство
# --- Параметры динамической нормализации LPIPS
lpips_ratio = 0.9 #percent lpips in loss
min_perceptual_weight = 0.1 # минимальный предел веса
max_perceptual_weight = 99 # максимальный предел веса (защита от взрывов)
# --------------------------- параметры препроцессинга ---------------------------
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1024
Path(generated_folder).mkdir(parents=True, exist_ok=True)
accelerator = Accelerator(
mixed_precision=mixed_precision,
gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device
# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
wandb.init(project=project, config={
"batch_size": batch_size,
"base_learning_rate": base_learning_rate,
"num_epochs": num_epochs,
"optimizer_type": optimizer_type,
"model_resolution": model_resolution,
"high_resolution": high_resolution,
"gradient_accumulation_steps": gradient_accumulation_steps,
})
# --------------------------- VAE ---------------------------
if model_resolution==high_resolution and not asymmetric:
vae = AutoencoderKL.from_pretrained(project).to(dtype)
else:
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
# >>> CHANGED: заморозка всех параметров, затем разморозка mid_block + up_blocks[-2:]
for p in vae.parameters():
p.requires_grad = False
decoder = getattr(vae, "decoder", None)
if decoder is None:
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
unfrozen_param_names = []
if not hasattr(decoder, "up_blocks"):
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
# >>> CHANGED: размораживаем последние 2 up_blocks (как просил) и mid_block
n_up = len(decoder.up_blocks)
start_idx = 0 #max(0, n_up - 2) # all
for idx in range(start_idx, n_up):
block = decoder.up_blocks[idx]
for name, p in block.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
if hasattr(decoder, "mid_block"):
for name, p in decoder.mid_block.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(f"decoder.mid_block.{name}")
else:
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
print(" ", nm)
# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
trainable_module = vae.decoder
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
class PngFolderDataset(Dataset):
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
# >>> CHANGED: default resolution argument is high-resolution (1024)
self.root_dir = root_dir
self.resolution = resolution
self.paths = []
# collect png files recursively
for root, _, files in os.walk(root_dir):
for fname in files:
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
self.paths.append(os.path.join(root, fname))
# optional limit
if limit:
self.paths = self.paths[:limit]
# verify images and keep only valid ones
valid = []
for p in self.paths:
try:
with Image.open(p) as im:
im.verify() # fast check for truncated/corrupted images
valid.append(p)
except (OSError, UnidentifiedImageError):
# skip corrupted image
continue
self.paths = valid
if len(self.paths) == 0:
raise RuntimeError(f"No valid PNG images found under {root_dir}")
# final shuffle for randomness
random.shuffle(self.paths)
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
p = self.paths[idx % len(self.paths)]
# open and convert to RGB; ensure file is closed promptly
with Image.open(p) as img:
img = img.convert("RGB")
# return PIL image (collate will transform)
if not resize_long_side or resize_long_side <= 0:
return img
w, h = img.size
long = max(w, h)
if long <= resize_long_side:
return img
scale = resize_long_side / float(long)
new_w = int(round(w * scale))
new_h = int(round(h * scale))
return img.resize((new_w, new_h), Image.LANCZOS)
# --------------------------- Датасет и трансформы ---------------------------
def random_crop(img, sz):
w, h = img.size
if w < sz or h < sz:
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
x = random.randint(0, max(1, img.width - sz))
y = random.randint(0, max(1, img.height - sz))
return img.crop((x, y, x + sz, y + sz))
tfm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# build dataset using high_resolution crops
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit) # >>> CHANGED
if len(dataset) < batch_size:
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
# collate_fn кропит до high_resolution
def collate_fn(batch):
imgs = []
for img in batch: # img is PIL.Image
img = random_crop(img, high_resolution) # >>> CHANGED: crop high-res
imgs.append(tfm(img))
return torch.stack(imgs)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
# --------------------------- Оптимизатор ---------------------------
def get_param_groups(module, weight_decay=0.001):
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
decay_params = []
no_decay_params = []
for n, p in module.named_parameters():
if not p.requires_grad:
continue
if any(nd in n for nd in no_decay):
no_decay_params.append(p)
else:
decay_params.append(p)
return [
{"params": decay_params, "weight_decay": weight_decay},
{"params": no_decay_params, "weight_decay": 0.0},
]
def create_optimizer(name, param_groups):
if name == "adam8bit":
return bnb.optim.AdamW8bit(
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
)
raise ValueError(name)
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)
# --------------------------- Подготовка Accelerate (вместе) ---------------------------
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # число optimizer.step() за эпоху
total_steps = steps_per_epoch * num_epochs
def lr_lambda(step):
if not use_decay:
return 1.0
x = float(step) / float(max(1, total_steps))
warmup = float(warmup_percent)
min_ratio = float(min_learning_rate) / float(base_learning_rate)
if x < warmup:
return min_ratio + (1.0 - min_ratio) * (x / warmup)
decay_ratio = (x - warmup) / (1.0 - warmup)
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
scheduler = LambdaLR(optimizer, lr_lambda)
# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]
# --------------------------- Сэмплы и LPIPS helper ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
tensors = []
for img in pil_imgs:
img = random_crop(img, high_resolution) # >>> CHANGED: high-res fixed samples
tensors.append(tfm(img))
return torch.stack(tensors).to(accelerator.device, dtype)
fixed_samples = get_fixed_samples()
_lpips_net = None
def _get_lpips():
global _lpips_net
if _lpips_net is None:
# lpips uses its internal vgg, but we use it as-is.
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
return _lpips_net
@torch.no_grad()
def generate_and_save_samples(step=None):
try:
temp_vae = accelerator.unwrap_model(vae).eval()
lpips_net = _get_lpips()
with torch.no_grad():
# >>> CHANGED: use high-res fixed_samples, downsample to model_res for encoding
orig_high = fixed_samples # already on device
# make low-res input for model
if model_resolution==high_resolution:
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
else:
orig_low =orig_high
# ensure dtype matches model params to avoid dtype mismatch
model_dtype = next(temp_vae.parameters()).dtype
orig_low = orig_low.to(dtype=model_dtype)
latent_dist = temp_vae.encode(orig_low).latent_dist
latents = latent_dist.mean
rec = temp_vae.decode(latents).sample # expected to be upscaled to high_res
# make sure rec is float32 in range [0,1] for saving
# if rec spatial size differs from orig_high, resize rec to orig_high
if rec.shape[-2:] != orig_high.shape[-2:]:
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
rec_img = ((rec.float() / 2.0 + 0.5).clamp(0, 1) * 255).cpu().numpy()
for i in range(rec_img.shape[0]):
arr = rec_img[i].transpose(1, 2, 0).astype(np.uint8)
Image.fromarray(arr).save(f"{generated_folder}/sample_{step if step is not None else 'init'}_{i}.jpg", quality=95)
# LPIPS на полном изображении (high-res)
lpips_scores = []
for i in range(rec.shape[0]):
orig_full = orig_high[i:i+1] # [B, C, H, W], in [-1,1]
rec_full = rec[i:i+1]
# ensure same spatial size/dtype
if rec_full.shape[-2:] != orig_full.shape[-2:]:
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
rec_full = rec_full.to(torch.float32)
orig_full = orig_full.to(torch.float32)
lpips_val = lpips_net(orig_full, rec_full).item()
lpips_scores.append(lpips_val)
avg_lpips = float(np.mean(lpips_scores))
if use_wandb and accelerator.is_main_process:
wandb.log({
"generated_images": [wandb.Image(Image.fromarray(rec_img[i].transpose(1,2,0).astype(np.uint8))) for i in range(rec_img.shape[0])],
"lpips_mean": avg_lpips
}, step=step)
finally:
gc.collect()
torch.cuda.empty_cache()
if accelerator.is_main_process and save_model:
print("Генерация сэмплов до старта обучения...")
generate_and_save_samples(0)
accelerator.wait_for_everyone()
# --------------------------- Тренировка ---------------------------
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
for epoch in range(num_epochs):
vae.train()
batch_losses = []
batch_losses_mae = []
batch_losses_lpips = []
batch_losses_perc = []
batch_grads = []
for imgs in dataloader:
with accelerator.accumulate(vae):
# imgs: high-res tensor from dataloader ([-1,1]), move to device
imgs = imgs.to(accelerator.device)
# >>> CHANGED: create low-res input for model by downsampling high-res crop
if model_resolution==high_resolution:
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
else:
imgs_low = imgs
# ensure dtype matches model params to avoid float/half mismatch
model_dtype = next(vae.parameters()).dtype
if imgs_low.dtype != model_dtype:
imgs_low_model = imgs_low.to(dtype=model_dtype)
else:
imgs_low_model = imgs_low
# Encode/decode on low-res input
latent_dist = vae.encode(imgs_low_model).latent_dist
latents = latent_dist.mean
rec = vae.decode(latents).sample # rec is expected to be high-res (upscaled)
# If rec isn't the same spatial size as original high-res input, resize to high-res
if rec.shape[-2:] != imgs.shape[-2:]:
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
# Now compute losses **on high-res** (rec vs imgs)
rec_f32 = rec.to(torch.float32)
imgs_f32 = imgs.to(torch.float32)
# MAE
mae_loss = F.l1_loss(rec_f32, imgs_f32)
# LPIPS (ensure float32)
lpips_loss = _get_lpips()(rec_f32, imgs_f32).mean()
# dynamic perceptual weighting (same as before)
if float(mae_loss.detach().cpu().item()) > 1e-12:
desired_multiplier = lpips_ratio / max(1.0 - lpips_ratio, 1e-12)
new_weight = (mae_loss.item() / float(lpips_loss.detach().cpu().item())) * desired_multiplier
else:
new_weight = perceptual_loss_weight
perceptual_loss_weight = float(np.clip(new_weight, min_perceptual_weight, max_perceptual_weight))
batch_losses_perc.append(perceptual_loss_weight)
if len(batch_losses_perc) >= sample_interval:
avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
else:
avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
total_loss = mae_loss + avg_perc * lpips_loss
if torch.isnan(total_loss) or torch.isinf(total_loss):
print("NaN/Inf loss – stopping")
raise RuntimeError("NaN/Inf loss")
accelerator.backward(total_loss)
grad_norm = torch.tensor(0.0, device=accelerator.device)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
progress.update(1)
# --- Логирование ---
if accelerator.is_main_process:
try:
current_lr = optimizer.param_groups[0]["lr"]
except Exception:
current_lr = scheduler.get_last_lr()[0]
batch_losses.append(total_loss.detach().item())
batch_losses_mae.append(mae_loss.detach().item())
batch_losses_lpips.append(lpips_loss.detach().item())
batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
if use_wandb and accelerator.sync_gradients:
wandb.log({
"mae_loss": mae_loss.detach().item(),
"lpips_loss": lpips_loss.detach().item(),
"perceptual_loss_weight": avg_perc,
"total_loss": total_loss.detach().item(),
"learning_rate": current_lr,
"epoch": epoch,
"grad_norm": batch_grads[-1],
}, step=global_step)
# периодические сэмплы и чекпоинты
if global_step > 0 and global_step % sample_interval == 0:
# делаем генерацию и лог только в main process (генерация использует fixed_samples high-res)
if accelerator.is_main_process:
generate_and_save_samples(global_step)
accelerator.wait_for_everyone()
# сколько микро-батчей нужно взять для усреднения
n_micro = sample_interval * gradient_accumulation_steps
# защищаем от выхода за пределы
if len(batch_losses) >= n_micro:
avg_loss = float(np.mean(batch_losses[-n_micro:]))
avg_loss_mae = float(np.mean(batch_losses_mae[-n_micro:]))
avg_loss_lpips = float(np.mean(batch_losses_lpips[-n_micro:]))
else:
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
avg_loss_mae = float(np.mean(batch_losses_mae)) if batch_losses_mae else float("nan")
avg_loss_lpips = float(np.mean(batch_losses_lpips)) if batch_losses_lpips else float("nan")
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
if accelerator.is_main_process:
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
if save_model and avg_loss < min_loss * save_barrier:
min_loss = avg_loss
accelerator.unwrap_model(vae).save_pretrained(save_as)
if use_wandb:
wandb.log({"interm_loss": avg_loss,"interm_loss_mae": avg_loss_mae,"interm_loss_lpips": avg_loss_lpips, "interm_grad": avg_grad}, step=global_step)
if accelerator.is_main_process:
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
if use_wandb:
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
print("Training finished – saving final model")
if save_model:
accelerator.unwrap_model(vae).save_pretrained(save_as)
accelerator.free_memory()
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
print("Готово!")