Add Text Embeddings Inference (TEI) tag & snippet (#15)
Browse files- Add Text Embeddings Inference (TEI) tag & snippet (c2c3466f6bb32f168f3df9d76b2aa27023de1336)
- Remove not-required `--platform` in `docker run` for GPU (204bdd4d405882a9e8ca9452c223fc49f02e8451)
Co-authored-by: Alvaro Bartolome <[email protected]>
README.md
CHANGED
@@ -10,6 +10,7 @@ library_name: transformers
|
|
10 |
tags:
|
11 |
- sentence-transformers
|
12 |
- transformers.js
|
|
|
13 |
---
|
14 |
|
15 |
# gte-reranker-modernbert-base
|
@@ -129,6 +130,45 @@ const { logits } = await model(inputs);
|
|
129 |
console.log(logits.tolist()); // [[2.138258218765259], [2.4609625339508057], [-1.6775450706481934]]
|
130 |
```
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
## Training Details
|
133 |
|
134 |
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
|
|
|
10 |
tags:
|
11 |
- sentence-transformers
|
12 |
- transformers.js
|
13 |
+
- text-embeddings-inference
|
14 |
---
|
15 |
|
16 |
# gte-reranker-modernbert-base
|
|
|
130 |
console.log(logits.tolist()); // [[2.138258218765259], [2.4609625339508057], [-1.6775450706481934]]
|
131 |
```
|
132 |
|
133 |
+
Additionally, you can also deploy `Alibaba-NLP/gte-reranker-modernbert-base` with [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) as follows:
|
134 |
+
|
135 |
+
- CPU
|
136 |
+
|
137 |
+
```bash
|
138 |
+
docker run --platform linux/amd64 \
|
139 |
+
-p 8080:80 \
|
140 |
+
-v $PWD/data:/data \
|
141 |
+
--pull always \
|
142 |
+
ghcr.io/huggingface/text-embeddings-inference:cpu-1.7 \
|
143 |
+
--model-id Alibaba-NLP/gte-reranker-modernbert-base
|
144 |
+
```
|
145 |
+
|
146 |
+
- GPU
|
147 |
+
|
148 |
+
```bash
|
149 |
+
docker run --gpus all \
|
150 |
+
-p 8080:80 \
|
151 |
+
-v $PWD/data:/data \
|
152 |
+
--pull always \
|
153 |
+
ghcr.io/huggingface/text-embeddings-inference:1.7 \
|
154 |
+
--model-id Alibaba-NLP/gte-reranker-modernbert-base
|
155 |
+
```
|
156 |
+
|
157 |
+
Then you can send requests to the deployed API via the `/rerank` route (see the [Text Embeddings Inference OpenAPI Specification](https://huggingface.github.io/text-embeddings-inference/) for more details):
|
158 |
+
|
159 |
+
```bash
|
160 |
+
curl https://0.0.0.0:8080/rerank \
|
161 |
+
-H "Content-Type: application/json" \
|
162 |
+
-d '{
|
163 |
+
"query": "What is the capital of China?",
|
164 |
+
"raw_scores": false,
|
165 |
+
"return_text": false,
|
166 |
+
"texts": [ "Beijing" ],
|
167 |
+
"truncate": true,
|
168 |
+
"truncation_direction": "right"
|
169 |
+
}'
|
170 |
+
```
|
171 |
+
|
172 |
## Training Details
|
173 |
|
174 |
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
|