Upload text_classification.py
Browse files- text_classification.py +465 -0
text_classification.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""text_classification.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1D25W7EYF5v1a0FoSHKAcyVhwMMIU6yg4
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install transformers datasets
|
11 |
+
!pip install torch
|
12 |
+
|
13 |
+
# Ultra-Simple Arabic Product Classifier with Enhanced Training
|
14 |
+
import pandas as pd
|
15 |
+
import torch
|
16 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
17 |
+
from sklearn.preprocessing import LabelEncoder
|
18 |
+
from sklearn.model_selection import train_test_split
|
19 |
+
from sklearn.metrics import accuracy_score, classification_report
|
20 |
+
import joblib
|
21 |
+
import numpy as np
|
22 |
+
from collections import Counter
|
23 |
+
|
24 |
+
# Load and preprocess your data
|
25 |
+
print("Loading and preprocessing data...")
|
26 |
+
df = pd.read_excel('/content/Copy ofمنتجات مقاهي (1).xlsx', sheet_name='products')
|
27 |
+
df = df[['اسم المنتج', 'التصنيف المحاسبي']].dropna()
|
28 |
+
|
29 |
+
# Prepare text and labels
|
30 |
+
label_encoder = LabelEncoder()
|
31 |
+
labels = label_encoder.fit_transform(df['التصنيف المحاسبي'])
|
32 |
+
texts = df['اسم المنتج'].tolist()
|
33 |
+
|
34 |
+
print(f"Loaded {len(texts)} products with {len(set(labels))} unique categories.")
|
35 |
+
print(f"Categories: {list(label_encoder.classes_)}")
|
36 |
+
|
37 |
+
# Check class distribution and handle single-sample classes
|
38 |
+
from collections import Counter
|
39 |
+
label_counts = Counter(labels)
|
40 |
+
print(f"Class distribution:")
|
41 |
+
for label_id, count in sorted(label_counts.items()):
|
42 |
+
label_name = label_encoder.inverse_transform([label_id])[0]
|
43 |
+
print(f" {label_name}: {count} samples")
|
44 |
+
|
45 |
+
# Separate single-sample classes from multi-sample classes
|
46 |
+
single_sample_mask = np.array([label_counts[label] == 1 for label in labels])
|
47 |
+
multi_sample_mask = ~single_sample_mask
|
48 |
+
|
49 |
+
# Get indices for single and multi sample data
|
50 |
+
single_indices = np.where(single_sample_mask)[0]
|
51 |
+
multi_indices = np.where(multi_sample_mask)[0]
|
52 |
+
|
53 |
+
print(f"\nSingle-sample classes: {np.sum(single_sample_mask)} samples")
|
54 |
+
print(f"Multi-sample classes: {np.sum(multi_sample_mask)} samples")
|
55 |
+
|
56 |
+
if np.sum(multi_sample_mask) > 0:
|
57 |
+
# Split multi-sample data with stratification
|
58 |
+
multi_texts = [texts[i] for i in multi_indices]
|
59 |
+
multi_labels = [labels[i] for i in multi_indices]
|
60 |
+
|
61 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
62 |
+
multi_texts, multi_labels, test_size=0.2, random_state=42, stratify=multi_labels
|
63 |
+
)
|
64 |
+
|
65 |
+
# Add single-sample data to training set (can't split them)
|
66 |
+
if np.sum(single_sample_mask) > 0:
|
67 |
+
single_texts = [texts[i] for i in single_indices]
|
68 |
+
single_labels = [labels[i] for i in single_indices]
|
69 |
+
|
70 |
+
train_texts.extend(single_texts)
|
71 |
+
train_labels.extend(single_labels)
|
72 |
+
|
73 |
+
print(f"Added {len(single_texts)} single-sample items to training set")
|
74 |
+
else:
|
75 |
+
# If all classes have single samples, use simple split without stratification
|
76 |
+
print("Warning: All or most classes have single samples. Using simple split.")
|
77 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
78 |
+
texts, labels, test_size=0.2, random_state=42
|
79 |
+
)
|
80 |
+
|
81 |
+
print(f"Training set: {len(train_texts)} samples")
|
82 |
+
print(f"Validation set: {len(val_texts)} samples")
|
83 |
+
|
84 |
+
# Load Arabic BERT
|
85 |
+
model_name = "asafaya/bert-base-arabic"
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
87 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(set(labels)))
|
88 |
+
|
89 |
+
# Define Enhanced Dataset class
|
90 |
+
class SimpleDataset(torch.utils.data.Dataset):
|
91 |
+
def __init__(self, texts, labels, tokenizer):
|
92 |
+
self.texts = texts
|
93 |
+
self.labels = labels
|
94 |
+
self.tokenizer = tokenizer
|
95 |
+
|
96 |
+
def __len__(self):
|
97 |
+
return len(self.texts)
|
98 |
+
|
99 |
+
def __getitem__(self, idx):
|
100 |
+
encoding = self.tokenizer(
|
101 |
+
str(self.texts[idx]),
|
102 |
+
truncation=True,
|
103 |
+
padding='max_length',
|
104 |
+
max_length=128,
|
105 |
+
return_tensors='pt'
|
106 |
+
)
|
107 |
+
return {
|
108 |
+
'input_ids': encoding['input_ids'].squeeze(0),
|
109 |
+
'attention_mask': encoding['attention_mask'].squeeze(0),
|
110 |
+
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
|
111 |
+
}
|
112 |
+
|
113 |
+
# Create datasets
|
114 |
+
train_dataset = SimpleDataset(train_texts, train_labels, tokenizer)
|
115 |
+
val_dataset = SimpleDataset(val_texts, val_labels, tokenizer)
|
116 |
+
|
117 |
+
# Define compute metrics function for evaluation
|
118 |
+
def compute_metrics(eval_pred):
|
119 |
+
predictions, labels = eval_pred
|
120 |
+
predictions = np.argmax(predictions, axis=1)
|
121 |
+
accuracy = accuracy_score(labels, predictions)
|
122 |
+
return {'accuracy': accuracy}
|
123 |
+
|
124 |
+
# Enhanced Training setup with evaluation
|
125 |
+
training_args = TrainingArguments(
|
126 |
+
output_dir='./model',
|
127 |
+
num_train_epochs=50,
|
128 |
+
per_device_train_batch_size=16, # زودت الـ batch size من 8 لـ 16
|
129 |
+
per_device_eval_batch_size=16, # batch size للتقييم
|
130 |
+
eval_strategy="epoch", # تقييم بعد كل epoch
|
131 |
+
save_strategy="epoch", # حفظ بعد كل epoch
|
132 |
+
logging_steps=10, # تسجيل أكثر تكراراً
|
133 |
+
save_total_limit=2, # الاحتفاظ بأفضل 2 نماذج فقط
|
134 |
+
load_best_model_at_end=True, # تحميل أفضل نموذج في النهاية
|
135 |
+
metric_for_best_model="eval_accuracy", # المقياس لاختيار أفضل نموذج
|
136 |
+
greater_is_better=True, # كلما زادت الدقة كان أفضل
|
137 |
+
report_to=None,
|
138 |
+
warmup_steps=100, # خطوات إحماء للتدريب
|
139 |
+
weight_decay=0.01, # تنظيم لمنع الـ overfitting
|
140 |
+
learning_rate=2e-5, # معدل تعلم محسن
|
141 |
+
)
|
142 |
+
|
143 |
+
# Enhanced Trainer instance with evaluation
|
144 |
+
trainer = Trainer(
|
145 |
+
model=model,
|
146 |
+
args=training_args,
|
147 |
+
train_dataset=train_dataset,
|
148 |
+
eval_dataset=val_dataset, # إضافة بيانات التقييم
|
149 |
+
tokenizer=tokenizer,
|
150 |
+
compute_metrics=compute_metrics # إضافة وظيفة حساب المقاييس
|
151 |
+
)
|
152 |
+
|
153 |
+
# Start training with evaluation
|
154 |
+
print("Training started with evaluation...")
|
155 |
+
trainer.train()
|
156 |
+
|
157 |
+
# Save model, tokenizer, and label encoder
|
158 |
+
trainer.save_model('./model')
|
159 |
+
tokenizer.save_pretrained('./model')
|
160 |
+
joblib.dump(label_encoder, './model/labels.pkl')
|
161 |
+
|
162 |
+
print("Training complete! Model saved to './model'")
|
163 |
+
|
164 |
+
# Enhanced prediction function with batch processing capability
|
165 |
+
def predict(text):
|
166 |
+
"""Predict single product classification"""
|
167 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
168 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
169 |
+
label_encoder = joblib.load('./model/labels.pkl')
|
170 |
+
|
171 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
172 |
+
with torch.no_grad():
|
173 |
+
outputs = model(**inputs)
|
174 |
+
|
175 |
+
predicted_id = outputs.logits.argmax().item()
|
176 |
+
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
177 |
+
classification = label_encoder.inverse_transform([predicted_id])[0]
|
178 |
+
|
179 |
+
return classification, confidence
|
180 |
+
|
181 |
+
def predict_batch(texts):
|
182 |
+
"""Predict multiple products at once for faster processing"""
|
183 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
184 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
185 |
+
label_encoder = joblib.load('./model/labels.pkl')
|
186 |
+
|
187 |
+
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
188 |
+
with torch.no_grad():
|
189 |
+
outputs = model(**inputs)
|
190 |
+
|
191 |
+
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
|
192 |
+
confidences = torch.nn.functional.softmax(outputs.logits, dim=-1).max(dim=-1)[0].cpu().numpy()
|
193 |
+
classifications = label_encoder.inverse_transform(predictions)
|
194 |
+
|
195 |
+
return list(zip(classifications, confidences))
|
196 |
+
|
197 |
+
# Evaluate on validation set
|
198 |
+
print("\nEvaluating on validation set...")
|
199 |
+
val_predictions = []
|
200 |
+
val_confidences = []
|
201 |
+
|
202 |
+
for text in val_texts:
|
203 |
+
pred, conf = predict(text)
|
204 |
+
val_predictions.append(pred)
|
205 |
+
val_confidences.append(conf)
|
206 |
+
|
207 |
+
# Convert back to numeric for comparison
|
208 |
+
val_pred_numeric = label_encoder.transform(val_predictions)
|
209 |
+
accuracy = accuracy_score(val_labels, val_pred_numeric)
|
210 |
+
print(f"Validation Accuracy: {accuracy:.4f}")
|
211 |
+
|
212 |
+
# Detailed classification report
|
213 |
+
val_true_labels = label_encoder.inverse_transform(val_labels)
|
214 |
+
print("\nDetailed Classification Report:")
|
215 |
+
print(classification_report(val_true_labels, val_predictions, target_names=label_encoder.classes_))
|
216 |
+
|
217 |
+
# Test examples
|
218 |
+
test_products = [
|
219 |
+
"نادك حليب طويل الأجل 1 لتر",
|
220 |
+
"قهوة عربية محمصة",
|
221 |
+
"شاي أحمر ليبتون",
|
222 |
+
"عصير برتقال طبيعي"
|
223 |
+
]
|
224 |
+
|
225 |
+
print("\n" + "="*50)
|
226 |
+
print("Testing on sample products:")
|
227 |
+
print("="*50)
|
228 |
+
|
229 |
+
for product in test_products:
|
230 |
+
result, confidence = predict(product)
|
231 |
+
print(f"Product: {product}")
|
232 |
+
print(f"Classification: {result}")
|
233 |
+
print(f"Confidence: {confidence:.3f}")
|
234 |
+
print("-" * 30)
|
235 |
+
|
236 |
+
# Batch prediction example
|
237 |
+
print("\nBatch prediction example:")
|
238 |
+
batch_results = predict_batch(test_products)
|
239 |
+
for product, (classification, confidence) in zip(test_products, batch_results):
|
240 |
+
print(f"{product} -> {classification} ({confidence:.3f})")
|
241 |
+
|
242 |
+
print(f"\nModel training complete!")
|
243 |
+
print(f"- Single prediction: predict('product name')")
|
244 |
+
print(f"- Batch prediction: predict_batch(['product1', 'product2', ...])")
|
245 |
+
print(f"- Validation accuracy: {accuracy:.4f}")
|
246 |
+
print(f"- Model saved to: './model'")
|
247 |
+
|
248 |
+
# Using the trained model (without retraining)
|
249 |
+
import torch
|
250 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
251 |
+
import joblib
|
252 |
+
|
253 |
+
print("Loading trained model...")
|
254 |
+
|
255 |
+
# Load model and tools (only once)
|
256 |
+
try:
|
257 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
258 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
259 |
+
label_encoder = joblib.load('./model/labels.pkl')
|
260 |
+
print("Model loaded successfully!")
|
261 |
+
print(f"Number of available categories: {len(label_encoder.classes_)}")
|
262 |
+
|
263 |
+
# Display available categories
|
264 |
+
print("\nAvailable categories:")
|
265 |
+
for i, category in enumerate(label_encoder.classes_, 1):
|
266 |
+
print(f"{i:2d}. {category}")
|
267 |
+
|
268 |
+
except Exception as e:
|
269 |
+
print(f"Error loading model: {e}")
|
270 |
+
print("Make sure './model' folder exists and contains required files")
|
271 |
+
exit()
|
272 |
+
|
273 |
+
# Basic classification function
|
274 |
+
def classify_product(product_name):
|
275 |
+
"""Classify a single product"""
|
276 |
+
try:
|
277 |
+
# Prepare text
|
278 |
+
inputs = tokenizer(
|
279 |
+
product_name,
|
280 |
+
return_tensors="pt",
|
281 |
+
truncation=True,
|
282 |
+
padding=True,
|
283 |
+
max_length=128
|
284 |
+
)
|
285 |
+
|
286 |
+
# Prediction
|
287 |
+
with torch.no_grad():
|
288 |
+
outputs = model(**inputs)
|
289 |
+
|
290 |
+
# Extract result
|
291 |
+
predicted_id = outputs.logits.argmax().item()
|
292 |
+
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
293 |
+
classification = label_encoder.inverse_transform([predicted_id])[0]
|
294 |
+
|
295 |
+
return {
|
296 |
+
'product': product_name,
|
297 |
+
'classification': classification,
|
298 |
+
'confidence': confidence,
|
299 |
+
'success': True
|
300 |
+
}
|
301 |
+
|
302 |
+
except Exception as e:
|
303 |
+
return {
|
304 |
+
'product': product_name,
|
305 |
+
'classification': None,
|
306 |
+
'confidence': 0,
|
307 |
+
'success': False,
|
308 |
+
'error': str(e)
|
309 |
+
}
|
310 |
+
|
311 |
+
# Function to classify multiple products
|
312 |
+
def classify_multiple_products(product_list):
|
313 |
+
"""Classify a list of products"""
|
314 |
+
results = []
|
315 |
+
|
316 |
+
print(f"Classifying {len(product_list)} products...")
|
317 |
+
|
318 |
+
for i, product in enumerate(product_list, 1):
|
319 |
+
result = classify_product(product)
|
320 |
+
results.append(result)
|
321 |
+
|
322 |
+
if result['success']:
|
323 |
+
print(f"{i:3d}. {product}")
|
324 |
+
print(f" → {result['classification']}")
|
325 |
+
print(f" → Confidence: {result['confidence']:.3f}")
|
326 |
+
else:
|
327 |
+
print(f"{i:3d}. {product} - Error: {result['error']}")
|
328 |
+
print()
|
329 |
+
|
330 |
+
return results
|
331 |
+
|
332 |
+
# Test examples
|
333 |
+
test_products = [
|
334 |
+
"نادك حليب طويل الأجل 1 لتر",
|
335 |
+
"قهوة عربية محمصة",
|
336 |
+
"شاي أحمر ليبتون",
|
337 |
+
"منظف أرضيات فلاش",
|
338 |
+
"سكر أبيض ناعم",
|
339 |
+
"عصير برتقال طبيعي"
|
340 |
+
]
|
341 |
+
|
342 |
+
print("\n" + "="*60)
|
343 |
+
print("Testing model on sample products")
|
344 |
+
print("="*60)
|
345 |
+
|
346 |
+
# Classify test products
|
347 |
+
test_results = classify_multiple_products(test_products)
|
348 |
+
|
349 |
+
# Quick statistics
|
350 |
+
successful_predictions = [r for r in test_results if r['success']]
|
351 |
+
avg_confidence = sum(r['confidence'] for r in successful_predictions) / len(successful_predictions)
|
352 |
+
|
353 |
+
print("="*60)
|
354 |
+
print("Results summary:")
|
355 |
+
print(f"Successfully classified {len(successful_predictions)} products")
|
356 |
+
print(f"Average confidence level: {avg_confidence:.3f}")
|
357 |
+
|
358 |
+
# Display unique classifications
|
359 |
+
unique_classifications = set(r['classification'] for r in successful_predictions)
|
360 |
+
print(f"Number of categories used: {len(unique_classifications)}")
|
361 |
+
print("Categories:")
|
362 |
+
for classification in sorted(unique_classifications):
|
363 |
+
count = sum(1 for r in successful_predictions if r['classification'] == classification)
|
364 |
+
print(f" • {classification} ({count} products)")
|
365 |
+
|
366 |
+
print("\n" + "="*60)
|
367 |
+
print("Model ready for use!")
|
368 |
+
print("="*60)
|
369 |
+
print("Usage:")
|
370 |
+
print("result = classify_product('product name')")
|
371 |
+
print("print(f\"Classification: {result['classification']}\")")
|
372 |
+
print("print(f\"Confidence: {result['confidence']:.3f}\")")
|
373 |
+
|
374 |
+
print("\nFor multiple products:")
|
375 |
+
print("products = ['product 1', 'product 2', 'product 3']")
|
376 |
+
print("results = classify_multiple_products(products)")
|
377 |
+
|
378 |
+
test_product = 'عطر كروم ليجند للرجال او دي تواليت من ازارو 125 مل'
|
379 |
+
result, confidence = predict(test_product)
|
380 |
+
|
381 |
+
print(f"\nTest: {test_product}")
|
382 |
+
print(f"Result: {result}")
|
383 |
+
print(f"Confidence: {confidence:.3f}")
|
384 |
+
|
385 |
+
"""# Saving The model"""
|
386 |
+
|
387 |
+
# احفظ النموذج
|
388 |
+
model.save_pretrained('/content/my_model/')
|
389 |
+
|
390 |
+
# لاحقاً، لتحميله مرة أخرى:
|
391 |
+
from transformers import BertForSequenceClassification
|
392 |
+
model = BertForSequenceClassification.from_pretrained('/content/my_model/')
|
393 |
+
|
394 |
+
!zip -r my_model.zip /content/my_model/
|
395 |
+
|
396 |
+
tokenizer.save_pretrained('/content/my_model')
|
397 |
+
model.save_pretrained('/content/my_model')
|
398 |
+
import joblib
|
399 |
+
joblib.dump(label_encoder, '/content/my_model/labels.pkl')
|
400 |
+
|
401 |
+
from google.colab import files
|
402 |
+
files.download('my_model.zip')
|
403 |
+
|
404 |
+
"""# Testing"""
|
405 |
+
|
406 |
+
!ls /content/my_model
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
411 |
+
import torch
|
412 |
+
import joblib
|
413 |
+
|
414 |
+
# Define the path where files are saved
|
415 |
+
save_path = '/content/my_model'
|
416 |
+
|
417 |
+
# Load the tokenizer, model, and label encoder
|
418 |
+
tokenizer = AutoTokenizer.from_pretrained(save_path)
|
419 |
+
model = AutoModelForSequenceClassification.from_pretrained(save_path)
|
420 |
+
label_encoder = joblib.load(f'{save_path}/labels.pkl')
|
421 |
+
|
422 |
+
def predict(text):
|
423 |
+
# Preprocess the input text
|
424 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
425 |
+
|
426 |
+
# Perform inference
|
427 |
+
with torch.no_grad():
|
428 |
+
outputs = model(**inputs)
|
429 |
+
|
430 |
+
# Get predicted class ID and confidence
|
431 |
+
predicted_id = outputs.logits.argmax().item()
|
432 |
+
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
433 |
+
|
434 |
+
# Map the ID back to the label name
|
435 |
+
classification = label_encoder.inverse_transform([predicted_id])[0]
|
436 |
+
|
437 |
+
return classification, confidence
|
438 |
+
|
439 |
+
# Test a product
|
440 |
+
test_product = "نادك حليب طويل الأجل 1 لتر"
|
441 |
+
result, confidence = predict(test_product)
|
442 |
+
|
443 |
+
print(f"Test Product: {test_product}")
|
444 |
+
print(f"Predicted Category: {result}")
|
445 |
+
print(f"Confidence: {confidence:.3f}")
|
446 |
+
|
447 |
+
# Test a product
|
448 |
+
test_product = "زبادى"
|
449 |
+
result, confidence = predict(test_product)
|
450 |
+
|
451 |
+
print(f"Test Product: {test_product}")
|
452 |
+
print(f"Predicted Category: {result}")
|
453 |
+
print(f"Confidence: {confidence:.3f}")
|
454 |
+
|
455 |
+
# Test a product
|
456 |
+
test_product = "بترول"
|
457 |
+
result, confidence = predict(test_product)
|
458 |
+
|
459 |
+
print(f"Test Product: {test_product}")
|
460 |
+
print(f"Predicted Category: {result}")
|
461 |
+
print(f"Confidence: {confidence:.3f}")
|
462 |
+
|
463 |
+
from google.colab import files
|
464 |
+
uploaded = files.upload()
|
465 |
+
|