Upload folder using huggingface_hub
Browse files- README.md +275 -0
- config.json +64 -0
- configuration_deepseek.py +212 -0
- configuration_deepseek_fused_v2.py +212 -0
- generation_config.json +9 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_deepseek.py +2082 -0
- modeling_deepseek_fused_v2.py +2082 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +163 -0
README.md
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
---
|
4 |
+
<!-- markdownlint-disable first-line-h1 -->
|
5 |
+
<!-- markdownlint-disable html -->
|
6 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
7 |
+
|
8 |
+
## DeepSeek-Coder-V2-lite-instruct-Fused-preview: Compressed and Efficient Code Generation
|
9 |
+
|
10 |
+
This README introduces a series of fused models derived from DeepSeek-Coder-V2-lite-instruct. These models represent a significant reduction in size while retaining strong performance, demonstrating a novel approach to model compression.
|
11 |
+
|
12 |
+
**Motivation (Why Fuse an "Old" Model?)**
|
13 |
+
|
14 |
+
This project serves as a proof-of-concept for a new model pruning and fusion technique. The core methodology is detailed in the accompanying GitHub repository: [https://github.com/gabrielolympie/moe-pruner](https://github.com/gabrielolympie/moe-pruner). The long-term goal is to provide a method for pruning large Mixture-of-Experts (MoE) models, creating smaller, locally runnable models that maintain a significant portion of the original model's capabilities.
|
15 |
+
|
16 |
+
**Preview Models: Exploring Compression Levels**
|
17 |
+
|
18 |
+
The DeepSeek-Coder-V2-lite-instruct model, which utilizes 64 experts, forms the foundation for these preview models. We offer four variations, each with a different level of compression:
|
19 |
+
|
20 |
+
* **16 Fused Experts (~6B parameters):** 1/4 size reduction.
|
21 |
+
* **8 Fused Experts (~4B parameters):** 1/8 size reduction.
|
22 |
+
* **4 Fused Experts (~3B parameters):** 1/16 size reduction.
|
23 |
+
* **2 Fused Experts (~2B parameters):** 1/32 size reduction.
|
24 |
+
|
25 |
+
Despite their significantly reduced size, these models demonstrate surprisingly strong performance, exceeding expectations for their parameter counts. Further, more comprehensive testing is planned.
|
26 |
+
|
27 |
+
**Technical Details and Scaling Properties**
|
28 |
+
|
29 |
+
The fusion technique, refined through multiple iterations, combines *expert multiplexing* with a *mixture of LoRA decomposition*. Preliminary results indicate promising scaling properties along three key dimensions:
|
30 |
+
|
31 |
+
1. **Expert Scaling:** The performance of the fused model appears to scale *linearly* with the number of fused experts. This suggests the potential for predicting final performance based on the number of retained weights.
|
32 |
+
|
33 |
+
2. **Data Scaling:** Distillation losses during the pruning process were far from saturation. The observed trends align with typical LLM training scaling laws, indicating further improvements are possible with more training data.
|
34 |
+
|
35 |
+
3. **Rank Scaling:** The rank of the LoRA mixture allows for efficient adjustment of the number of parameters used during the "healing" process. This enables scaling the technique to larger compute budgets, exhibiting polynomial scaling behavior similar to standard LoRA approaches.
|
36 |
+
|
37 |
+
These models are designated as "previews" because the distillation losses were not saturated during training. Future iterations, potentially utilizing additional calibration data, may further enhance performance.
|
38 |
+
|
39 |
+
## Call to Action: Contribute and Support
|
40 |
+
|
41 |
+
Due to hardware constraints, several trade-offs were necessary. If you are interested in supporting future development with increased compute resources, donations are welcome: [https://gofund.me/1516dccd](https://gofund.me/1516dccd)
|
42 |
+
|
43 |
+
**We actively encourage community contributions!** We particularly welcome expertise in the following areas:
|
44 |
+
|
45 |
+
* **Quantization:** The current implementation of fused experts presents challenges for existing quantization engines. Assistance in developing compatible quantization strategies is highly desired.
|
46 |
+
* **Inference:** Integration with popular inference frameworks like vLLM, AphroditeEngine, ExLlamaV2, and llama.cpp would significantly improve usability.
|
47 |
+
|
48 |
+
If you have suggestions for improvements, bug fixes, or new features, please open an issue or submit a pull request on the GitHub repository. Your contributions are valuable!
|
49 |
+
|
50 |
+
#
|
51 |
+
#
|
52 |
+
#
|
53 |
+
#
|
54 |
+
|
55 |
+
|
56 |
+
## Original Model Card
|
57 |
+
|
58 |
+
---
|
59 |
+
license: other
|
60 |
+
license_name: deepseek-license
|
61 |
+
license_link: LICENSE
|
62 |
+
---
|
63 |
+
<!-- markdownlint-disable first-line-h1 -->
|
64 |
+
<!-- markdownlint-disable html -->
|
65 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
66 |
+
|
67 |
+
<div align="center">
|
68 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
|
69 |
+
</div>
|
70 |
+
<hr>
|
71 |
+
<div align="center" style="line-height: 1;">
|
72 |
+
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
|
73 |
+
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
74 |
+
</a>
|
75 |
+
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
76 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
77 |
+
</a>
|
78 |
+
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
|
79 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
80 |
+
</a>
|
81 |
+
</div>
|
82 |
+
|
83 |
+
<div align="center" style="line-height: 1;">
|
84 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
85 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
86 |
+
</a>
|
87 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
88 |
+
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
89 |
+
</a>
|
90 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
91 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
92 |
+
</a>
|
93 |
+
</div>
|
94 |
+
|
95 |
+
<div align="center" style="line-height: 1;">
|
96 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
|
97 |
+
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
98 |
+
</a>
|
99 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
|
100 |
+
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
101 |
+
</a>
|
102 |
+
</div>
|
103 |
+
<p align="center">
|
104 |
+
<a href="#4-api-platform">API Platform</a> |
|
105 |
+
<a href="#5-how-to-run-locally">How to Use</a> |
|
106 |
+
<a href="#6-license">License</a> |
|
107 |
+
</p>
|
108 |
+
|
109 |
+
|
110 |
+
<p align="center">
|
111 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/paper.pdf"><b>Paper Link</b>👁️</a>
|
112 |
+
</p>
|
113 |
+
|
114 |
+
AWQ quantized version of DeepSeek-Coder-V2-Lite-Instruct model.
|
115 |
+
|
116 |
+
---
|
117 |
+
|
118 |
+
# DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
|
119 |
+
|
120 |
+
## 1. Introduction
|
121 |
+
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from DeepSeek-Coder-V2-Base with 6 trillion tokens sourced from a high-quality and multi-source corpus. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-Coder-V2-Base, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.
|
122 |
+
|
123 |
+
<p align="center">
|
124 |
+
<img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/performance.png?raw=true">
|
125 |
+
</p>
|
126 |
+
|
127 |
+
In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found in the paper.
|
128 |
+
|
129 |
+
## 2. Model Downloads
|
130 |
+
|
131 |
+
We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public.
|
132 |
+
|
133 |
+
<div align="center">
|
134 |
+
|
135 |
+
| **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** |
|
136 |
+
| :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: |
|
137 |
+
| DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) |
|
138 |
+
| DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) |
|
139 |
+
| DeepSeek-Coder-V2-Base | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) |
|
140 |
+
| DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) |
|
141 |
+
|
142 |
+
</div>
|
143 |
+
|
144 |
+
|
145 |
+
## 3. Chat Website
|
146 |
+
|
147 |
+
You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in)
|
148 |
+
|
149 |
+
## 4. API Platform
|
150 |
+
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
|
151 |
+
|
152 |
+
<p align="center">
|
153 |
+
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/model_price.jpg?raw=true">
|
154 |
+
</p>
|
155 |
+
|
156 |
+
|
157 |
+
## 5. How to run locally
|
158 |
+
**Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
|
159 |
+
|
160 |
+
### Inference with Huggingface's Transformers
|
161 |
+
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
162 |
+
|
163 |
+
#### Code Completion
|
164 |
+
```python
|
165 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
166 |
+
import torch
|
167 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
|
168 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
169 |
+
input_text = "#write a quick sort algorithm"
|
170 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
171 |
+
outputs = model.generate(**inputs, max_length=128)
|
172 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
173 |
+
```
|
174 |
+
|
175 |
+
#### Code Insertion
|
176 |
+
```python
|
177 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
178 |
+
import torch
|
179 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
|
180 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
181 |
+
input_text = """<|fim▁begin|>def quick_sort(arr):
|
182 |
+
if len(arr) <= 1:
|
183 |
+
return arr
|
184 |
+
pivot = arr[0]
|
185 |
+
left = []
|
186 |
+
right = []
|
187 |
+
<|fim▁hole|>
|
188 |
+
if arr[i] < pivot:
|
189 |
+
left.append(arr[i])
|
190 |
+
else:
|
191 |
+
right.append(arr[i])
|
192 |
+
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
|
193 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
194 |
+
outputs = model.generate(**inputs, max_length=128)
|
195 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
196 |
+
```
|
197 |
+
|
198 |
+
#### Chat Completion
|
199 |
+
|
200 |
+
```python
|
201 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
202 |
+
import torch
|
203 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
|
204 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
205 |
+
messages=[
|
206 |
+
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
|
207 |
+
]
|
208 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
209 |
+
# tokenizer.eos_token_id is the id of <|EOT|> token
|
210 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
211 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
212 |
+
```
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
|
217 |
+
|
218 |
+
An example of chat template is as belows:
|
219 |
+
|
220 |
+
```bash
|
221 |
+
<|begin▁of▁sentence|>User: {user_message_1}
|
222 |
+
|
223 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
224 |
+
|
225 |
+
Assistant:
|
226 |
+
```
|
227 |
+
|
228 |
+
You can also add an optional system message:
|
229 |
+
|
230 |
+
```bash
|
231 |
+
<|begin▁of▁sentence|>{system_message}
|
232 |
+
|
233 |
+
User: {user_message_1}
|
234 |
+
|
235 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
236 |
+
|
237 |
+
Assistant:
|
238 |
+
```
|
239 |
+
|
240 |
+
### Inference with vLLM (recommended)
|
241 |
+
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
|
242 |
+
|
243 |
+
```python
|
244 |
+
from transformers import AutoTokenizer
|
245 |
+
from vllm import LLM, SamplingParams
|
246 |
+
|
247 |
+
max_model_len, tp_size = 8192, 1
|
248 |
+
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
249 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
250 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
|
251 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
252 |
+
|
253 |
+
messages_list = [
|
254 |
+
[{"role": "user", "content": "Who are you?"}],
|
255 |
+
[{"role": "user", "content": "write a quick sort algorithm in python."}],
|
256 |
+
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
|
257 |
+
]
|
258 |
+
|
259 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
260 |
+
|
261 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
262 |
+
|
263 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
264 |
+
print(generated_text)
|
265 |
+
```
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
## 6. License
|
270 |
+
|
271 |
+
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use.
|
272 |
+
|
273 |
+
|
274 |
+
## 7. Contact
|
275 |
+
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|
config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../deepseek_coder_v2_lite_instruct_fused_16_unhealed",
|
3 |
+
"architectures": [
|
4 |
+
"DeepseekV2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_deepseek.DeepseekV2Config",
|
10 |
+
"AutoModel": "modeling_deepseek.DeepseekV2Model",
|
11 |
+
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
|
12 |
+
},
|
13 |
+
"aux_loss_alpha": 0.001,
|
14 |
+
"bos_token_id": 100000,
|
15 |
+
"eos_token_id": 100001,
|
16 |
+
"ep_size": 1,
|
17 |
+
"first_k_dense_replace": 1,
|
18 |
+
"fused_expert_dora_rank": 8,
|
19 |
+
"fused_expert_method": "mixture",
|
20 |
+
"hidden_act": "silu",
|
21 |
+
"hidden_size": 2048,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 10944,
|
24 |
+
"kv_lora_rank": 512,
|
25 |
+
"max_position_embeddings": 163840,
|
26 |
+
"model_type": "deepseek_v2",
|
27 |
+
"moe_intermediate_size": 1408,
|
28 |
+
"moe_layer_freq": 1,
|
29 |
+
"n_fused_experts": 16,
|
30 |
+
"n_group": 1,
|
31 |
+
"n_routed_experts": 64,
|
32 |
+
"n_shared_experts": 2,
|
33 |
+
"norm_topk_prob": false,
|
34 |
+
"num_attention_heads": 16,
|
35 |
+
"num_experts_per_tok": 6,
|
36 |
+
"num_hidden_layers": 27,
|
37 |
+
"num_key_value_heads": 16,
|
38 |
+
"pretraining_tp": 1,
|
39 |
+
"q_lora_rank": null,
|
40 |
+
"qk_nope_head_dim": 128,
|
41 |
+
"qk_rope_head_dim": 64,
|
42 |
+
"rms_norm_eps": 1e-06,
|
43 |
+
"rope_scaling": {
|
44 |
+
"beta_fast": 32,
|
45 |
+
"beta_slow": 1,
|
46 |
+
"factor": 40,
|
47 |
+
"mscale": 0.707,
|
48 |
+
"mscale_all_dim": 0.707,
|
49 |
+
"original_max_position_embeddings": 4096,
|
50 |
+
"type": "yarn"
|
51 |
+
},
|
52 |
+
"rope_theta": 10000,
|
53 |
+
"routed_scaling_factor": 1.0,
|
54 |
+
"scoring_func": "softmax",
|
55 |
+
"seq_aux": true,
|
56 |
+
"tie_word_embeddings": false,
|
57 |
+
"topk_group": 1,
|
58 |
+
"topk_method": "greedy",
|
59 |
+
"torch_dtype": "bfloat16",
|
60 |
+
"transformers_version": "4.47.1",
|
61 |
+
"use_cache": true,
|
62 |
+
"v_head_dim": 128,
|
63 |
+
"vocab_size": 102400
|
64 |
+
}
|
configuration_deepseek.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
7 |
+
class DeepseekV2Config(PretrainedConfig):
|
8 |
+
r"""
|
9 |
+
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
|
10 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
11 |
+
defaults will yield a similar configuration to that of the DeepSeek-V2.
|
12 |
+
|
13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
14 |
+
documentation from [`PretrainedConfig`] for more information.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vocab_size (`int`, *optional*, defaults to 102400):
|
19 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
20 |
+
`inputs_ids` passed when calling [`DeepseekV2Model`]
|
21 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
22 |
+
Dimension of the hidden representations.
|
23 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
24 |
+
Dimension of the MLP representations.
|
25 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
26 |
+
Dimension of the MoE representations.
|
27 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
28 |
+
Number of hidden layers in the Transformer decoder.
|
29 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
30 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
31 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
32 |
+
Number of shared experts, None means dense model.
|
33 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
34 |
+
Number of routed experts, None means dense model.
|
35 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
36 |
+
Scaling factor or routed experts.
|
37 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
38 |
+
Topk method used in routed gate.
|
39 |
+
n_group (`int`, *optional*, defaults to None):
|
40 |
+
Number of groups for routed experts.
|
41 |
+
topk_group (`int`, *optional*, defaults to None):
|
42 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
43 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
44 |
+
Number of selected experts, None means dense model.
|
45 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
46 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
47 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
48 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
49 |
+
\--k dense layers--/
|
50 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
51 |
+
Whether to normalize the weights of the routed experts.
|
52 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
53 |
+
Method of computing expert weights.
|
54 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
55 |
+
Auxiliary loss weight coefficient.
|
56 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
57 |
+
Whether to compute the auxiliary loss for each individual sample.
|
58 |
+
num_key_value_heads (`int`, *optional*):
|
59 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
60 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
61 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
62 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
63 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
64 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
65 |
+
`num_attention_heads`.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
73 |
+
The epsilon used by the rms normalization layers.
|
74 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
76 |
+
relevant if `config.is_decoder=True`.
|
77 |
+
pad_token_id (`int`, *optional*):
|
78 |
+
Padding token id.
|
79 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
80 |
+
Beginning of stream token id.
|
81 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
82 |
+
End of stream token id.
|
83 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
84 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
85 |
+
document](https://hf-mirror.com/docs/transformers/parallelism) to understand more about it. This value is
|
86 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
87 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
88 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether to tie weight embeddings
|
90 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
91 |
+
The base period of the RoPE embeddings.
|
92 |
+
rope_scaling (`Dict`, *optional*):
|
93 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
94 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
95 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
96 |
+
`max_position_embeddings` to the expected new maximum.
|
97 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
98 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
99 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
100 |
+
The dropout ratio for the attention probabilities.
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import DeepseekV2Model, DeepseekV2Config
|
104 |
+
|
105 |
+
>>> # Initializing a Deepseek-V2 style configuration
|
106 |
+
>>> configuration = DeepseekV2Config()
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "deepseek_v2"
|
113 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=102400,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
moe_intermediate_size = 1407,
|
121 |
+
num_hidden_layers=30,
|
122 |
+
num_attention_heads=32,
|
123 |
+
num_key_value_heads=32,
|
124 |
+
n_shared_experts = None,
|
125 |
+
n_routed_experts = None,
|
126 |
+
n_fused_experts = None,
|
127 |
+
fused_expert_dora_rank = None,
|
128 |
+
fused_expert_method = "mixture",
|
129 |
+
ep_size = 1,
|
130 |
+
routed_scaling_factor = 1.0,
|
131 |
+
kv_lora_rank = 512,
|
132 |
+
q_lora_rank = 1536,
|
133 |
+
qk_rope_head_dim = 64,
|
134 |
+
v_head_dim = 128,
|
135 |
+
qk_nope_head_dim = 128,
|
136 |
+
topk_method = 'gready',
|
137 |
+
n_group = None,
|
138 |
+
topk_group = None,
|
139 |
+
num_experts_per_tok = None,
|
140 |
+
moe_layer_freq = 1,
|
141 |
+
first_k_dense_replace = 0,
|
142 |
+
norm_topk_prob = False,
|
143 |
+
scoring_func = 'softmax',
|
144 |
+
aux_loss_alpha = 0.001,
|
145 |
+
seq_aux = True,
|
146 |
+
hidden_act="silu",
|
147 |
+
max_position_embeddings=2048,
|
148 |
+
initializer_range=0.02,
|
149 |
+
rms_norm_eps=1e-6,
|
150 |
+
use_cache=True,
|
151 |
+
pad_token_id=None,
|
152 |
+
bos_token_id=100000,
|
153 |
+
eos_token_id=100001,
|
154 |
+
pretraining_tp=1,
|
155 |
+
tie_word_embeddings=False,
|
156 |
+
rope_theta=10000.0,
|
157 |
+
rope_scaling=None,
|
158 |
+
attention_bias=False,
|
159 |
+
attention_dropout=0.0,
|
160 |
+
**kwargs,
|
161 |
+
):
|
162 |
+
self.vocab_size = vocab_size
|
163 |
+
self.max_position_embeddings = max_position_embeddings
|
164 |
+
self.hidden_size = hidden_size
|
165 |
+
self.intermediate_size = intermediate_size
|
166 |
+
self.moe_intermediate_size = moe_intermediate_size
|
167 |
+
self.num_hidden_layers = num_hidden_layers
|
168 |
+
self.num_attention_heads = num_attention_heads
|
169 |
+
self.n_shared_experts = n_shared_experts
|
170 |
+
self.n_routed_experts = n_routed_experts
|
171 |
+
self.n_fused_experts = n_fused_experts
|
172 |
+
self.fused_expert_dora_rank = fused_expert_dora_rank
|
173 |
+
self.fused_expert_method=fused_expert_method
|
174 |
+
self.ep_size = ep_size
|
175 |
+
self.routed_scaling_factor = routed_scaling_factor
|
176 |
+
self.kv_lora_rank = kv_lora_rank
|
177 |
+
self.q_lora_rank = q_lora_rank
|
178 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
179 |
+
self.v_head_dim = v_head_dim
|
180 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
181 |
+
self.topk_method = topk_method
|
182 |
+
self.n_group = n_group
|
183 |
+
self.topk_group = topk_group
|
184 |
+
self.num_experts_per_tok = num_experts_per_tok
|
185 |
+
self.moe_layer_freq = moe_layer_freq
|
186 |
+
self.first_k_dense_replace = first_k_dense_replace
|
187 |
+
self.norm_topk_prob = norm_topk_prob
|
188 |
+
self.scoring_func = scoring_func
|
189 |
+
self.aux_loss_alpha = aux_loss_alpha
|
190 |
+
self.seq_aux = seq_aux
|
191 |
+
# for backward compatibility
|
192 |
+
if num_key_value_heads is None:
|
193 |
+
num_key_value_heads = num_attention_heads
|
194 |
+
|
195 |
+
self.num_key_value_heads = num_key_value_heads
|
196 |
+
self.hidden_act = hidden_act
|
197 |
+
self.initializer_range = initializer_range
|
198 |
+
self.rms_norm_eps = rms_norm_eps
|
199 |
+
self.pretraining_tp = pretraining_tp
|
200 |
+
self.use_cache = use_cache
|
201 |
+
self.rope_theta = rope_theta
|
202 |
+
self.rope_scaling = rope_scaling
|
203 |
+
self.attention_bias = attention_bias
|
204 |
+
self.attention_dropout = attention_dropout
|
205 |
+
|
206 |
+
super().__init__(
|
207 |
+
pad_token_id=pad_token_id,
|
208 |
+
bos_token_id=bos_token_id,
|
209 |
+
eos_token_id=eos_token_id,
|
210 |
+
tie_word_embeddings=tie_word_embeddings,
|
211 |
+
**kwargs,
|
212 |
+
)
|
configuration_deepseek_fused_v2.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
7 |
+
class DeepseekV2Config(PretrainedConfig):
|
8 |
+
r"""
|
9 |
+
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
|
10 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
11 |
+
defaults will yield a similar configuration to that of the DeepSeek-V2.
|
12 |
+
|
13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
14 |
+
documentation from [`PretrainedConfig`] for more information.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vocab_size (`int`, *optional*, defaults to 102400):
|
19 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
20 |
+
`inputs_ids` passed when calling [`DeepseekV2Model`]
|
21 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
22 |
+
Dimension of the hidden representations.
|
23 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
24 |
+
Dimension of the MLP representations.
|
25 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
26 |
+
Dimension of the MoE representations.
|
27 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
28 |
+
Number of hidden layers in the Transformer decoder.
|
29 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
30 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
31 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
32 |
+
Number of shared experts, None means dense model.
|
33 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
34 |
+
Number of routed experts, None means dense model.
|
35 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
36 |
+
Scaling factor or routed experts.
|
37 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
38 |
+
Topk method used in routed gate.
|
39 |
+
n_group (`int`, *optional*, defaults to None):
|
40 |
+
Number of groups for routed experts.
|
41 |
+
topk_group (`int`, *optional*, defaults to None):
|
42 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
43 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
44 |
+
Number of selected experts, None means dense model.
|
45 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
46 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
47 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
48 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
49 |
+
\--k dense layers--/
|
50 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
51 |
+
Whether to normalize the weights of the routed experts.
|
52 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
53 |
+
Method of computing expert weights.
|
54 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
55 |
+
Auxiliary loss weight coefficient.
|
56 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
57 |
+
Whether to compute the auxiliary loss for each individual sample.
|
58 |
+
num_key_value_heads (`int`, *optional*):
|
59 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
60 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
61 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
62 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
63 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
64 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
65 |
+
`num_attention_heads`.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
73 |
+
The epsilon used by the rms normalization layers.
|
74 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
76 |
+
relevant if `config.is_decoder=True`.
|
77 |
+
pad_token_id (`int`, *optional*):
|
78 |
+
Padding token id.
|
79 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
80 |
+
Beginning of stream token id.
|
81 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
82 |
+
End of stream token id.
|
83 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
84 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
85 |
+
document](https://hf-mirror.com/docs/transformers/parallelism) to understand more about it. This value is
|
86 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
87 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
88 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether to tie weight embeddings
|
90 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
91 |
+
The base period of the RoPE embeddings.
|
92 |
+
rope_scaling (`Dict`, *optional*):
|
93 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
94 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
95 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
96 |
+
`max_position_embeddings` to the expected new maximum.
|
97 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
98 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
99 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
100 |
+
The dropout ratio for the attention probabilities.
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import DeepseekV2Model, DeepseekV2Config
|
104 |
+
|
105 |
+
>>> # Initializing a Deepseek-V2 style configuration
|
106 |
+
>>> configuration = DeepseekV2Config()
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "deepseek_v2"
|
113 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=102400,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
moe_intermediate_size = 1407,
|
121 |
+
num_hidden_layers=30,
|
122 |
+
num_attention_heads=32,
|
123 |
+
num_key_value_heads=32,
|
124 |
+
n_shared_experts = None,
|
125 |
+
n_routed_experts = None,
|
126 |
+
n_fused_experts = None,
|
127 |
+
fused_expert_dora_rank = None,
|
128 |
+
fused_expert_method = "mixture",
|
129 |
+
ep_size = 1,
|
130 |
+
routed_scaling_factor = 1.0,
|
131 |
+
kv_lora_rank = 512,
|
132 |
+
q_lora_rank = 1536,
|
133 |
+
qk_rope_head_dim = 64,
|
134 |
+
v_head_dim = 128,
|
135 |
+
qk_nope_head_dim = 128,
|
136 |
+
topk_method = 'gready',
|
137 |
+
n_group = None,
|
138 |
+
topk_group = None,
|
139 |
+
num_experts_per_tok = None,
|
140 |
+
moe_layer_freq = 1,
|
141 |
+
first_k_dense_replace = 0,
|
142 |
+
norm_topk_prob = False,
|
143 |
+
scoring_func = 'softmax',
|
144 |
+
aux_loss_alpha = 0.001,
|
145 |
+
seq_aux = True,
|
146 |
+
hidden_act="silu",
|
147 |
+
max_position_embeddings=2048,
|
148 |
+
initializer_range=0.02,
|
149 |
+
rms_norm_eps=1e-6,
|
150 |
+
use_cache=True,
|
151 |
+
pad_token_id=None,
|
152 |
+
bos_token_id=100000,
|
153 |
+
eos_token_id=100001,
|
154 |
+
pretraining_tp=1,
|
155 |
+
tie_word_embeddings=False,
|
156 |
+
rope_theta=10000.0,
|
157 |
+
rope_scaling=None,
|
158 |
+
attention_bias=False,
|
159 |
+
attention_dropout=0.0,
|
160 |
+
**kwargs,
|
161 |
+
):
|
162 |
+
self.vocab_size = vocab_size
|
163 |
+
self.max_position_embeddings = max_position_embeddings
|
164 |
+
self.hidden_size = hidden_size
|
165 |
+
self.intermediate_size = intermediate_size
|
166 |
+
self.moe_intermediate_size = moe_intermediate_size
|
167 |
+
self.num_hidden_layers = num_hidden_layers
|
168 |
+
self.num_attention_heads = num_attention_heads
|
169 |
+
self.n_shared_experts = n_shared_experts
|
170 |
+
self.n_routed_experts = n_routed_experts
|
171 |
+
self.n_fused_experts = n_fused_experts
|
172 |
+
self.fused_expert_dora_rank = fused_expert_dora_rank
|
173 |
+
self.fused_expert_method=fused_expert_method
|
174 |
+
self.ep_size = ep_size
|
175 |
+
self.routed_scaling_factor = routed_scaling_factor
|
176 |
+
self.kv_lora_rank = kv_lora_rank
|
177 |
+
self.q_lora_rank = q_lora_rank
|
178 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
179 |
+
self.v_head_dim = v_head_dim
|
180 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
181 |
+
self.topk_method = topk_method
|
182 |
+
self.n_group = n_group
|
183 |
+
self.topk_group = topk_group
|
184 |
+
self.num_experts_per_tok = num_experts_per_tok
|
185 |
+
self.moe_layer_freq = moe_layer_freq
|
186 |
+
self.first_k_dense_replace = first_k_dense_replace
|
187 |
+
self.norm_topk_prob = norm_topk_prob
|
188 |
+
self.scoring_func = scoring_func
|
189 |
+
self.aux_loss_alpha = aux_loss_alpha
|
190 |
+
self.seq_aux = seq_aux
|
191 |
+
# for backward compatibility
|
192 |
+
if num_key_value_heads is None:
|
193 |
+
num_key_value_heads = num_attention_heads
|
194 |
+
|
195 |
+
self.num_key_value_heads = num_key_value_heads
|
196 |
+
self.hidden_act = hidden_act
|
197 |
+
self.initializer_range = initializer_range
|
198 |
+
self.rms_norm_eps = rms_norm_eps
|
199 |
+
self.pretraining_tp = pretraining_tp
|
200 |
+
self.use_cache = use_cache
|
201 |
+
self.rope_theta = rope_theta
|
202 |
+
self.rope_scaling = rope_scaling
|
203 |
+
self.attention_bias = attention_bias
|
204 |
+
self.attention_dropout = attention_dropout
|
205 |
+
|
206 |
+
super().__init__(
|
207 |
+
pad_token_id=pad_token_id,
|
208 |
+
bos_token_id=bos_token_id,
|
209 |
+
eos_token_id=eos_token_id,
|
210 |
+
tie_word_embeddings=tie_word_embeddings,
|
211 |
+
**kwargs,
|
212 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 100001,
|
6 |
+
"temperature": 0.3,
|
7 |
+
"top_p": 0.95,
|
8 |
+
"transformers_version": "4.47.1"
|
9 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d67224eccd0fd8dbd145ddeb446fd3b8b24d998929b3fc6be413dad2dfe568f6
|
3 |
+
size 4998555392
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf0fab982b3aa1e8ddca6fb96f4d88afa9a48962bc1e3d03cb2174742aa0fe5
|
3 |
+
size 4690345144
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:048ad0b2be96b8fc4fd0d0f253525aae84147ed00923d11991960a4187c46f09
|
3 |
+
size 419430528
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_deepseek.py
ADDED
@@ -0,0 +1,2082 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch DeepSeek model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
_prepare_4d_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPast,
|
40 |
+
CausalLMOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import (
|
45 |
+
ALL_LAYERNORM_LAYERS,
|
46 |
+
is_torch_greater_or_equal_than_1_13,
|
47 |
+
)
|
48 |
+
from transformers.utils import (
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_flash_attn_greater_or_equal_2_10,
|
53 |
+
logging,
|
54 |
+
replace_return_docstrings,
|
55 |
+
)
|
56 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
57 |
+
|
58 |
+
try:
|
59 |
+
from .configuration_deepseek import DeepseekV2Config
|
60 |
+
except:
|
61 |
+
from .configuration_deepseek_fused_v2 import DeepseekV2Config
|
62 |
+
|
63 |
+
|
64 |
+
import torch.distributed as dist
|
65 |
+
import numpy as np
|
66 |
+
|
67 |
+
if is_flash_attn_2_available():
|
68 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
69 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
70 |
+
|
71 |
+
|
72 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
73 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
74 |
+
if is_torch_fx_available():
|
75 |
+
if not is_torch_greater_or_equal_than_1_13:
|
76 |
+
import torch.fx
|
77 |
+
|
78 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
79 |
+
|
80 |
+
|
81 |
+
logger = logging.get_logger(__name__)
|
82 |
+
|
83 |
+
_CONFIG_FOR_DOC = "DeepseekV2Config"
|
84 |
+
|
85 |
+
|
86 |
+
def _get_unpad_data(attention_mask):
|
87 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
88 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
89 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
90 |
+
cu_seqlens = F.pad(
|
91 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
92 |
+
)
|
93 |
+
return (
|
94 |
+
indices,
|
95 |
+
cu_seqlens,
|
96 |
+
max_seqlen_in_batch,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
class DeepseekV2RMSNorm(nn.Module):
|
101 |
+
def __init__(self, hidden_size, eps=1e-6):
|
102 |
+
"""
|
103 |
+
DeepseekV2RMSNorm is equivalent to T5LayerNorm
|
104 |
+
"""
|
105 |
+
super().__init__()
|
106 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
107 |
+
self.variance_epsilon = eps
|
108 |
+
|
109 |
+
def forward(self, hidden_states):
|
110 |
+
input_dtype = hidden_states.dtype
|
111 |
+
hidden_states = hidden_states.to(torch.float32)
|
112 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
113 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
114 |
+
return self.weight * hidden_states.to(input_dtype)
|
115 |
+
|
116 |
+
|
117 |
+
ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
|
118 |
+
|
119 |
+
|
120 |
+
class DeepseekV2RotaryEmbedding(nn.Module):
|
121 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
122 |
+
super().__init__()
|
123 |
+
|
124 |
+
self.dim = dim
|
125 |
+
self.max_position_embeddings = max_position_embeddings
|
126 |
+
self.base = base
|
127 |
+
inv_freq = 1.0 / (
|
128 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
129 |
+
)
|
130 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
131 |
+
|
132 |
+
# Build here to make `torch.jit.trace` work.
|
133 |
+
self._set_cos_sin_cache(
|
134 |
+
seq_len=max_position_embeddings,
|
135 |
+
device=self.inv_freq.device,
|
136 |
+
dtype=torch.get_default_dtype(),
|
137 |
+
)
|
138 |
+
self.max_seq_len_cached = None
|
139 |
+
|
140 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
141 |
+
self.max_seq_len_cached = seq_len
|
142 |
+
t = torch.arange(
|
143 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
144 |
+
)
|
145 |
+
|
146 |
+
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
150 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
151 |
+
|
152 |
+
def forward(self, x, seq_len=None):
|
153 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
154 |
+
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
|
155 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
156 |
+
|
157 |
+
return (
|
158 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
159 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
|
164 |
+
class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
165 |
+
"""DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
dim,
|
170 |
+
max_position_embeddings=2048,
|
171 |
+
base=10000,
|
172 |
+
device=None,
|
173 |
+
scaling_factor=1.0,
|
174 |
+
):
|
175 |
+
self.scaling_factor = scaling_factor
|
176 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
177 |
+
|
178 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
179 |
+
self.max_seq_len_cached = seq_len
|
180 |
+
t = torch.arange(
|
181 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
182 |
+
)
|
183 |
+
t = t / self.scaling_factor
|
184 |
+
|
185 |
+
freqs = torch.outer(t, self.inv_freq)
|
186 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
187 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
188 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
189 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
190 |
+
|
191 |
+
|
192 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
|
193 |
+
class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
194 |
+
"""DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
dim,
|
199 |
+
max_position_embeddings=2048,
|
200 |
+
base=10000,
|
201 |
+
device=None,
|
202 |
+
scaling_factor=1.0,
|
203 |
+
):
|
204 |
+
self.scaling_factor = scaling_factor
|
205 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
206 |
+
|
207 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
208 |
+
self.max_seq_len_cached = seq_len
|
209 |
+
|
210 |
+
if seq_len > self.max_position_embeddings:
|
211 |
+
base = self.base * (
|
212 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
213 |
+
- (self.scaling_factor - 1)
|
214 |
+
) ** (self.dim / (self.dim - 2))
|
215 |
+
inv_freq = 1.0 / (
|
216 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
217 |
+
)
|
218 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
219 |
+
|
220 |
+
t = torch.arange(
|
221 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
222 |
+
)
|
223 |
+
|
224 |
+
freqs = torch.outer(t, self.inv_freq)
|
225 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
226 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
227 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
228 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
229 |
+
|
230 |
+
|
231 |
+
# Inverse dim formula to find dim based on number of rotations
|
232 |
+
def yarn_find_correction_dim(
|
233 |
+
num_rotations, dim, base=10000, max_position_embeddings=2048
|
234 |
+
):
|
235 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
236 |
+
2 * math.log(base)
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
# Find dim range bounds based on rotations
|
241 |
+
def yarn_find_correction_range(
|
242 |
+
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
243 |
+
):
|
244 |
+
low = math.floor(
|
245 |
+
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
246 |
+
)
|
247 |
+
high = math.ceil(
|
248 |
+
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
249 |
+
)
|
250 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
251 |
+
|
252 |
+
|
253 |
+
def yarn_get_mscale(scale=1, mscale=1):
|
254 |
+
if scale <= 1:
|
255 |
+
return 1.0
|
256 |
+
return 0.1 * mscale * math.log(scale) + 1.0
|
257 |
+
|
258 |
+
|
259 |
+
def yarn_linear_ramp_mask(min, max, dim):
|
260 |
+
if min == max:
|
261 |
+
max += 0.001 # Prevent singularity
|
262 |
+
|
263 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
264 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
265 |
+
return ramp_func
|
266 |
+
|
267 |
+
|
268 |
+
class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
269 |
+
|
270 |
+
def __init__(
|
271 |
+
self,
|
272 |
+
dim,
|
273 |
+
max_position_embeddings=2048,
|
274 |
+
base=10000,
|
275 |
+
device=None,
|
276 |
+
scaling_factor=1.0,
|
277 |
+
original_max_position_embeddings=4096,
|
278 |
+
beta_fast=32,
|
279 |
+
beta_slow=1,
|
280 |
+
mscale=1,
|
281 |
+
mscale_all_dim=0,
|
282 |
+
):
|
283 |
+
self.scaling_factor = scaling_factor
|
284 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
285 |
+
self.beta_fast = beta_fast
|
286 |
+
self.beta_slow = beta_slow
|
287 |
+
self.mscale = mscale
|
288 |
+
self.mscale_all_dim = mscale_all_dim
|
289 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
290 |
+
|
291 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
292 |
+
self.max_seq_len_cached = seq_len
|
293 |
+
dim = self.dim
|
294 |
+
|
295 |
+
freq_extra = 1.0 / (
|
296 |
+
self.base
|
297 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
298 |
+
)
|
299 |
+
freq_inter = 1.0 / (
|
300 |
+
self.scaling_factor
|
301 |
+
* self.base
|
302 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
303 |
+
)
|
304 |
+
|
305 |
+
low, high = yarn_find_correction_range(
|
306 |
+
self.beta_fast,
|
307 |
+
self.beta_slow,
|
308 |
+
dim,
|
309 |
+
self.base,
|
310 |
+
self.original_max_position_embeddings,
|
311 |
+
)
|
312 |
+
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
313 |
+
device=device, dtype=torch.float32
|
314 |
+
)
|
315 |
+
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
316 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
317 |
+
|
318 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
319 |
+
|
320 |
+
freqs = torch.outer(t, inv_freq)
|
321 |
+
|
322 |
+
_mscale = float(
|
323 |
+
yarn_get_mscale(self.scaling_factor, self.mscale)
|
324 |
+
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
325 |
+
)
|
326 |
+
|
327 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
328 |
+
self.register_buffer(
|
329 |
+
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
|
330 |
+
)
|
331 |
+
self.register_buffer(
|
332 |
+
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
|
333 |
+
)
|
334 |
+
|
335 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
336 |
+
def rotate_half(x):
|
337 |
+
"""Rotates half the hidden dims of the input."""
|
338 |
+
x1 = x[..., : x.shape[-1] // 2]
|
339 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
340 |
+
return torch.cat((-x2, x1), dim=-1)
|
341 |
+
|
342 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
343 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
344 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
q (`torch.Tensor`): The query tensor.
|
348 |
+
k (`torch.Tensor`): The key tensor.
|
349 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
350 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
351 |
+
position_ids (`torch.Tensor`):
|
352 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
353 |
+
used to pass offsetted position ids when working with a KV-cache.
|
354 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
355 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
356 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
357 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
358 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
359 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
360 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
361 |
+
Returns:
|
362 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
363 |
+
"""
|
364 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
365 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
366 |
+
|
367 |
+
b, h, s, d = q.shape
|
368 |
+
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
369 |
+
|
370 |
+
b, h, s, d = k.shape
|
371 |
+
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
372 |
+
|
373 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
374 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
375 |
+
return q_embed, k_embed
|
376 |
+
|
377 |
+
class DeepseekV2MLP(nn.Module):
|
378 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
379 |
+
super().__init__()
|
380 |
+
self.config = config
|
381 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
382 |
+
self.intermediate_size = (
|
383 |
+
config.intermediate_size if intermediate_size is None else intermediate_size
|
384 |
+
)
|
385 |
+
|
386 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
387 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
388 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
389 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
393 |
+
return down_proj
|
394 |
+
|
395 |
+
class FusedLinear(nn.Module):
|
396 |
+
def __init__(self, in_features, out_features, rank=8, alpha=1, n_fused=4, adapter_type="mixture", bias=False, **kwargs):
|
397 |
+
super().__init__()
|
398 |
+
|
399 |
+
self.rank = rank
|
400 |
+
self.adapter_type = adapter_type
|
401 |
+
self.fused_layer = nn.Linear(in_features, out_features, bias=bias)
|
402 |
+
|
403 |
+
if self.adapter_type == 'lora':
|
404 |
+
self.qa_weights = nn.Parameter(torch.randn(rank, in_features) * 0.02)
|
405 |
+
self.qb_weights = nn.Parameter(torch.randn(out_features, rank) * 0.02)
|
406 |
+
self.mask_up_proj = nn.Parameter(torch.randn(n_fused, rank) * 0.02)
|
407 |
+
self.scaling_factor = nn.Parameter(torch.Tensor([0.1] * out_features))
|
408 |
+
|
409 |
+
if self.adapter_type == 'mixture':
|
410 |
+
self.n_fused = n_fused
|
411 |
+
# For efficient forward pass, create weight tensors
|
412 |
+
self.qa_weights = nn.Parameter(torch.stack([torch.zeros(rank, in_features) for i in range(n_fused)]))
|
413 |
+
self.qb_weights = nn.Parameter(torch.stack([torch.zeros(out_features, rank) for i in range(n_fused)]))
|
414 |
+
self.scaling_factor = nn.Parameter(torch.Tensor([0.1] * out_features))
|
415 |
+
|
416 |
+
def forward(self, x, top_k_weights):
|
417 |
+
output = self.fused_layer(x)
|
418 |
+
|
419 |
+
if self.adapter_type == 'lora':
|
420 |
+
x = torch.einsum('bh,rh->br', x, self.qa_weights)
|
421 |
+
x = torch.einsum('br,brr->br', x, torch.diag_embed(torch.einsum('bk,kr -> br', top_k_weights, self.mask_up_proj)))
|
422 |
+
x = torch.einsum('br,hr ->bh', x, self.qb_weights)
|
423 |
+
output = output + self.scaling_factor[None] * x
|
424 |
+
|
425 |
+
if self.adapter_type == 'mixture':
|
426 |
+
if len(x.shape) == 2:
|
427 |
+
x = torch.einsum('bh,krh->bkr', x, self.qa_weights)
|
428 |
+
x = torch.einsum('bkr,khr->bkh', x, self.qb_weights)
|
429 |
+
x = torch.einsum('bkh,bk->bkh', x, top_k_weights)
|
430 |
+
x = torch.sum(x, dim=1)
|
431 |
+
output=output + self.scaling_factor[None] * x
|
432 |
+
return output
|
433 |
+
|
434 |
+
class FusedMLP(torch.nn.Module):
|
435 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None, n_fused=4, rank=8, adapter_type='mixture'):
|
436 |
+
super().__init__()
|
437 |
+
self.config = config
|
438 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
439 |
+
self.intermediate_size = (
|
440 |
+
config.moe_intermediate_size if intermediate_size is None else intermediate_size
|
441 |
+
)
|
442 |
+
self.n_fused=n_fused
|
443 |
+
self.gate_proj = FusedLinear(self.hidden_size, self.intermediate_size, bias=False, rank=rank, n_fused=n_fused, adapter_type=adapter_type)
|
444 |
+
self.up_proj = FusedLinear(self.hidden_size, self.intermediate_size, bias=False, rank=rank, n_fused=n_fused, adapter_type=adapter_type)
|
445 |
+
self.down_proj = FusedLinear(self.intermediate_size, self.hidden_size, bias=False, rank=rank, n_fused=n_fused, adapter_type=adapter_type)
|
446 |
+
self.mask_up_proj = torch.nn.Linear(self.n_fused, self.hidden_size, bias=False)
|
447 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
448 |
+
self.adapter_type=adapter_type
|
449 |
+
|
450 |
+
def forward(self, x, top_k_weights):
|
451 |
+
x = x + self.mask_up_proj(top_k_weights)
|
452 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x, top_k_weights)) * self.up_proj(x, top_k_weights), top_k_weights)
|
453 |
+
return down_proj
|
454 |
+
|
455 |
+
class MoEGate(nn.Module):
|
456 |
+
def __init__(self, config):
|
457 |
+
super().__init__()
|
458 |
+
self.config = config
|
459 |
+
self.top_k = config.num_experts_per_tok
|
460 |
+
self.n_routed_experts = config.n_routed_experts
|
461 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
462 |
+
self.scoring_func = config.scoring_func
|
463 |
+
self.alpha = config.aux_loss_alpha
|
464 |
+
self.seq_aux = config.seq_aux
|
465 |
+
self.topk_method = config.topk_method
|
466 |
+
self.n_group = config.n_group
|
467 |
+
self.topk_group = config.topk_group
|
468 |
+
|
469 |
+
# topk selection algorithm
|
470 |
+
self.norm_topk_prob = config.norm_topk_prob
|
471 |
+
self.gating_dim = config.hidden_size
|
472 |
+
self.weight = nn.Parameter(
|
473 |
+
torch.empty((self.n_routed_experts, self.gating_dim))
|
474 |
+
)
|
475 |
+
self.reset_parameters()
|
476 |
+
|
477 |
+
def reset_parameters(self) -> None:
|
478 |
+
import torch.nn.init as init
|
479 |
+
|
480 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
481 |
+
|
482 |
+
def forward(self, hidden_states):
|
483 |
+
bsz, seq_len, h = hidden_states.shape
|
484 |
+
### compute gating score
|
485 |
+
hidden_states = hidden_states.view(-1, h)
|
486 |
+
logits = F.linear(
|
487 |
+
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
488 |
+
)
|
489 |
+
if self.scoring_func == "softmax":
|
490 |
+
scores = logits.softmax(dim=-1, dtype=torch.float32)
|
491 |
+
else:
|
492 |
+
raise NotImplementedError(
|
493 |
+
f"insupportable scoring function for MoE gating: {self.scoring_func}"
|
494 |
+
)
|
495 |
+
|
496 |
+
### select top-k experts
|
497 |
+
if self.topk_method == "greedy":
|
498 |
+
topk_weight, topk_idx = torch.topk(
|
499 |
+
scores, k=self.top_k, dim=-1, sorted=False
|
500 |
+
)
|
501 |
+
elif self.topk_method == "group_limited_greedy":
|
502 |
+
group_scores = (
|
503 |
+
scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
|
504 |
+
) # [n, n_group]
|
505 |
+
group_idx = torch.topk(
|
506 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
507 |
+
)[
|
508 |
+
1
|
509 |
+
] # [n, top_k_group]
|
510 |
+
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
511 |
+
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
512 |
+
score_mask = (
|
513 |
+
group_mask.unsqueeze(-1)
|
514 |
+
.expand(
|
515 |
+
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
516 |
+
)
|
517 |
+
.reshape(bsz * seq_len, -1)
|
518 |
+
) # [n, e]
|
519 |
+
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
520 |
+
topk_weight, topk_idx = torch.topk(
|
521 |
+
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
522 |
+
)
|
523 |
+
|
524 |
+
### norm gate to sum 1
|
525 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
526 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
527 |
+
topk_weight = topk_weight / denominator
|
528 |
+
else:
|
529 |
+
topk_weight = topk_weight * self.routed_scaling_factor
|
530 |
+
### expert-level computation auxiliary loss
|
531 |
+
if self.training and self.alpha > 0.0:
|
532 |
+
scores_for_aux = scores
|
533 |
+
aux_topk = self.top_k
|
534 |
+
# always compute aux loss based on the naive greedy topk method
|
535 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
536 |
+
if self.seq_aux:
|
537 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
538 |
+
ce = torch.zeros(
|
539 |
+
bsz, self.n_routed_experts, device=hidden_states.device
|
540 |
+
)
|
541 |
+
ce.scatter_add_(
|
542 |
+
1,
|
543 |
+
topk_idx_for_aux_loss,
|
544 |
+
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
|
545 |
+
).div_(seq_len * aux_topk / self.n_routed_experts)
|
546 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
|
547 |
+
dim=1
|
548 |
+
).mean() * self.alpha
|
549 |
+
else:
|
550 |
+
mask_ce = F.one_hot(
|
551 |
+
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
|
552 |
+
)
|
553 |
+
ce = mask_ce.float().mean(0)
|
554 |
+
Pi = scores_for_aux.mean(0)
|
555 |
+
fi = ce * self.n_routed_experts
|
556 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
557 |
+
else:
|
558 |
+
aux_loss = None
|
559 |
+
return topk_idx, topk_weight, aux_loss
|
560 |
+
|
561 |
+
class AddAuxiliaryLoss(torch.autograd.Function):
|
562 |
+
"""
|
563 |
+
The trick function of adding auxiliary (aux) loss,
|
564 |
+
which includes the gradient of the aux loss during backpropagation.
|
565 |
+
"""
|
566 |
+
|
567 |
+
@staticmethod
|
568 |
+
def forward(ctx, x, loss):
|
569 |
+
assert loss.numel() == 1
|
570 |
+
ctx.dtype = loss.dtype
|
571 |
+
ctx.required_aux_loss = loss.requires_grad
|
572 |
+
return x
|
573 |
+
|
574 |
+
@staticmethod
|
575 |
+
def backward(ctx, grad_output):
|
576 |
+
grad_loss = None
|
577 |
+
if ctx.required_aux_loss:
|
578 |
+
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
579 |
+
return grad_output, grad_loss
|
580 |
+
|
581 |
+
class DeepseekV2MoE(nn.Module):
|
582 |
+
"""
|
583 |
+
A mixed expert module containing shared experts.
|
584 |
+
"""
|
585 |
+
|
586 |
+
def __init__(self, config):
|
587 |
+
super().__init__()
|
588 |
+
self.config = config
|
589 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
590 |
+
|
591 |
+
if hasattr(config, "ep_size") and config.ep_size > 1:
|
592 |
+
assert config.ep_size == dist.get_world_size()
|
593 |
+
self.ep_size = config.ep_size
|
594 |
+
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
595 |
+
self.ep_rank = dist.get_rank()
|
596 |
+
self.experts = nn.ModuleList(
|
597 |
+
[
|
598 |
+
(
|
599 |
+
DeepseekV2MLP(
|
600 |
+
config, intermediate_size=config.moe_intermediate_size
|
601 |
+
)
|
602 |
+
if i >= self.ep_rank * self.experts_per_rank
|
603 |
+
and i < (self.ep_rank + 1) * self.experts_per_rank
|
604 |
+
else None
|
605 |
+
)
|
606 |
+
for i in range(config.n_routed_experts)
|
607 |
+
]
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
self.ep_size = 1
|
611 |
+
self.experts_per_rank = config.n_routed_experts
|
612 |
+
self.ep_rank = 0
|
613 |
+
self.experts = nn.ModuleList(
|
614 |
+
[
|
615 |
+
DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)
|
616 |
+
for i in range(config.n_routed_experts)
|
617 |
+
]
|
618 |
+
)
|
619 |
+
self.gate = MoEGate(config)
|
620 |
+
if config.n_shared_experts is not None:
|
621 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
622 |
+
self.shared_experts = DeepseekV2MLP(
|
623 |
+
config=config, intermediate_size=intermediate_size
|
624 |
+
)
|
625 |
+
|
626 |
+
def forward(self, hidden_states):
|
627 |
+
identity = hidden_states
|
628 |
+
orig_shape = hidden_states.shape
|
629 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
630 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
631 |
+
flat_topk_idx = topk_idx.view(-1)
|
632 |
+
if self.training:
|
633 |
+
hidden_states = hidden_states.repeat_interleave(
|
634 |
+
self.num_experts_per_tok, dim=0
|
635 |
+
)
|
636 |
+
|
637 |
+
y = torch.empty_like(hidden_states)
|
638 |
+
for i, expert in enumerate(self.experts):
|
639 |
+
expert_output=expert(hidden_states[flat_topk_idx == i])
|
640 |
+
try:
|
641 |
+
y[flat_topk_idx == i] = expert_output.to(y.dtype)
|
642 |
+
except:
|
643 |
+
pass
|
644 |
+
|
645 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
646 |
+
y = y.view(*orig_shape)
|
647 |
+
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
648 |
+
else:
|
649 |
+
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
650 |
+
if self.config.n_shared_experts is not None:
|
651 |
+
y = y + self.shared_experts(identity)
|
652 |
+
return y
|
653 |
+
|
654 |
+
@torch.no_grad()
|
655 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
656 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
657 |
+
cnts.scatter_(1, topk_ids, 1)
|
658 |
+
tokens_per_expert = cnts.sum(dim=0)
|
659 |
+
idxs = topk_ids.view(-1).argsort()
|
660 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
661 |
+
sorted_tokens_shape = sorted_tokens.shape
|
662 |
+
if self.ep_size > 1:
|
663 |
+
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
664 |
+
tokens_per_expert_group = tokens_per_expert.new_empty(
|
665 |
+
tokens_per_expert.shape[0]
|
666 |
+
)
|
667 |
+
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
668 |
+
output_splits = (
|
669 |
+
tokens_per_expert_group.view(self.ep_size, -1)
|
670 |
+
.sum(1)
|
671 |
+
.cpu()
|
672 |
+
.numpy()
|
673 |
+
.tolist()
|
674 |
+
)
|
675 |
+
gathered_tokens = sorted_tokens.new_empty(
|
676 |
+
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
677 |
+
)
|
678 |
+
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
679 |
+
dist.all_to_all(
|
680 |
+
list(gathered_tokens.split(output_splits)),
|
681 |
+
list(sorted_tokens.split(input_split_sizes)),
|
682 |
+
)
|
683 |
+
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
684 |
+
self.ep_size, self.experts_per_rank
|
685 |
+
).sum(dim=0)
|
686 |
+
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
687 |
+
s = 0
|
688 |
+
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
689 |
+
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
690 |
+
s += k
|
691 |
+
gatherd_idxs = gatherd_idxs.argsort()
|
692 |
+
sorted_tokens = gathered_tokens[gatherd_idxs]
|
693 |
+
tokens_per_expert = tokens_per_expert_post_gather
|
694 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
695 |
+
|
696 |
+
outputs = []
|
697 |
+
start_idx = 0
|
698 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
699 |
+
end_idx = start_idx + num_tokens
|
700 |
+
if num_tokens == 0:
|
701 |
+
continue
|
702 |
+
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
|
703 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
704 |
+
expert_out = expert(tokens_for_this_expert)
|
705 |
+
outputs.append(expert_out)
|
706 |
+
start_idx = end_idx
|
707 |
+
|
708 |
+
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
709 |
+
if self.ep_size > 1:
|
710 |
+
new_x = torch.empty_like(outs)
|
711 |
+
new_x[gatherd_idxs] = outs
|
712 |
+
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
713 |
+
dist.all_to_all(
|
714 |
+
list(gathered_tokens.split(input_split_sizes)),
|
715 |
+
list(new_x.split(output_splits)),
|
716 |
+
)
|
717 |
+
outs = gathered_tokens
|
718 |
+
|
719 |
+
new_x = torch.empty_like(outs)
|
720 |
+
new_x[idxs] = outs
|
721 |
+
final_out = (
|
722 |
+
new_x.view(*topk_ids.shape, -1)
|
723 |
+
.type(topk_weight.dtype)
|
724 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
725 |
+
.sum(dim=1)
|
726 |
+
.type(new_x.dtype)
|
727 |
+
)
|
728 |
+
return final_out
|
729 |
+
|
730 |
+
class FusedMOE(torch.nn.Module):
|
731 |
+
def __init__(self, config):
|
732 |
+
super().__init__()
|
733 |
+
self.config = config
|
734 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
735 |
+
|
736 |
+
if hasattr(config, "ep_size") and config.ep_size > 1:
|
737 |
+
assert config.ep_size == dist.get_world_size()
|
738 |
+
self.ep_size = config.ep_size
|
739 |
+
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
740 |
+
self.ep_rank = dist.get_rank()
|
741 |
+
self.experts = nn.ModuleList(
|
742 |
+
[
|
743 |
+
(
|
744 |
+
FusedMLP(
|
745 |
+
config,
|
746 |
+
intermediate_size=config.moe_intermediate_size,
|
747 |
+
n_fused=config.n_routed_experts // config.n_fused_experts,
|
748 |
+
rank=config.fused_expert_dora_rank,
|
749 |
+
adapter_type=config.fused_expert_method
|
750 |
+
)
|
751 |
+
if i >= self.ep_rank * self.experts_per_rank
|
752 |
+
and i < (self.ep_rank + 1) * self.experts_per_rank
|
753 |
+
else None
|
754 |
+
)
|
755 |
+
for i in range(config.n_fused_experts)
|
756 |
+
]
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
self.ep_size = 1
|
760 |
+
self.experts_per_rank = config.n_routed_experts
|
761 |
+
self.ep_rank = 0
|
762 |
+
self.experts = nn.ModuleList(
|
763 |
+
[
|
764 |
+
FusedMLP(
|
765 |
+
config,
|
766 |
+
intermediate_size=config.moe_intermediate_size,
|
767 |
+
n_fused=config.n_routed_experts // config.n_fused_experts,
|
768 |
+
rank=config.fused_expert_dora_rank,
|
769 |
+
adapter_type=config.fused_expert_method
|
770 |
+
)
|
771 |
+
for i in range(config.n_fused_experts)
|
772 |
+
]
|
773 |
+
)
|
774 |
+
self.gate = MoEGate(config)
|
775 |
+
if config.n_shared_experts is not None:
|
776 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
777 |
+
self.shared_experts = DeepseekV2MLP(
|
778 |
+
config=config, intermediate_size=intermediate_size
|
779 |
+
)
|
780 |
+
|
781 |
+
# Register inv_mapping_dict as a buffer
|
782 |
+
self.register_buffer('inv_mapping_dict', torch.zeros(config.n_fused_experts, config.n_routed_experts // config.n_fused_experts), persistent=True)
|
783 |
+
|
784 |
+
|
785 |
+
def set_ready(self):
|
786 |
+
self.experts.to_empty(device="meta")
|
787 |
+
del self.experts
|
788 |
+
self.ready = True
|
789 |
+
|
790 |
+
def forward(self, hidden_states):
|
791 |
+
identity, orig_shape, hidden_states, topk_idx, topk_weight, aux_loss = self.forward_gate(hidden_states)
|
792 |
+
|
793 |
+
y = torch.zeros_like(hidden_states, device=hidden_states.device, dtype=hidden_states.dtype)
|
794 |
+
|
795 |
+
for idx in range(self.inv_mapping_dict.size(0)):
|
796 |
+
y += self.forward_fused_expert(idx, hidden_states, topk_idx, topk_weight)
|
797 |
+
|
798 |
+
y = y.view(*orig_shape)
|
799 |
+
|
800 |
+
if self.config.n_shared_experts is not None:
|
801 |
+
y = y + self.shared_experts(identity)
|
802 |
+
return y
|
803 |
+
|
804 |
+
def forward_gate(self, hidden_states):
|
805 |
+
identity = hidden_states
|
806 |
+
orig_shape = hidden_states.shape
|
807 |
+
|
808 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
809 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
810 |
+
|
811 |
+
return identity, orig_shape, hidden_states, topk_idx, topk_weight, aux_loss
|
812 |
+
|
813 |
+
def forward_fused_expert(self, idx, hidden_states, topk_idx, topk_weight):
|
814 |
+
indexes = self.inv_mapping_dict[idx].tolist()
|
815 |
+
|
816 |
+
flat_topk_weight = torch.zeros((hidden_states.shape[0], len(indexes)), device=hidden_states.device, dtype=hidden_states.dtype)
|
817 |
+
|
818 |
+
for i, index in enumerate(indexes):
|
819 |
+
flat_topk_weight[:, i] = torch.sum(topk_weight * (topk_idx == index), axis=-1)
|
820 |
+
|
821 |
+
scalar = torch.sum(flat_topk_weight, axis=-1, keepdim=True) # keeping the total weight of the experts
|
822 |
+
|
823 |
+
flat_topk_weight[flat_topk_weight == 0] = -1e9
|
824 |
+
flat_topk_weight = torch.softmax(flat_topk_weight, dim=-1)
|
825 |
+
|
826 |
+
output = torch.zeros_like(hidden_states, device=hidden_states.device, dtype=hidden_states.dtype)
|
827 |
+
|
828 |
+
output[scalar.squeeze() != 0] = self.experts[idx](hidden_states[scalar.squeeze() != 0], flat_topk_weight[scalar.squeeze() != 0]) # Process only if at least one weight is required, should be much faster
|
829 |
+
|
830 |
+
return scalar * output # Weighting is already taken into account by how the Fused is trained
|
831 |
+
|
832 |
+
|
833 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
834 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
835 |
+
"""
|
836 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
837 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
838 |
+
"""
|
839 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
840 |
+
if n_rep == 1:
|
841 |
+
return hidden_states
|
842 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
843 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
844 |
+
)
|
845 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
846 |
+
|
847 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
|
848 |
+
class DeepseekV2Attention(nn.Module):
|
849 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
850 |
+
|
851 |
+
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
|
852 |
+
super().__init__()
|
853 |
+
self.config = config
|
854 |
+
self.layer_idx = layer_idx
|
855 |
+
if layer_idx is None:
|
856 |
+
logger.warning_once(
|
857 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
858 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
859 |
+
"when creating this class."
|
860 |
+
)
|
861 |
+
|
862 |
+
self.attention_dropout = config.attention_dropout
|
863 |
+
self.hidden_size = config.hidden_size
|
864 |
+
self.num_heads = config.num_attention_heads
|
865 |
+
|
866 |
+
self.max_position_embeddings = config.max_position_embeddings
|
867 |
+
self.rope_theta = config.rope_theta
|
868 |
+
self.q_lora_rank = config.q_lora_rank
|
869 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
870 |
+
self.kv_lora_rank = config.kv_lora_rank
|
871 |
+
self.v_head_dim = config.v_head_dim
|
872 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
873 |
+
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
874 |
+
|
875 |
+
self.is_causal = True
|
876 |
+
|
877 |
+
if self.q_lora_rank is None:
|
878 |
+
self.q_proj = nn.Linear(
|
879 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
880 |
+
)
|
881 |
+
else:
|
882 |
+
self.q_a_proj = nn.Linear(
|
883 |
+
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
884 |
+
)
|
885 |
+
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
|
886 |
+
self.q_b_proj = nn.Linear(
|
887 |
+
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
888 |
+
)
|
889 |
+
|
890 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
891 |
+
self.hidden_size,
|
892 |
+
config.kv_lora_rank + config.qk_rope_head_dim,
|
893 |
+
bias=config.attention_bias,
|
894 |
+
)
|
895 |
+
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
|
896 |
+
self.kv_b_proj = nn.Linear(
|
897 |
+
config.kv_lora_rank,
|
898 |
+
self.num_heads
|
899 |
+
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
900 |
+
bias=False,
|
901 |
+
)
|
902 |
+
|
903 |
+
self.o_proj = nn.Linear(
|
904 |
+
self.num_heads * self.v_head_dim,
|
905 |
+
self.hidden_size,
|
906 |
+
bias=config.attention_bias,
|
907 |
+
)
|
908 |
+
self._init_rope()
|
909 |
+
|
910 |
+
self.softmax_scale = self.q_head_dim ** (-0.5)
|
911 |
+
if self.config.rope_scaling is not None:
|
912 |
+
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
913 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
914 |
+
if mscale_all_dim:
|
915 |
+
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
916 |
+
self.softmax_scale = self.softmax_scale * mscale * mscale
|
917 |
+
|
918 |
+
def _init_rope(self):
|
919 |
+
if self.config.rope_scaling is None:
|
920 |
+
self.rotary_emb = DeepseekV2RotaryEmbedding(
|
921 |
+
self.qk_rope_head_dim,
|
922 |
+
max_position_embeddings=self.max_position_embeddings,
|
923 |
+
base=self.rope_theta,
|
924 |
+
)
|
925 |
+
else:
|
926 |
+
scaling_type = self.config.rope_scaling["type"]
|
927 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
928 |
+
if scaling_type == "linear":
|
929 |
+
self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
|
930 |
+
self.qk_rope_head_dim,
|
931 |
+
max_position_embeddings=self.max_position_embeddings,
|
932 |
+
scaling_factor=scaling_factor,
|
933 |
+
base=self.rope_theta,
|
934 |
+
)
|
935 |
+
elif scaling_type == "dynamic":
|
936 |
+
self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
|
937 |
+
self.qk_rope_head_dim,
|
938 |
+
max_position_embeddings=self.max_position_embeddings,
|
939 |
+
scaling_factor=scaling_factor,
|
940 |
+
base=self.rope_theta,
|
941 |
+
)
|
942 |
+
elif scaling_type == "yarn":
|
943 |
+
kwargs = {
|
944 |
+
key: self.config.rope_scaling[key]
|
945 |
+
for key in [
|
946 |
+
"original_max_position_embeddings",
|
947 |
+
"beta_fast",
|
948 |
+
"beta_slow",
|
949 |
+
"mscale",
|
950 |
+
"mscale_all_dim",
|
951 |
+
]
|
952 |
+
if key in self.config.rope_scaling
|
953 |
+
}
|
954 |
+
self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
|
955 |
+
self.qk_rope_head_dim,
|
956 |
+
max_position_embeddings=self.max_position_embeddings,
|
957 |
+
scaling_factor=scaling_factor,
|
958 |
+
base=self.rope_theta,
|
959 |
+
**kwargs,
|
960 |
+
)
|
961 |
+
else:
|
962 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
963 |
+
|
964 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
965 |
+
return (
|
966 |
+
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
967 |
+
.transpose(1, 2)
|
968 |
+
.contiguous()
|
969 |
+
)
|
970 |
+
|
971 |
+
def forward(
|
972 |
+
self,
|
973 |
+
hidden_states: torch.Tensor,
|
974 |
+
attention_mask: Optional[torch.Tensor] = None,
|
975 |
+
position_ids: Optional[torch.LongTensor] = None,
|
976 |
+
past_key_value: Optional[Cache] = None,
|
977 |
+
output_attentions: bool = False,
|
978 |
+
use_cache: bool = False,
|
979 |
+
**kwargs,
|
980 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
981 |
+
if "padding_mask" in kwargs:
|
982 |
+
warnings.warn(
|
983 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
984 |
+
)
|
985 |
+
bsz, q_len, _ = hidden_states.size()
|
986 |
+
|
987 |
+
if self.q_lora_rank is None:
|
988 |
+
q = self.q_proj(hidden_states)
|
989 |
+
else:
|
990 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
991 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
992 |
+
q_nope, q_pe = torch.split(
|
993 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
994 |
+
)
|
995 |
+
|
996 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
997 |
+
compressed_kv, k_pe = torch.split(
|
998 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
999 |
+
)
|
1000 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
1001 |
+
kv = (
|
1002 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
1003 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
1004 |
+
.transpose(1, 2)
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
k_nope, value_states = torch.split(
|
1008 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
1009 |
+
)
|
1010 |
+
kv_seq_len = value_states.shape[-2]
|
1011 |
+
if past_key_value is not None:
|
1012 |
+
if self.layer_idx is None:
|
1013 |
+
raise ValueError(
|
1014 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
1015 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
1016 |
+
"with a layer index."
|
1017 |
+
)
|
1018 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
1019 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
1020 |
+
|
1021 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
1022 |
+
|
1023 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1024 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
1025 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
1026 |
+
|
1027 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1028 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
1029 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
1030 |
+
if past_key_value is not None:
|
1031 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1032 |
+
key_states, value_states = past_key_value.update(
|
1033 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
attn_weights = (
|
1037 |
+
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
1041 |
+
raise ValueError(
|
1042 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
1043 |
+
f" {attn_weights.size()}"
|
1044 |
+
)
|
1045 |
+
assert attention_mask is not None
|
1046 |
+
if attention_mask is not None:
|
1047 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
1048 |
+
raise ValueError(
|
1049 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
1050 |
+
)
|
1051 |
+
attn_weights = attn_weights + attention_mask
|
1052 |
+
|
1053 |
+
# upcast attention to fp32
|
1054 |
+
attn_weights = nn.functional.softmax(
|
1055 |
+
attn_weights, dim=-1, dtype=torch.float32
|
1056 |
+
).to(query_states.dtype)
|
1057 |
+
attn_weights = nn.functional.dropout(
|
1058 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
1059 |
+
)
|
1060 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
1061 |
+
|
1062 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
|
1063 |
+
raise ValueError(
|
1064 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
|
1065 |
+
f" {attn_output.size()}"
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
1069 |
+
|
1070 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
1071 |
+
|
1072 |
+
attn_output = self.o_proj(attn_output)
|
1073 |
+
|
1074 |
+
if not output_attentions:
|
1075 |
+
attn_weights = None
|
1076 |
+
|
1077 |
+
return attn_output, attn_weights, past_key_value
|
1078 |
+
|
1079 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
|
1080 |
+
class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
1081 |
+
"""
|
1082 |
+
DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
|
1083 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
1084 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
1085 |
+
"""
|
1086 |
+
|
1087 |
+
def __init__(self, *args, **kwargs):
|
1088 |
+
super().__init__(*args, **kwargs)
|
1089 |
+
|
1090 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
1091 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
1092 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
1093 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
1094 |
+
|
1095 |
+
def forward(
|
1096 |
+
self,
|
1097 |
+
hidden_states: torch.Tensor,
|
1098 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1099 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1100 |
+
past_key_value: Optional[Cache] = None,
|
1101 |
+
output_attentions: bool = False,
|
1102 |
+
use_cache: bool = False,
|
1103 |
+
**kwargs,
|
1104 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
1105 |
+
# DeepseekV2FlashAttention2 attention does not support output_attentions
|
1106 |
+
if "padding_mask" in kwargs:
|
1107 |
+
warnings.warn(
|
1108 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
# overwrite attention_mask with padding_mask
|
1112 |
+
attention_mask = kwargs.pop("padding_mask")
|
1113 |
+
|
1114 |
+
output_attentions = False
|
1115 |
+
|
1116 |
+
bsz, q_len, _ = hidden_states.size()
|
1117 |
+
|
1118 |
+
if self.q_lora_rank is None:
|
1119 |
+
q = self.q_proj(hidden_states)
|
1120 |
+
else:
|
1121 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
1122 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
1123 |
+
q_nope, q_pe = torch.split(
|
1124 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
# Flash attention requires the input to have the shape
|
1128 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
1129 |
+
# therefore we just need to keep the original shape
|
1130 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
1131 |
+
compressed_kv, k_pe = torch.split(
|
1132 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
1133 |
+
)
|
1134 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
1135 |
+
kv = (
|
1136 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
1137 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
1138 |
+
.transpose(1, 2)
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
k_nope, value_states = torch.split(
|
1142 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
1143 |
+
)
|
1144 |
+
kv_seq_len = value_states.shape[-2]
|
1145 |
+
|
1146 |
+
kv_seq_len = value_states.shape[-2]
|
1147 |
+
if past_key_value is not None:
|
1148 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
1149 |
+
|
1150 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
1151 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
1152 |
+
|
1153 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1154 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
1155 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
1156 |
+
|
1157 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1158 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
1159 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
1160 |
+
|
1161 |
+
if self.q_head_dim != self.v_head_dim:
|
1162 |
+
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
1163 |
+
|
1164 |
+
if past_key_value is not None:
|
1165 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1166 |
+
key_states, value_states = past_key_value.update(
|
1167 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
1171 |
+
# to be able to avoid many of these transpose/reshape/view.
|
1172 |
+
query_states = query_states.transpose(1, 2)
|
1173 |
+
key_states = key_states.transpose(1, 2)
|
1174 |
+
value_states = value_states.transpose(1, 2)
|
1175 |
+
|
1176 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
1177 |
+
|
1178 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
1179 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
1180 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
1181 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
1182 |
+
# in fp32. (DeepseekV2RMSNorm handles it correctly)
|
1183 |
+
|
1184 |
+
input_dtype = query_states.dtype
|
1185 |
+
if input_dtype == torch.float32:
|
1186 |
+
# Handle the case where the model is quantized
|
1187 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
1188 |
+
target_dtype = self.config._pre_quantization_dtype
|
1189 |
+
elif torch.is_autocast_enabled():
|
1190 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
1191 |
+
else:
|
1192 |
+
target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype
|
1193 |
+
|
1194 |
+
logger.warning_once(
|
1195 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
1196 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
1197 |
+
f" {target_dtype}."
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
query_states = query_states.to(target_dtype)
|
1201 |
+
key_states = key_states.to(target_dtype)
|
1202 |
+
value_states = value_states.to(target_dtype)
|
1203 |
+
|
1204 |
+
attn_output = self._flash_attention_forward(
|
1205 |
+
query_states,
|
1206 |
+
key_states,
|
1207 |
+
value_states,
|
1208 |
+
attention_mask,
|
1209 |
+
q_len,
|
1210 |
+
dropout=dropout_rate,
|
1211 |
+
softmax_scale=self.softmax_scale,
|
1212 |
+
)
|
1213 |
+
if self.q_head_dim != self.v_head_dim:
|
1214 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
1215 |
+
|
1216 |
+
attn_output = attn_output.reshape(
|
1217 |
+
bsz, q_len, self.num_heads * self.v_head_dim
|
1218 |
+
).contiguous()
|
1219 |
+
attn_output = self.o_proj(attn_output)
|
1220 |
+
|
1221 |
+
if not output_attentions:
|
1222 |
+
attn_weights = None
|
1223 |
+
|
1224 |
+
return attn_output, attn_weights, past_key_value
|
1225 |
+
|
1226 |
+
def _flash_attention_forward(
|
1227 |
+
self,
|
1228 |
+
query_states,
|
1229 |
+
key_states,
|
1230 |
+
value_states,
|
1231 |
+
attention_mask,
|
1232 |
+
query_length,
|
1233 |
+
dropout=0.0,
|
1234 |
+
softmax_scale=None,
|
1235 |
+
):
|
1236 |
+
"""
|
1237 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
1238 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
1239 |
+
|
1240 |
+
Args:
|
1241 |
+
query_states (`torch.Tensor`):
|
1242 |
+
Input query states to be passed to Flash Attention API
|
1243 |
+
key_states (`torch.Tensor`):
|
1244 |
+
Input key states to be passed to Flash Attention API
|
1245 |
+
value_states (`torch.Tensor`):
|
1246 |
+
Input value states to be passed to Flash Attention API
|
1247 |
+
attention_mask (`torch.Tensor`):
|
1248 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
1249 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
1250 |
+
dropout (`int`, *optional*):
|
1251 |
+
Attention dropout
|
1252 |
+
softmax_scale (`float`, *optional*):
|
1253 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
1254 |
+
"""
|
1255 |
+
if not self._flash_attn_uses_top_left_mask:
|
1256 |
+
causal = self.is_causal
|
1257 |
+
else:
|
1258 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
|
1259 |
+
causal = self.is_causal and query_length != 1
|
1260 |
+
|
1261 |
+
# Contains at least one padding token in the sequence
|
1262 |
+
if attention_mask is not None:
|
1263 |
+
batch_size = query_states.shape[0]
|
1264 |
+
(
|
1265 |
+
query_states,
|
1266 |
+
key_states,
|
1267 |
+
value_states,
|
1268 |
+
indices_q,
|
1269 |
+
cu_seq_lens,
|
1270 |
+
max_seq_lens,
|
1271 |
+
) = self._upad_input(
|
1272 |
+
query_states, key_states, value_states, attention_mask, query_length
|
1273 |
+
)
|
1274 |
+
|
1275 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
1276 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
1277 |
+
|
1278 |
+
attn_output_unpad = flash_attn_varlen_func(
|
1279 |
+
query_states,
|
1280 |
+
key_states,
|
1281 |
+
value_states,
|
1282 |
+
cu_seqlens_q=cu_seqlens_q,
|
1283 |
+
cu_seqlens_k=cu_seqlens_k,
|
1284 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1285 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1286 |
+
dropout_p=dropout,
|
1287 |
+
softmax_scale=softmax_scale,
|
1288 |
+
causal=causal,
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
attn_output = pad_input(
|
1292 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
1293 |
+
)
|
1294 |
+
else:
|
1295 |
+
attn_output = flash_attn_func(
|
1296 |
+
query_states,
|
1297 |
+
key_states,
|
1298 |
+
value_states,
|
1299 |
+
dropout,
|
1300 |
+
softmax_scale=softmax_scale,
|
1301 |
+
causal=causal,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
return attn_output
|
1305 |
+
|
1306 |
+
def _upad_input(
|
1307 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1308 |
+
):
|
1309 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1310 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1311 |
+
|
1312 |
+
key_layer = index_first_axis(
|
1313 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1314 |
+
indices_k,
|
1315 |
+
)
|
1316 |
+
value_layer = index_first_axis(
|
1317 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1318 |
+
indices_k,
|
1319 |
+
)
|
1320 |
+
if query_length == kv_seq_len:
|
1321 |
+
query_layer = index_first_axis(
|
1322 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
1323 |
+
indices_k,
|
1324 |
+
)
|
1325 |
+
cu_seqlens_q = cu_seqlens_k
|
1326 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1327 |
+
indices_q = indices_k
|
1328 |
+
elif query_length == 1:
|
1329 |
+
max_seqlen_in_batch_q = 1
|
1330 |
+
cu_seqlens_q = torch.arange(
|
1331 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
1332 |
+
) # There is a memcpy here, that is very bad.
|
1333 |
+
indices_q = cu_seqlens_q[:-1]
|
1334 |
+
query_layer = query_layer.squeeze(1)
|
1335 |
+
else:
|
1336 |
+
# The -q_len: slice assumes left padding.
|
1337 |
+
attention_mask = attention_mask[:, -query_length:]
|
1338 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1339 |
+
query_layer, attention_mask
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
return (
|
1343 |
+
query_layer,
|
1344 |
+
key_layer,
|
1345 |
+
value_layer,
|
1346 |
+
indices_q,
|
1347 |
+
(cu_seqlens_q, cu_seqlens_k),
|
1348 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
|
1352 |
+
ATTENTION_CLASSES = {
|
1353 |
+
"eager": DeepseekV2Attention,
|
1354 |
+
"flash_attention_2": DeepseekV2FlashAttention2,
|
1355 |
+
}
|
1356 |
+
|
1357 |
+
|
1358 |
+
class DeepseekV2DecoderLayer(nn.Module):
|
1359 |
+
def __init__(self, config: DeepseekV2Config, layer_idx: int):
|
1360 |
+
super().__init__()
|
1361 |
+
self.hidden_size = config.hidden_size
|
1362 |
+
|
1363 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
|
1364 |
+
config=config, layer_idx=layer_idx
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
self.mlp = (
|
1368 |
+
FusedMOE(config)
|
1369 |
+
if (
|
1370 |
+
config.n_routed_experts is not None
|
1371 |
+
and layer_idx >= config.first_k_dense_replace
|
1372 |
+
and layer_idx % config.moe_layer_freq == 0
|
1373 |
+
)
|
1374 |
+
else DeepseekV2MLP(config)
|
1375 |
+
)
|
1376 |
+
self.input_layernorm = DeepseekV2RMSNorm(
|
1377 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1378 |
+
)
|
1379 |
+
self.post_attention_layernorm = DeepseekV2RMSNorm(
|
1380 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
def forward(
|
1384 |
+
self,
|
1385 |
+
hidden_states: torch.Tensor,
|
1386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1387 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1388 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1389 |
+
output_attentions: Optional[bool] = False,
|
1390 |
+
use_cache: Optional[bool] = False,
|
1391 |
+
**kwargs,
|
1392 |
+
) -> Tuple[
|
1393 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
1394 |
+
]:
|
1395 |
+
"""
|
1396 |
+
Args:
|
1397 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1398 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
1399 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
1400 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
1401 |
+
output_attentions (`bool`, *optional*):
|
1402 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1403 |
+
returned tensors for more detail.
|
1404 |
+
use_cache (`bool`, *optional*):
|
1405 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1406 |
+
(see `past_key_values`).
|
1407 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1408 |
+
"""
|
1409 |
+
if "padding_mask" in kwargs:
|
1410 |
+
warnings.warn(
|
1411 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1412 |
+
)
|
1413 |
+
residual = hidden_states
|
1414 |
+
|
1415 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1416 |
+
|
1417 |
+
# Self Attention
|
1418 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1419 |
+
hidden_states=hidden_states,
|
1420 |
+
attention_mask=attention_mask,
|
1421 |
+
position_ids=position_ids,
|
1422 |
+
past_key_value=past_key_value,
|
1423 |
+
output_attentions=output_attentions,
|
1424 |
+
use_cache=use_cache,
|
1425 |
+
**kwargs,
|
1426 |
+
)
|
1427 |
+
hidden_states = residual + hidden_states
|
1428 |
+
|
1429 |
+
# Fully Connected
|
1430 |
+
residual = hidden_states
|
1431 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1432 |
+
hidden_states = self.mlp(hidden_states)
|
1433 |
+
hidden_states = residual + hidden_states
|
1434 |
+
|
1435 |
+
outputs = (hidden_states,)
|
1436 |
+
|
1437 |
+
if output_attentions:
|
1438 |
+
outputs += (self_attn_weights,)
|
1439 |
+
|
1440 |
+
if use_cache:
|
1441 |
+
outputs += (present_key_value,)
|
1442 |
+
|
1443 |
+
return outputs
|
1444 |
+
|
1445 |
+
|
1446 |
+
DeepseekV2_START_DOCSTRING = r"""
|
1447 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1448 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1449 |
+
etc.)
|
1450 |
+
|
1451 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1452 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1453 |
+
and behavior.
|
1454 |
+
|
1455 |
+
Parameters:
|
1456 |
+
config ([`DeepseekV2Config`]):
|
1457 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1458 |
+
load the weights associated with the model, only the configuration. Check out the
|
1459 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1460 |
+
"""
|
1461 |
+
|
1462 |
+
|
1463 |
+
@add_start_docstrings(
|
1464 |
+
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
1465 |
+
DeepseekV2_START_DOCSTRING,
|
1466 |
+
)
|
1467 |
+
class DeepseekV2PreTrainedModel(PreTrainedModel):
|
1468 |
+
config_class = DeepseekV2Config
|
1469 |
+
base_model_prefix = "model"
|
1470 |
+
supports_gradient_checkpointing = True
|
1471 |
+
_no_split_modules = ["DeepseekV2DecoderLayer"]
|
1472 |
+
_skip_keys_device_placement = "past_key_values"
|
1473 |
+
_supports_flash_attn_2 = True
|
1474 |
+
_supports_cache_class = True
|
1475 |
+
|
1476 |
+
def _init_weights(self, module):
|
1477 |
+
std = self.config.initializer_range
|
1478 |
+
if isinstance(module, nn.Linear):
|
1479 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1480 |
+
if module.bias is not None:
|
1481 |
+
module.bias.data.zero_()
|
1482 |
+
elif isinstance(module, nn.Embedding):
|
1483 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1484 |
+
if module.padding_idx is not None:
|
1485 |
+
module.weight.data[module.padding_idx].zero_()
|
1486 |
+
|
1487 |
+
|
1488 |
+
DeepseekV2_INPUTS_DOCSTRING = r"""
|
1489 |
+
Args:
|
1490 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1491 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1492 |
+
it.
|
1493 |
+
|
1494 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1495 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1496 |
+
|
1497 |
+
[What are input IDs?](../glossary#input-ids)
|
1498 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1499 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1500 |
+
|
1501 |
+
- 1 for tokens that are **not masked**,
|
1502 |
+
- 0 for tokens that are **masked**.
|
1503 |
+
|
1504 |
+
[What are attention masks?](../glossary#attention-mask)
|
1505 |
+
|
1506 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1507 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1508 |
+
|
1509 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1510 |
+
`past_key_values`).
|
1511 |
+
|
1512 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1513 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1514 |
+
information on the default strategy.
|
1515 |
+
|
1516 |
+
- 1 indicates the head is **not masked**,
|
1517 |
+
- 0 indicates the head is **masked**.
|
1518 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1519 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1520 |
+
config.n_positions - 1]`.
|
1521 |
+
|
1522 |
+
[What are position IDs?](../glossary#position-ids)
|
1523 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1524 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1525 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1526 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1527 |
+
|
1528 |
+
Two formats are allowed:
|
1529 |
+
- a [`~cache_utils.Cache`] instance;
|
1530 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1531 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1532 |
+
cache format.
|
1533 |
+
|
1534 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1535 |
+
legacy cache format will be returned.
|
1536 |
+
|
1537 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1538 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1539 |
+
of shape `(batch_size, sequence_length)`.
|
1540 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1541 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1542 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1543 |
+
model's internal embedding lookup matrix.
|
1544 |
+
use_cache (`bool`, *optional*):
|
1545 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1546 |
+
`past_key_values`).
|
1547 |
+
output_attentions (`bool`, *optional*):
|
1548 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1549 |
+
tensors for more detail.
|
1550 |
+
output_hidden_states (`bool`, *optional*):
|
1551 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1552 |
+
more detail.
|
1553 |
+
return_dict (`bool`, *optional*):
|
1554 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1555 |
+
"""
|
1556 |
+
|
1557 |
+
|
1558 |
+
@add_start_docstrings(
|
1559 |
+
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
1560 |
+
DeepseekV2_START_DOCSTRING,
|
1561 |
+
)
|
1562 |
+
class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
1563 |
+
"""
|
1564 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
|
1565 |
+
|
1566 |
+
Args:
|
1567 |
+
config: DeepseekV2Config
|
1568 |
+
"""
|
1569 |
+
|
1570 |
+
def __init__(self, config: DeepseekV2Config):
|
1571 |
+
super().__init__(config)
|
1572 |
+
self.padding_idx = config.pad_token_id
|
1573 |
+
self.vocab_size = config.vocab_size
|
1574 |
+
|
1575 |
+
self.embed_tokens = nn.Embedding(
|
1576 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
1577 |
+
)
|
1578 |
+
self.layers = nn.ModuleList(
|
1579 |
+
[
|
1580 |
+
DeepseekV2DecoderLayer(config, layer_idx)
|
1581 |
+
for layer_idx in range(config.num_hidden_layers)
|
1582 |
+
]
|
1583 |
+
)
|
1584 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1585 |
+
self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1586 |
+
|
1587 |
+
self.gradient_checkpointing = False
|
1588 |
+
# Initialize weights and apply final processing
|
1589 |
+
self.post_init()
|
1590 |
+
|
1591 |
+
def get_input_embeddings(self):
|
1592 |
+
return self.embed_tokens
|
1593 |
+
|
1594 |
+
def set_input_embeddings(self, value):
|
1595 |
+
self.embed_tokens = value
|
1596 |
+
|
1597 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1598 |
+
def forward(
|
1599 |
+
self,
|
1600 |
+
input_ids: torch.LongTensor = None,
|
1601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1602 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1603 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1604 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1605 |
+
use_cache: Optional[bool] = None,
|
1606 |
+
output_attentions: Optional[bool] = None,
|
1607 |
+
output_hidden_states: Optional[bool] = None,
|
1608 |
+
return_dict: Optional[bool] = None,
|
1609 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1610 |
+
output_attentions = (
|
1611 |
+
output_attentions
|
1612 |
+
if output_attentions is not None
|
1613 |
+
else self.config.output_attentions
|
1614 |
+
)
|
1615 |
+
output_hidden_states = (
|
1616 |
+
output_hidden_states
|
1617 |
+
if output_hidden_states is not None
|
1618 |
+
else self.config.output_hidden_states
|
1619 |
+
)
|
1620 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1621 |
+
|
1622 |
+
return_dict = (
|
1623 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
# retrieve input_ids and inputs_embeds
|
1627 |
+
if input_ids is not None and inputs_embeds is not None:
|
1628 |
+
raise ValueError(
|
1629 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1630 |
+
)
|
1631 |
+
elif input_ids is not None:
|
1632 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1633 |
+
elif inputs_embeds is not None:
|
1634 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1635 |
+
else:
|
1636 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1637 |
+
|
1638 |
+
if self.gradient_checkpointing and self.training:
|
1639 |
+
if use_cache:
|
1640 |
+
logger.warning_once(
|
1641 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
1642 |
+
)
|
1643 |
+
use_cache = False
|
1644 |
+
|
1645 |
+
past_key_values_length = 0
|
1646 |
+
if use_cache:
|
1647 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1648 |
+
if use_legacy_cache:
|
1649 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1650 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1651 |
+
|
1652 |
+
if position_ids is None:
|
1653 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1654 |
+
position_ids = torch.arange(
|
1655 |
+
past_key_values_length,
|
1656 |
+
seq_length + past_key_values_length,
|
1657 |
+
dtype=torch.long,
|
1658 |
+
device=device,
|
1659 |
+
)
|
1660 |
+
position_ids = position_ids.unsqueeze(0)
|
1661 |
+
|
1662 |
+
if inputs_embeds is None:
|
1663 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1664 |
+
|
1665 |
+
if self._use_flash_attention_2:
|
1666 |
+
# 2d mask is passed through the layers
|
1667 |
+
attention_mask = (
|
1668 |
+
attention_mask
|
1669 |
+
if (attention_mask is not None and 0 in attention_mask)
|
1670 |
+
else None
|
1671 |
+
)
|
1672 |
+
else:
|
1673 |
+
# 4d mask is passed through the layers
|
1674 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1675 |
+
attention_mask,
|
1676 |
+
(batch_size, seq_length),
|
1677 |
+
inputs_embeds,
|
1678 |
+
past_key_values_length,
|
1679 |
+
)
|
1680 |
+
|
1681 |
+
# embed positions
|
1682 |
+
hidden_states = inputs_embeds
|
1683 |
+
|
1684 |
+
# decoder layers
|
1685 |
+
all_hidden_states = () if output_hidden_states else None
|
1686 |
+
all_self_attns = () if output_attentions else None
|
1687 |
+
next_decoder_cache = None
|
1688 |
+
|
1689 |
+
for decoder_layer in self.layers:
|
1690 |
+
if output_hidden_states:
|
1691 |
+
all_hidden_states += (hidden_states,)
|
1692 |
+
|
1693 |
+
if self.gradient_checkpointing and self.training:
|
1694 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1695 |
+
decoder_layer.__call__,
|
1696 |
+
hidden_states,
|
1697 |
+
attention_mask,
|
1698 |
+
position_ids,
|
1699 |
+
past_key_values,
|
1700 |
+
output_attentions,
|
1701 |
+
use_cache,
|
1702 |
+
)
|
1703 |
+
else:
|
1704 |
+
layer_outputs = decoder_layer(
|
1705 |
+
hidden_states,
|
1706 |
+
attention_mask=attention_mask,
|
1707 |
+
position_ids=position_ids,
|
1708 |
+
past_key_value=past_key_values,
|
1709 |
+
output_attentions=output_attentions,
|
1710 |
+
use_cache=use_cache,
|
1711 |
+
)
|
1712 |
+
|
1713 |
+
hidden_states = layer_outputs[0]
|
1714 |
+
|
1715 |
+
if use_cache:
|
1716 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1717 |
+
|
1718 |
+
if output_attentions:
|
1719 |
+
all_self_attns += (layer_outputs[1],)
|
1720 |
+
|
1721 |
+
hidden_states = self.norm(hidden_states)
|
1722 |
+
|
1723 |
+
# add hidden states from the last decoder layer
|
1724 |
+
if output_hidden_states:
|
1725 |
+
all_hidden_states += (hidden_states,)
|
1726 |
+
|
1727 |
+
next_cache = None
|
1728 |
+
if use_cache:
|
1729 |
+
next_cache = (
|
1730 |
+
next_decoder_cache.to_legacy_cache()
|
1731 |
+
if use_legacy_cache
|
1732 |
+
else next_decoder_cache
|
1733 |
+
)
|
1734 |
+
if not return_dict:
|
1735 |
+
return tuple(
|
1736 |
+
v
|
1737 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1738 |
+
if v is not None
|
1739 |
+
)
|
1740 |
+
return BaseModelOutputWithPast(
|
1741 |
+
last_hidden_state=hidden_states,
|
1742 |
+
past_key_values=next_cache,
|
1743 |
+
hidden_states=all_hidden_states,
|
1744 |
+
attentions=all_self_attns,
|
1745 |
+
)
|
1746 |
+
|
1747 |
+
|
1748 |
+
class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
1749 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1750 |
+
|
1751 |
+
def __init__(self, config):
|
1752 |
+
super().__init__(config)
|
1753 |
+
self.model = DeepseekV2Model(config)
|
1754 |
+
self.vocab_size = config.vocab_size
|
1755 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1756 |
+
|
1757 |
+
# Initialize weights and apply final processing
|
1758 |
+
self.post_init()
|
1759 |
+
|
1760 |
+
def get_input_embeddings(self):
|
1761 |
+
return self.model.embed_tokens
|
1762 |
+
|
1763 |
+
def set_input_embeddings(self, value):
|
1764 |
+
self.model.embed_tokens = value
|
1765 |
+
|
1766 |
+
def get_output_embeddings(self):
|
1767 |
+
return self.lm_head
|
1768 |
+
|
1769 |
+
def set_output_embeddings(self, new_embeddings):
|
1770 |
+
self.lm_head = new_embeddings
|
1771 |
+
|
1772 |
+
def set_decoder(self, decoder):
|
1773 |
+
self.model = decoder
|
1774 |
+
|
1775 |
+
def get_decoder(self):
|
1776 |
+
return self.model
|
1777 |
+
|
1778 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1779 |
+
@replace_return_docstrings(
|
1780 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1781 |
+
)
|
1782 |
+
def forward(
|
1783 |
+
self,
|
1784 |
+
input_ids: torch.LongTensor = None,
|
1785 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1786 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1787 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1788 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1789 |
+
labels: Optional[torch.LongTensor] = None,
|
1790 |
+
use_cache: Optional[bool] = None,
|
1791 |
+
output_attentions: Optional[bool] = None,
|
1792 |
+
output_hidden_states: Optional[bool] = None,
|
1793 |
+
return_dict: Optional[bool] = None,
|
1794 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1795 |
+
r"""
|
1796 |
+
Args:
|
1797 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1798 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
|
1799 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1800 |
+
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
|
1801 |
+
|
1802 |
+
Returns:
|
1803 |
+
|
1804 |
+
Example:
|
1805 |
+
|
1806 |
+
```python
|
1807 |
+
>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
|
1808 |
+
|
1809 |
+
>>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1810 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1811 |
+
|
1812 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1813 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1814 |
+
|
1815 |
+
>>> # Generate
|
1816 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1817 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1818 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1819 |
+
```"""
|
1820 |
+
output_attentions = (
|
1821 |
+
output_attentions
|
1822 |
+
if output_attentions is not None
|
1823 |
+
else self.config.output_attentions
|
1824 |
+
)
|
1825 |
+
output_hidden_states = (
|
1826 |
+
output_hidden_states
|
1827 |
+
if output_hidden_states is not None
|
1828 |
+
else self.config.output_hidden_states
|
1829 |
+
)
|
1830 |
+
return_dict = (
|
1831 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1832 |
+
)
|
1833 |
+
|
1834 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1835 |
+
outputs = self.model(
|
1836 |
+
input_ids=input_ids,
|
1837 |
+
attention_mask=attention_mask,
|
1838 |
+
position_ids=position_ids,
|
1839 |
+
past_key_values=past_key_values,
|
1840 |
+
inputs_embeds=inputs_embeds,
|
1841 |
+
use_cache=use_cache,
|
1842 |
+
output_attentions=output_attentions,
|
1843 |
+
output_hidden_states=output_hidden_states,
|
1844 |
+
return_dict=return_dict,
|
1845 |
+
)
|
1846 |
+
|
1847 |
+
hidden_states = outputs[0]
|
1848 |
+
logits = self.lm_head(hidden_states)
|
1849 |
+
logits = logits.float()
|
1850 |
+
|
1851 |
+
loss = None
|
1852 |
+
if labels is not None:
|
1853 |
+
# Shift so that tokens < n predict n
|
1854 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1855 |
+
shift_labels = labels[..., 1:].contiguous()
|
1856 |
+
# Flatten the tokens
|
1857 |
+
loss_fct = CrossEntropyLoss()
|
1858 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1859 |
+
shift_labels = shift_labels.view(-1)
|
1860 |
+
# Enable model parallelism
|
1861 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1862 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1863 |
+
|
1864 |
+
if not return_dict:
|
1865 |
+
output = (logits,) + outputs[1:]
|
1866 |
+
return (loss,) + output if loss is not None else output
|
1867 |
+
|
1868 |
+
return CausalLMOutputWithPast(
|
1869 |
+
loss=loss,
|
1870 |
+
logits=logits,
|
1871 |
+
past_key_values=outputs.past_key_values,
|
1872 |
+
hidden_states=outputs.hidden_states,
|
1873 |
+
attentions=outputs.attentions,
|
1874 |
+
)
|
1875 |
+
|
1876 |
+
def prepare_inputs_for_generation(
|
1877 |
+
self,
|
1878 |
+
input_ids,
|
1879 |
+
past_key_values=None,
|
1880 |
+
attention_mask=None,
|
1881 |
+
inputs_embeds=None,
|
1882 |
+
**kwargs,
|
1883 |
+
):
|
1884 |
+
if past_key_values is not None:
|
1885 |
+
if isinstance(past_key_values, Cache):
|
1886 |
+
cache_length = past_key_values.get_seq_length()
|
1887 |
+
past_length = past_key_values.seen_tokens
|
1888 |
+
max_cache_length = past_key_values.get_max_length()
|
1889 |
+
else:
|
1890 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1891 |
+
max_cache_length = None
|
1892 |
+
|
1893 |
+
# Keep only the unprocessed tokens:
|
1894 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1895 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1896 |
+
# input)
|
1897 |
+
if (
|
1898 |
+
attention_mask is not None
|
1899 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1900 |
+
):
|
1901 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1902 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1903 |
+
# input_ids based on the past_length.
|
1904 |
+
elif past_length < input_ids.shape[1]:
|
1905 |
+
input_ids = input_ids[:, past_length:]
|
1906 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1907 |
+
|
1908 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1909 |
+
if (
|
1910 |
+
max_cache_length is not None
|
1911 |
+
and attention_mask is not None
|
1912 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1913 |
+
):
|
1914 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1915 |
+
|
1916 |
+
position_ids = kwargs.get("position_ids", None)
|
1917 |
+
if attention_mask is not None and position_ids is None:
|
1918 |
+
# create position_ids on the fly for batch generation
|
1919 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1920 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1921 |
+
if past_key_values:
|
1922 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1923 |
+
|
1924 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1925 |
+
if inputs_embeds is not None and past_key_values is None:
|
1926 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1927 |
+
else:
|
1928 |
+
model_inputs = {"input_ids": input_ids}
|
1929 |
+
|
1930 |
+
model_inputs.update(
|
1931 |
+
{
|
1932 |
+
"position_ids": position_ids,
|
1933 |
+
"past_key_values": past_key_values,
|
1934 |
+
"use_cache": kwargs.get("use_cache"),
|
1935 |
+
"attention_mask": attention_mask,
|
1936 |
+
}
|
1937 |
+
)
|
1938 |
+
return model_inputs
|
1939 |
+
|
1940 |
+
@staticmethod
|
1941 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1942 |
+
reordered_past = ()
|
1943 |
+
for layer_past in past_key_values:
|
1944 |
+
reordered_past += (
|
1945 |
+
tuple(
|
1946 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1947 |
+
for past_state in layer_past
|
1948 |
+
),
|
1949 |
+
)
|
1950 |
+
return reordered_past
|
1951 |
+
|
1952 |
+
|
1953 |
+
@add_start_docstrings(
|
1954 |
+
"""
|
1955 |
+
The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
|
1956 |
+
|
1957 |
+
[`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1958 |
+
(e.g. GPT-2) do.
|
1959 |
+
|
1960 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1961 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1962 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1963 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1964 |
+
each row of the batch).
|
1965 |
+
""",
|
1966 |
+
DeepseekV2_START_DOCSTRING,
|
1967 |
+
)
|
1968 |
+
class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
1969 |
+
def __init__(self, config):
|
1970 |
+
super().__init__(config)
|
1971 |
+
self.num_labels = config.num_labels
|
1972 |
+
self.model = DeepseekV2Model(config)
|
1973 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1974 |
+
|
1975 |
+
# Initialize weights and apply final processing
|
1976 |
+
self.post_init()
|
1977 |
+
|
1978 |
+
def get_input_embeddings(self):
|
1979 |
+
return self.model.embed_tokens
|
1980 |
+
|
1981 |
+
def set_input_embeddings(self, value):
|
1982 |
+
self.model.embed_tokens = value
|
1983 |
+
|
1984 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1985 |
+
def forward(
|
1986 |
+
self,
|
1987 |
+
input_ids: torch.LongTensor = None,
|
1988 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1989 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1990 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1991 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1992 |
+
labels: Optional[torch.LongTensor] = None,
|
1993 |
+
use_cache: Optional[bool] = None,
|
1994 |
+
output_attentions: Optional[bool] = None,
|
1995 |
+
output_hidden_states: Optional[bool] = None,
|
1996 |
+
return_dict: Optional[bool] = None,
|
1997 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1998 |
+
r"""
|
1999 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2000 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
|
2001 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
2002 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
2003 |
+
"""
|
2004 |
+
return_dict = (
|
2005 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
2006 |
+
)
|
2007 |
+
|
2008 |
+
transformer_outputs = self.model(
|
2009 |
+
input_ids,
|
2010 |
+
attention_mask=attention_mask,
|
2011 |
+
position_ids=position_ids,
|
2012 |
+
past_key_values=past_key_values,
|
2013 |
+
inputs_embeds=inputs_embeds,
|
2014 |
+
use_cache=use_cache,
|
2015 |
+
output_attentions=output_attentions,
|
2016 |
+
output_hidden_states=output_hidden_states,
|
2017 |
+
return_dict=return_dict,
|
2018 |
+
)
|
2019 |
+
hidden_states = transformer_outputs[0]
|
2020 |
+
logits = self.score(hidden_states)
|
2021 |
+
|
2022 |
+
if input_ids is not None:
|
2023 |
+
batch_size = input_ids.shape[0]
|
2024 |
+
else:
|
2025 |
+
batch_size = inputs_embeds.shape[0]
|
2026 |
+
|
2027 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
2028 |
+
raise ValueError(
|
2029 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
2030 |
+
)
|
2031 |
+
if self.config.pad_token_id is None:
|
2032 |
+
sequence_lengths = -1
|
2033 |
+
else:
|
2034 |
+
if input_ids is not None:
|
2035 |
+
sequence_lengths = (
|
2036 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
2037 |
+
).to(logits.device)
|
2038 |
+
else:
|
2039 |
+
sequence_lengths = -1
|
2040 |
+
|
2041 |
+
pooled_logits = logits[
|
2042 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
2043 |
+
]
|
2044 |
+
|
2045 |
+
loss = None
|
2046 |
+
if labels is not None:
|
2047 |
+
labels = labels.to(logits.device)
|
2048 |
+
if self.config.problem_type is None:
|
2049 |
+
if self.num_labels == 1:
|
2050 |
+
self.config.problem_type = "regression"
|
2051 |
+
elif self.num_labels > 1 and (
|
2052 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
2053 |
+
):
|
2054 |
+
self.config.problem_type = "single_label_classification"
|
2055 |
+
else:
|
2056 |
+
self.config.problem_type = "multi_label_classification"
|
2057 |
+
|
2058 |
+
if self.config.problem_type == "regression":
|
2059 |
+
loss_fct = MSELoss()
|
2060 |
+
if self.num_labels == 1:
|
2061 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
2062 |
+
else:
|
2063 |
+
loss = loss_fct(pooled_logits, labels)
|
2064 |
+
elif self.config.problem_type == "single_label_classification":
|
2065 |
+
loss_fct = CrossEntropyLoss()
|
2066 |
+
loss = loss_fct(
|
2067 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
2068 |
+
)
|
2069 |
+
elif self.config.problem_type == "multi_label_classification":
|
2070 |
+
loss_fct = BCEWithLogitsLoss()
|
2071 |
+
loss = loss_fct(pooled_logits, labels)
|
2072 |
+
if not return_dict:
|
2073 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
2074 |
+
return ((loss,) + output) if loss is not None else output
|
2075 |
+
|
2076 |
+
return SequenceClassifierOutputWithPast(
|
2077 |
+
loss=loss,
|
2078 |
+
logits=pooled_logits,
|
2079 |
+
past_key_values=transformer_outputs.past_key_values,
|
2080 |
+
hidden_states=transformer_outputs.hidden_states,
|
2081 |
+
attentions=transformer_outputs.attentions,
|
2082 |
+
)
|
modeling_deepseek_fused_v2.py
ADDED
@@ -0,0 +1,2082 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch DeepSeek model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
_prepare_4d_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPast,
|
40 |
+
CausalLMOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import (
|
45 |
+
ALL_LAYERNORM_LAYERS,
|
46 |
+
is_torch_greater_or_equal_than_1_13,
|
47 |
+
)
|
48 |
+
from transformers.utils import (
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_flash_attn_greater_or_equal_2_10,
|
53 |
+
logging,
|
54 |
+
replace_return_docstrings,
|
55 |
+
)
|
56 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
57 |
+
|
58 |
+
try:
|
59 |
+
from .configuration_deepseek import DeepseekV2Config
|
60 |
+
except:
|
61 |
+
from .configuration_deepseek_fused_v2 import DeepseekV2Config
|
62 |
+
|
63 |
+
|
64 |
+
import torch.distributed as dist
|
65 |
+
import numpy as np
|
66 |
+
|
67 |
+
if is_flash_attn_2_available():
|
68 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
69 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
70 |
+
|
71 |
+
|
72 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
73 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
74 |
+
if is_torch_fx_available():
|
75 |
+
if not is_torch_greater_or_equal_than_1_13:
|
76 |
+
import torch.fx
|
77 |
+
|
78 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
79 |
+
|
80 |
+
|
81 |
+
logger = logging.get_logger(__name__)
|
82 |
+
|
83 |
+
_CONFIG_FOR_DOC = "DeepseekV2Config"
|
84 |
+
|
85 |
+
|
86 |
+
def _get_unpad_data(attention_mask):
|
87 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
88 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
89 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
90 |
+
cu_seqlens = F.pad(
|
91 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
92 |
+
)
|
93 |
+
return (
|
94 |
+
indices,
|
95 |
+
cu_seqlens,
|
96 |
+
max_seqlen_in_batch,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
class DeepseekV2RMSNorm(nn.Module):
|
101 |
+
def __init__(self, hidden_size, eps=1e-6):
|
102 |
+
"""
|
103 |
+
DeepseekV2RMSNorm is equivalent to T5LayerNorm
|
104 |
+
"""
|
105 |
+
super().__init__()
|
106 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
107 |
+
self.variance_epsilon = eps
|
108 |
+
|
109 |
+
def forward(self, hidden_states):
|
110 |
+
input_dtype = hidden_states.dtype
|
111 |
+
hidden_states = hidden_states.to(torch.float32)
|
112 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
113 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
114 |
+
return self.weight * hidden_states.to(input_dtype)
|
115 |
+
|
116 |
+
|
117 |
+
ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
|
118 |
+
|
119 |
+
|
120 |
+
class DeepseekV2RotaryEmbedding(nn.Module):
|
121 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
122 |
+
super().__init__()
|
123 |
+
|
124 |
+
self.dim = dim
|
125 |
+
self.max_position_embeddings = max_position_embeddings
|
126 |
+
self.base = base
|
127 |
+
inv_freq = 1.0 / (
|
128 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
129 |
+
)
|
130 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
131 |
+
|
132 |
+
# Build here to make `torch.jit.trace` work.
|
133 |
+
self._set_cos_sin_cache(
|
134 |
+
seq_len=max_position_embeddings,
|
135 |
+
device=self.inv_freq.device,
|
136 |
+
dtype=torch.get_default_dtype(),
|
137 |
+
)
|
138 |
+
self.max_seq_len_cached = None
|
139 |
+
|
140 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
141 |
+
self.max_seq_len_cached = seq_len
|
142 |
+
t = torch.arange(
|
143 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
144 |
+
)
|
145 |
+
|
146 |
+
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
150 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
151 |
+
|
152 |
+
def forward(self, x, seq_len=None):
|
153 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
154 |
+
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
|
155 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
156 |
+
|
157 |
+
return (
|
158 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
159 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
|
164 |
+
class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
165 |
+
"""DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
dim,
|
170 |
+
max_position_embeddings=2048,
|
171 |
+
base=10000,
|
172 |
+
device=None,
|
173 |
+
scaling_factor=1.0,
|
174 |
+
):
|
175 |
+
self.scaling_factor = scaling_factor
|
176 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
177 |
+
|
178 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
179 |
+
self.max_seq_len_cached = seq_len
|
180 |
+
t = torch.arange(
|
181 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
182 |
+
)
|
183 |
+
t = t / self.scaling_factor
|
184 |
+
|
185 |
+
freqs = torch.outer(t, self.inv_freq)
|
186 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
187 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
188 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
189 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
190 |
+
|
191 |
+
|
192 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
|
193 |
+
class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
194 |
+
"""DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
dim,
|
199 |
+
max_position_embeddings=2048,
|
200 |
+
base=10000,
|
201 |
+
device=None,
|
202 |
+
scaling_factor=1.0,
|
203 |
+
):
|
204 |
+
self.scaling_factor = scaling_factor
|
205 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
206 |
+
|
207 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
208 |
+
self.max_seq_len_cached = seq_len
|
209 |
+
|
210 |
+
if seq_len > self.max_position_embeddings:
|
211 |
+
base = self.base * (
|
212 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
213 |
+
- (self.scaling_factor - 1)
|
214 |
+
) ** (self.dim / (self.dim - 2))
|
215 |
+
inv_freq = 1.0 / (
|
216 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
217 |
+
)
|
218 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
219 |
+
|
220 |
+
t = torch.arange(
|
221 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
222 |
+
)
|
223 |
+
|
224 |
+
freqs = torch.outer(t, self.inv_freq)
|
225 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
226 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
227 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
228 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
229 |
+
|
230 |
+
|
231 |
+
# Inverse dim formula to find dim based on number of rotations
|
232 |
+
def yarn_find_correction_dim(
|
233 |
+
num_rotations, dim, base=10000, max_position_embeddings=2048
|
234 |
+
):
|
235 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
236 |
+
2 * math.log(base)
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
# Find dim range bounds based on rotations
|
241 |
+
def yarn_find_correction_range(
|
242 |
+
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
243 |
+
):
|
244 |
+
low = math.floor(
|
245 |
+
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
246 |
+
)
|
247 |
+
high = math.ceil(
|
248 |
+
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
249 |
+
)
|
250 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
251 |
+
|
252 |
+
|
253 |
+
def yarn_get_mscale(scale=1, mscale=1):
|
254 |
+
if scale <= 1:
|
255 |
+
return 1.0
|
256 |
+
return 0.1 * mscale * math.log(scale) + 1.0
|
257 |
+
|
258 |
+
|
259 |
+
def yarn_linear_ramp_mask(min, max, dim):
|
260 |
+
if min == max:
|
261 |
+
max += 0.001 # Prevent singularity
|
262 |
+
|
263 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
264 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
265 |
+
return ramp_func
|
266 |
+
|
267 |
+
|
268 |
+
class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
269 |
+
|
270 |
+
def __init__(
|
271 |
+
self,
|
272 |
+
dim,
|
273 |
+
max_position_embeddings=2048,
|
274 |
+
base=10000,
|
275 |
+
device=None,
|
276 |
+
scaling_factor=1.0,
|
277 |
+
original_max_position_embeddings=4096,
|
278 |
+
beta_fast=32,
|
279 |
+
beta_slow=1,
|
280 |
+
mscale=1,
|
281 |
+
mscale_all_dim=0,
|
282 |
+
):
|
283 |
+
self.scaling_factor = scaling_factor
|
284 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
285 |
+
self.beta_fast = beta_fast
|
286 |
+
self.beta_slow = beta_slow
|
287 |
+
self.mscale = mscale
|
288 |
+
self.mscale_all_dim = mscale_all_dim
|
289 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
290 |
+
|
291 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
292 |
+
self.max_seq_len_cached = seq_len
|
293 |
+
dim = self.dim
|
294 |
+
|
295 |
+
freq_extra = 1.0 / (
|
296 |
+
self.base
|
297 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
298 |
+
)
|
299 |
+
freq_inter = 1.0 / (
|
300 |
+
self.scaling_factor
|
301 |
+
* self.base
|
302 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
303 |
+
)
|
304 |
+
|
305 |
+
low, high = yarn_find_correction_range(
|
306 |
+
self.beta_fast,
|
307 |
+
self.beta_slow,
|
308 |
+
dim,
|
309 |
+
self.base,
|
310 |
+
self.original_max_position_embeddings,
|
311 |
+
)
|
312 |
+
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
313 |
+
device=device, dtype=torch.float32
|
314 |
+
)
|
315 |
+
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
316 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
317 |
+
|
318 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
319 |
+
|
320 |
+
freqs = torch.outer(t, inv_freq)
|
321 |
+
|
322 |
+
_mscale = float(
|
323 |
+
yarn_get_mscale(self.scaling_factor, self.mscale)
|
324 |
+
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
325 |
+
)
|
326 |
+
|
327 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
328 |
+
self.register_buffer(
|
329 |
+
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
|
330 |
+
)
|
331 |
+
self.register_buffer(
|
332 |
+
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
|
333 |
+
)
|
334 |
+
|
335 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
336 |
+
def rotate_half(x):
|
337 |
+
"""Rotates half the hidden dims of the input."""
|
338 |
+
x1 = x[..., : x.shape[-1] // 2]
|
339 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
340 |
+
return torch.cat((-x2, x1), dim=-1)
|
341 |
+
|
342 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
343 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
344 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
q (`torch.Tensor`): The query tensor.
|
348 |
+
k (`torch.Tensor`): The key tensor.
|
349 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
350 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
351 |
+
position_ids (`torch.Tensor`):
|
352 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
353 |
+
used to pass offsetted position ids when working with a KV-cache.
|
354 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
355 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
356 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
357 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
358 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
359 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
360 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
361 |
+
Returns:
|
362 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
363 |
+
"""
|
364 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
365 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
366 |
+
|
367 |
+
b, h, s, d = q.shape
|
368 |
+
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
369 |
+
|
370 |
+
b, h, s, d = k.shape
|
371 |
+
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
372 |
+
|
373 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
374 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
375 |
+
return q_embed, k_embed
|
376 |
+
|
377 |
+
class DeepseekV2MLP(nn.Module):
|
378 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
379 |
+
super().__init__()
|
380 |
+
self.config = config
|
381 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
382 |
+
self.intermediate_size = (
|
383 |
+
config.intermediate_size if intermediate_size is None else intermediate_size
|
384 |
+
)
|
385 |
+
|
386 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
387 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
388 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
389 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
393 |
+
return down_proj
|
394 |
+
|
395 |
+
class FusedLinear(nn.Module):
|
396 |
+
def __init__(self, in_features, out_features, rank=8, alpha=1, n_fused=4, adapter_type="mixture", bias=False, **kwargs):
|
397 |
+
super().__init__()
|
398 |
+
|
399 |
+
self.rank = rank
|
400 |
+
self.adapter_type = adapter_type
|
401 |
+
self.fused_layer = nn.Linear(in_features, out_features, bias=bias)
|
402 |
+
|
403 |
+
if self.adapter_type == 'lora':
|
404 |
+
self.qa_weights = nn.Parameter(torch.randn(rank, in_features) * 0.02)
|
405 |
+
self.qb_weights = nn.Parameter(torch.randn(out_features, rank) * 0.02)
|
406 |
+
self.mask_up_proj = nn.Parameter(torch.randn(n_fused, rank) * 0.02)
|
407 |
+
self.scaling_factor = nn.Parameter(torch.Tensor([0.1] * out_features))
|
408 |
+
|
409 |
+
if self.adapter_type == 'mixture':
|
410 |
+
self.n_fused = n_fused
|
411 |
+
# For efficient forward pass, create weight tensors
|
412 |
+
self.qa_weights = nn.Parameter(torch.stack([torch.zeros(rank, in_features) for i in range(n_fused)]))
|
413 |
+
self.qb_weights = nn.Parameter(torch.stack([torch.zeros(out_features, rank) for i in range(n_fused)]))
|
414 |
+
self.scaling_factor = nn.Parameter(torch.Tensor([0.1] * out_features))
|
415 |
+
|
416 |
+
def forward(self, x, top_k_weights):
|
417 |
+
output = self.fused_layer(x)
|
418 |
+
|
419 |
+
if self.adapter_type == 'lora':
|
420 |
+
x = torch.einsum('bh,rh->br', x, self.qa_weights)
|
421 |
+
x = torch.einsum('br,brr->br', x, torch.diag_embed(torch.einsum('bk,kr -> br', top_k_weights, self.mask_up_proj)))
|
422 |
+
x = torch.einsum('br,hr ->bh', x, self.qb_weights)
|
423 |
+
output = output + self.scaling_factor[None] * x
|
424 |
+
|
425 |
+
if self.adapter_type == 'mixture':
|
426 |
+
if len(x.shape) == 2:
|
427 |
+
x = torch.einsum('bh,krh->bkr', x, self.qa_weights)
|
428 |
+
x = torch.einsum('bkr,khr->bkh', x, self.qb_weights)
|
429 |
+
x = torch.einsum('bkh,bk->bkh', x, top_k_weights)
|
430 |
+
x = torch.sum(x, dim=1)
|
431 |
+
output=output + self.scaling_factor[None] * x
|
432 |
+
return output
|
433 |
+
|
434 |
+
class FusedMLP(torch.nn.Module):
|
435 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None, n_fused=4, rank=8, adapter_type='mixture'):
|
436 |
+
super().__init__()
|
437 |
+
self.config = config
|
438 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
439 |
+
self.intermediate_size = (
|
440 |
+
config.moe_intermediate_size if intermediate_size is None else intermediate_size
|
441 |
+
)
|
442 |
+
self.n_fused=n_fused
|
443 |
+
self.gate_proj = FusedLinear(self.hidden_size, self.intermediate_size, bias=False, rank=rank, n_fused=n_fused, adapter_type=adapter_type)
|
444 |
+
self.up_proj = FusedLinear(self.hidden_size, self.intermediate_size, bias=False, rank=rank, n_fused=n_fused, adapter_type=adapter_type)
|
445 |
+
self.down_proj = FusedLinear(self.intermediate_size, self.hidden_size, bias=False, rank=rank, n_fused=n_fused, adapter_type=adapter_type)
|
446 |
+
self.mask_up_proj = torch.nn.Linear(self.n_fused, self.hidden_size, bias=False)
|
447 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
448 |
+
self.adapter_type=adapter_type
|
449 |
+
|
450 |
+
def forward(self, x, top_k_weights):
|
451 |
+
x = x + self.mask_up_proj(top_k_weights)
|
452 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x, top_k_weights)) * self.up_proj(x, top_k_weights), top_k_weights)
|
453 |
+
return down_proj
|
454 |
+
|
455 |
+
class MoEGate(nn.Module):
|
456 |
+
def __init__(self, config):
|
457 |
+
super().__init__()
|
458 |
+
self.config = config
|
459 |
+
self.top_k = config.num_experts_per_tok
|
460 |
+
self.n_routed_experts = config.n_routed_experts
|
461 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
462 |
+
self.scoring_func = config.scoring_func
|
463 |
+
self.alpha = config.aux_loss_alpha
|
464 |
+
self.seq_aux = config.seq_aux
|
465 |
+
self.topk_method = config.topk_method
|
466 |
+
self.n_group = config.n_group
|
467 |
+
self.topk_group = config.topk_group
|
468 |
+
|
469 |
+
# topk selection algorithm
|
470 |
+
self.norm_topk_prob = config.norm_topk_prob
|
471 |
+
self.gating_dim = config.hidden_size
|
472 |
+
self.weight = nn.Parameter(
|
473 |
+
torch.empty((self.n_routed_experts, self.gating_dim))
|
474 |
+
)
|
475 |
+
self.reset_parameters()
|
476 |
+
|
477 |
+
def reset_parameters(self) -> None:
|
478 |
+
import torch.nn.init as init
|
479 |
+
|
480 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
481 |
+
|
482 |
+
def forward(self, hidden_states):
|
483 |
+
bsz, seq_len, h = hidden_states.shape
|
484 |
+
### compute gating score
|
485 |
+
hidden_states = hidden_states.view(-1, h)
|
486 |
+
logits = F.linear(
|
487 |
+
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
488 |
+
)
|
489 |
+
if self.scoring_func == "softmax":
|
490 |
+
scores = logits.softmax(dim=-1, dtype=torch.float32)
|
491 |
+
else:
|
492 |
+
raise NotImplementedError(
|
493 |
+
f"insupportable scoring function for MoE gating: {self.scoring_func}"
|
494 |
+
)
|
495 |
+
|
496 |
+
### select top-k experts
|
497 |
+
if self.topk_method == "greedy":
|
498 |
+
topk_weight, topk_idx = torch.topk(
|
499 |
+
scores, k=self.top_k, dim=-1, sorted=False
|
500 |
+
)
|
501 |
+
elif self.topk_method == "group_limited_greedy":
|
502 |
+
group_scores = (
|
503 |
+
scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
|
504 |
+
) # [n, n_group]
|
505 |
+
group_idx = torch.topk(
|
506 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
507 |
+
)[
|
508 |
+
1
|
509 |
+
] # [n, top_k_group]
|
510 |
+
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
511 |
+
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
512 |
+
score_mask = (
|
513 |
+
group_mask.unsqueeze(-1)
|
514 |
+
.expand(
|
515 |
+
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
516 |
+
)
|
517 |
+
.reshape(bsz * seq_len, -1)
|
518 |
+
) # [n, e]
|
519 |
+
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
520 |
+
topk_weight, topk_idx = torch.topk(
|
521 |
+
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
522 |
+
)
|
523 |
+
|
524 |
+
### norm gate to sum 1
|
525 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
526 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
527 |
+
topk_weight = topk_weight / denominator
|
528 |
+
else:
|
529 |
+
topk_weight = topk_weight * self.routed_scaling_factor
|
530 |
+
### expert-level computation auxiliary loss
|
531 |
+
if self.training and self.alpha > 0.0:
|
532 |
+
scores_for_aux = scores
|
533 |
+
aux_topk = self.top_k
|
534 |
+
# always compute aux loss based on the naive greedy topk method
|
535 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
536 |
+
if self.seq_aux:
|
537 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
538 |
+
ce = torch.zeros(
|
539 |
+
bsz, self.n_routed_experts, device=hidden_states.device
|
540 |
+
)
|
541 |
+
ce.scatter_add_(
|
542 |
+
1,
|
543 |
+
topk_idx_for_aux_loss,
|
544 |
+
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
|
545 |
+
).div_(seq_len * aux_topk / self.n_routed_experts)
|
546 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
|
547 |
+
dim=1
|
548 |
+
).mean() * self.alpha
|
549 |
+
else:
|
550 |
+
mask_ce = F.one_hot(
|
551 |
+
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
|
552 |
+
)
|
553 |
+
ce = mask_ce.float().mean(0)
|
554 |
+
Pi = scores_for_aux.mean(0)
|
555 |
+
fi = ce * self.n_routed_experts
|
556 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
557 |
+
else:
|
558 |
+
aux_loss = None
|
559 |
+
return topk_idx, topk_weight, aux_loss
|
560 |
+
|
561 |
+
class AddAuxiliaryLoss(torch.autograd.Function):
|
562 |
+
"""
|
563 |
+
The trick function of adding auxiliary (aux) loss,
|
564 |
+
which includes the gradient of the aux loss during backpropagation.
|
565 |
+
"""
|
566 |
+
|
567 |
+
@staticmethod
|
568 |
+
def forward(ctx, x, loss):
|
569 |
+
assert loss.numel() == 1
|
570 |
+
ctx.dtype = loss.dtype
|
571 |
+
ctx.required_aux_loss = loss.requires_grad
|
572 |
+
return x
|
573 |
+
|
574 |
+
@staticmethod
|
575 |
+
def backward(ctx, grad_output):
|
576 |
+
grad_loss = None
|
577 |
+
if ctx.required_aux_loss:
|
578 |
+
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
579 |
+
return grad_output, grad_loss
|
580 |
+
|
581 |
+
class DeepseekV2MoE(nn.Module):
|
582 |
+
"""
|
583 |
+
A mixed expert module containing shared experts.
|
584 |
+
"""
|
585 |
+
|
586 |
+
def __init__(self, config):
|
587 |
+
super().__init__()
|
588 |
+
self.config = config
|
589 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
590 |
+
|
591 |
+
if hasattr(config, "ep_size") and config.ep_size > 1:
|
592 |
+
assert config.ep_size == dist.get_world_size()
|
593 |
+
self.ep_size = config.ep_size
|
594 |
+
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
595 |
+
self.ep_rank = dist.get_rank()
|
596 |
+
self.experts = nn.ModuleList(
|
597 |
+
[
|
598 |
+
(
|
599 |
+
DeepseekV2MLP(
|
600 |
+
config, intermediate_size=config.moe_intermediate_size
|
601 |
+
)
|
602 |
+
if i >= self.ep_rank * self.experts_per_rank
|
603 |
+
and i < (self.ep_rank + 1) * self.experts_per_rank
|
604 |
+
else None
|
605 |
+
)
|
606 |
+
for i in range(config.n_routed_experts)
|
607 |
+
]
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
self.ep_size = 1
|
611 |
+
self.experts_per_rank = config.n_routed_experts
|
612 |
+
self.ep_rank = 0
|
613 |
+
self.experts = nn.ModuleList(
|
614 |
+
[
|
615 |
+
DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)
|
616 |
+
for i in range(config.n_routed_experts)
|
617 |
+
]
|
618 |
+
)
|
619 |
+
self.gate = MoEGate(config)
|
620 |
+
if config.n_shared_experts is not None:
|
621 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
622 |
+
self.shared_experts = DeepseekV2MLP(
|
623 |
+
config=config, intermediate_size=intermediate_size
|
624 |
+
)
|
625 |
+
|
626 |
+
def forward(self, hidden_states):
|
627 |
+
identity = hidden_states
|
628 |
+
orig_shape = hidden_states.shape
|
629 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
630 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
631 |
+
flat_topk_idx = topk_idx.view(-1)
|
632 |
+
if self.training:
|
633 |
+
hidden_states = hidden_states.repeat_interleave(
|
634 |
+
self.num_experts_per_tok, dim=0
|
635 |
+
)
|
636 |
+
|
637 |
+
y = torch.empty_like(hidden_states)
|
638 |
+
for i, expert in enumerate(self.experts):
|
639 |
+
expert_output=expert(hidden_states[flat_topk_idx == i])
|
640 |
+
try:
|
641 |
+
y[flat_topk_idx == i] = expert_output.to(y.dtype)
|
642 |
+
except:
|
643 |
+
pass
|
644 |
+
|
645 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
646 |
+
y = y.view(*orig_shape)
|
647 |
+
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
648 |
+
else:
|
649 |
+
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
650 |
+
if self.config.n_shared_experts is not None:
|
651 |
+
y = y + self.shared_experts(identity)
|
652 |
+
return y
|
653 |
+
|
654 |
+
@torch.no_grad()
|
655 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
656 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
657 |
+
cnts.scatter_(1, topk_ids, 1)
|
658 |
+
tokens_per_expert = cnts.sum(dim=0)
|
659 |
+
idxs = topk_ids.view(-1).argsort()
|
660 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
661 |
+
sorted_tokens_shape = sorted_tokens.shape
|
662 |
+
if self.ep_size > 1:
|
663 |
+
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
664 |
+
tokens_per_expert_group = tokens_per_expert.new_empty(
|
665 |
+
tokens_per_expert.shape[0]
|
666 |
+
)
|
667 |
+
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
668 |
+
output_splits = (
|
669 |
+
tokens_per_expert_group.view(self.ep_size, -1)
|
670 |
+
.sum(1)
|
671 |
+
.cpu()
|
672 |
+
.numpy()
|
673 |
+
.tolist()
|
674 |
+
)
|
675 |
+
gathered_tokens = sorted_tokens.new_empty(
|
676 |
+
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
677 |
+
)
|
678 |
+
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
679 |
+
dist.all_to_all(
|
680 |
+
list(gathered_tokens.split(output_splits)),
|
681 |
+
list(sorted_tokens.split(input_split_sizes)),
|
682 |
+
)
|
683 |
+
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
684 |
+
self.ep_size, self.experts_per_rank
|
685 |
+
).sum(dim=0)
|
686 |
+
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
687 |
+
s = 0
|
688 |
+
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
689 |
+
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
690 |
+
s += k
|
691 |
+
gatherd_idxs = gatherd_idxs.argsort()
|
692 |
+
sorted_tokens = gathered_tokens[gatherd_idxs]
|
693 |
+
tokens_per_expert = tokens_per_expert_post_gather
|
694 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
695 |
+
|
696 |
+
outputs = []
|
697 |
+
start_idx = 0
|
698 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
699 |
+
end_idx = start_idx + num_tokens
|
700 |
+
if num_tokens == 0:
|
701 |
+
continue
|
702 |
+
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
|
703 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
704 |
+
expert_out = expert(tokens_for_this_expert)
|
705 |
+
outputs.append(expert_out)
|
706 |
+
start_idx = end_idx
|
707 |
+
|
708 |
+
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
709 |
+
if self.ep_size > 1:
|
710 |
+
new_x = torch.empty_like(outs)
|
711 |
+
new_x[gatherd_idxs] = outs
|
712 |
+
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
713 |
+
dist.all_to_all(
|
714 |
+
list(gathered_tokens.split(input_split_sizes)),
|
715 |
+
list(new_x.split(output_splits)),
|
716 |
+
)
|
717 |
+
outs = gathered_tokens
|
718 |
+
|
719 |
+
new_x = torch.empty_like(outs)
|
720 |
+
new_x[idxs] = outs
|
721 |
+
final_out = (
|
722 |
+
new_x.view(*topk_ids.shape, -1)
|
723 |
+
.type(topk_weight.dtype)
|
724 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
725 |
+
.sum(dim=1)
|
726 |
+
.type(new_x.dtype)
|
727 |
+
)
|
728 |
+
return final_out
|
729 |
+
|
730 |
+
class FusedMOE(torch.nn.Module):
|
731 |
+
def __init__(self, config):
|
732 |
+
super().__init__()
|
733 |
+
self.config = config
|
734 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
735 |
+
|
736 |
+
if hasattr(config, "ep_size") and config.ep_size > 1:
|
737 |
+
assert config.ep_size == dist.get_world_size()
|
738 |
+
self.ep_size = config.ep_size
|
739 |
+
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
740 |
+
self.ep_rank = dist.get_rank()
|
741 |
+
self.experts = nn.ModuleList(
|
742 |
+
[
|
743 |
+
(
|
744 |
+
FusedMLP(
|
745 |
+
config,
|
746 |
+
intermediate_size=config.moe_intermediate_size,
|
747 |
+
n_fused=config.n_routed_experts // config.n_fused_experts,
|
748 |
+
rank=config.fused_expert_dora_rank,
|
749 |
+
adapter_type=config.fused_expert_method
|
750 |
+
)
|
751 |
+
if i >= self.ep_rank * self.experts_per_rank
|
752 |
+
and i < (self.ep_rank + 1) * self.experts_per_rank
|
753 |
+
else None
|
754 |
+
)
|
755 |
+
for i in range(config.n_fused_experts)
|
756 |
+
]
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
self.ep_size = 1
|
760 |
+
self.experts_per_rank = config.n_routed_experts
|
761 |
+
self.ep_rank = 0
|
762 |
+
self.experts = nn.ModuleList(
|
763 |
+
[
|
764 |
+
FusedMLP(
|
765 |
+
config,
|
766 |
+
intermediate_size=config.moe_intermediate_size,
|
767 |
+
n_fused=config.n_routed_experts // config.n_fused_experts,
|
768 |
+
rank=config.fused_expert_dora_rank,
|
769 |
+
adapter_type=config.fused_expert_method
|
770 |
+
)
|
771 |
+
for i in range(config.n_fused_experts)
|
772 |
+
]
|
773 |
+
)
|
774 |
+
self.gate = MoEGate(config)
|
775 |
+
if config.n_shared_experts is not None:
|
776 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
777 |
+
self.shared_experts = DeepseekV2MLP(
|
778 |
+
config=config, intermediate_size=intermediate_size
|
779 |
+
)
|
780 |
+
|
781 |
+
# Register inv_mapping_dict as a buffer
|
782 |
+
self.register_buffer('inv_mapping_dict', torch.zeros(config.n_fused_experts, config.n_routed_experts // config.n_fused_experts), persistent=True)
|
783 |
+
|
784 |
+
|
785 |
+
def set_ready(self):
|
786 |
+
self.experts.to_empty(device="meta")
|
787 |
+
del self.experts
|
788 |
+
self.ready = True
|
789 |
+
|
790 |
+
def forward(self, hidden_states):
|
791 |
+
identity, orig_shape, hidden_states, topk_idx, topk_weight, aux_loss = self.forward_gate(hidden_states)
|
792 |
+
|
793 |
+
y = torch.zeros_like(hidden_states, device=hidden_states.device, dtype=hidden_states.dtype)
|
794 |
+
|
795 |
+
for idx in range(self.inv_mapping_dict.size(0)):
|
796 |
+
y += self.forward_fused_expert(idx, hidden_states, topk_idx, topk_weight)
|
797 |
+
|
798 |
+
y = y.view(*orig_shape)
|
799 |
+
|
800 |
+
if self.config.n_shared_experts is not None:
|
801 |
+
y = y + self.shared_experts(identity)
|
802 |
+
return y
|
803 |
+
|
804 |
+
def forward_gate(self, hidden_states):
|
805 |
+
identity = hidden_states
|
806 |
+
orig_shape = hidden_states.shape
|
807 |
+
|
808 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
809 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
810 |
+
|
811 |
+
return identity, orig_shape, hidden_states, topk_idx, topk_weight, aux_loss
|
812 |
+
|
813 |
+
def forward_fused_expert(self, idx, hidden_states, topk_idx, topk_weight):
|
814 |
+
indexes = self.inv_mapping_dict[idx].tolist()
|
815 |
+
|
816 |
+
flat_topk_weight = torch.zeros((hidden_states.shape[0], len(indexes)), device=hidden_states.device, dtype=hidden_states.dtype)
|
817 |
+
|
818 |
+
for i, index in enumerate(indexes):
|
819 |
+
flat_topk_weight[:, i] = torch.sum(topk_weight * (topk_idx == index), axis=-1)
|
820 |
+
|
821 |
+
scalar = torch.sum(flat_topk_weight, axis=-1, keepdim=True) # keeping the total weight of the experts
|
822 |
+
|
823 |
+
flat_topk_weight[flat_topk_weight == 0] = -1e9
|
824 |
+
flat_topk_weight = torch.softmax(flat_topk_weight, dim=-1)
|
825 |
+
|
826 |
+
output = torch.zeros_like(hidden_states, device=hidden_states.device, dtype=hidden_states.dtype)
|
827 |
+
|
828 |
+
output[scalar.squeeze() != 0] = self.experts[idx](hidden_states[scalar.squeeze() != 0], flat_topk_weight[scalar.squeeze() != 0]) # Process only if at least one weight is required, should be much faster
|
829 |
+
|
830 |
+
return scalar * output # Weighting is already taken into account by how the Fused is trained
|
831 |
+
|
832 |
+
|
833 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
834 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
835 |
+
"""
|
836 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
837 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
838 |
+
"""
|
839 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
840 |
+
if n_rep == 1:
|
841 |
+
return hidden_states
|
842 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
843 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
844 |
+
)
|
845 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
846 |
+
|
847 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
|
848 |
+
class DeepseekV2Attention(nn.Module):
|
849 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
850 |
+
|
851 |
+
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
|
852 |
+
super().__init__()
|
853 |
+
self.config = config
|
854 |
+
self.layer_idx = layer_idx
|
855 |
+
if layer_idx is None:
|
856 |
+
logger.warning_once(
|
857 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
858 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
859 |
+
"when creating this class."
|
860 |
+
)
|
861 |
+
|
862 |
+
self.attention_dropout = config.attention_dropout
|
863 |
+
self.hidden_size = config.hidden_size
|
864 |
+
self.num_heads = config.num_attention_heads
|
865 |
+
|
866 |
+
self.max_position_embeddings = config.max_position_embeddings
|
867 |
+
self.rope_theta = config.rope_theta
|
868 |
+
self.q_lora_rank = config.q_lora_rank
|
869 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
870 |
+
self.kv_lora_rank = config.kv_lora_rank
|
871 |
+
self.v_head_dim = config.v_head_dim
|
872 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
873 |
+
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
874 |
+
|
875 |
+
self.is_causal = True
|
876 |
+
|
877 |
+
if self.q_lora_rank is None:
|
878 |
+
self.q_proj = nn.Linear(
|
879 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
880 |
+
)
|
881 |
+
else:
|
882 |
+
self.q_a_proj = nn.Linear(
|
883 |
+
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
884 |
+
)
|
885 |
+
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
|
886 |
+
self.q_b_proj = nn.Linear(
|
887 |
+
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
888 |
+
)
|
889 |
+
|
890 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
891 |
+
self.hidden_size,
|
892 |
+
config.kv_lora_rank + config.qk_rope_head_dim,
|
893 |
+
bias=config.attention_bias,
|
894 |
+
)
|
895 |
+
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
|
896 |
+
self.kv_b_proj = nn.Linear(
|
897 |
+
config.kv_lora_rank,
|
898 |
+
self.num_heads
|
899 |
+
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
900 |
+
bias=False,
|
901 |
+
)
|
902 |
+
|
903 |
+
self.o_proj = nn.Linear(
|
904 |
+
self.num_heads * self.v_head_dim,
|
905 |
+
self.hidden_size,
|
906 |
+
bias=config.attention_bias,
|
907 |
+
)
|
908 |
+
self._init_rope()
|
909 |
+
|
910 |
+
self.softmax_scale = self.q_head_dim ** (-0.5)
|
911 |
+
if self.config.rope_scaling is not None:
|
912 |
+
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
913 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
914 |
+
if mscale_all_dim:
|
915 |
+
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
916 |
+
self.softmax_scale = self.softmax_scale * mscale * mscale
|
917 |
+
|
918 |
+
def _init_rope(self):
|
919 |
+
if self.config.rope_scaling is None:
|
920 |
+
self.rotary_emb = DeepseekV2RotaryEmbedding(
|
921 |
+
self.qk_rope_head_dim,
|
922 |
+
max_position_embeddings=self.max_position_embeddings,
|
923 |
+
base=self.rope_theta,
|
924 |
+
)
|
925 |
+
else:
|
926 |
+
scaling_type = self.config.rope_scaling["type"]
|
927 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
928 |
+
if scaling_type == "linear":
|
929 |
+
self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
|
930 |
+
self.qk_rope_head_dim,
|
931 |
+
max_position_embeddings=self.max_position_embeddings,
|
932 |
+
scaling_factor=scaling_factor,
|
933 |
+
base=self.rope_theta,
|
934 |
+
)
|
935 |
+
elif scaling_type == "dynamic":
|
936 |
+
self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
|
937 |
+
self.qk_rope_head_dim,
|
938 |
+
max_position_embeddings=self.max_position_embeddings,
|
939 |
+
scaling_factor=scaling_factor,
|
940 |
+
base=self.rope_theta,
|
941 |
+
)
|
942 |
+
elif scaling_type == "yarn":
|
943 |
+
kwargs = {
|
944 |
+
key: self.config.rope_scaling[key]
|
945 |
+
for key in [
|
946 |
+
"original_max_position_embeddings",
|
947 |
+
"beta_fast",
|
948 |
+
"beta_slow",
|
949 |
+
"mscale",
|
950 |
+
"mscale_all_dim",
|
951 |
+
]
|
952 |
+
if key in self.config.rope_scaling
|
953 |
+
}
|
954 |
+
self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
|
955 |
+
self.qk_rope_head_dim,
|
956 |
+
max_position_embeddings=self.max_position_embeddings,
|
957 |
+
scaling_factor=scaling_factor,
|
958 |
+
base=self.rope_theta,
|
959 |
+
**kwargs,
|
960 |
+
)
|
961 |
+
else:
|
962 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
963 |
+
|
964 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
965 |
+
return (
|
966 |
+
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
967 |
+
.transpose(1, 2)
|
968 |
+
.contiguous()
|
969 |
+
)
|
970 |
+
|
971 |
+
def forward(
|
972 |
+
self,
|
973 |
+
hidden_states: torch.Tensor,
|
974 |
+
attention_mask: Optional[torch.Tensor] = None,
|
975 |
+
position_ids: Optional[torch.LongTensor] = None,
|
976 |
+
past_key_value: Optional[Cache] = None,
|
977 |
+
output_attentions: bool = False,
|
978 |
+
use_cache: bool = False,
|
979 |
+
**kwargs,
|
980 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
981 |
+
if "padding_mask" in kwargs:
|
982 |
+
warnings.warn(
|
983 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
984 |
+
)
|
985 |
+
bsz, q_len, _ = hidden_states.size()
|
986 |
+
|
987 |
+
if self.q_lora_rank is None:
|
988 |
+
q = self.q_proj(hidden_states)
|
989 |
+
else:
|
990 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
991 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
992 |
+
q_nope, q_pe = torch.split(
|
993 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
994 |
+
)
|
995 |
+
|
996 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
997 |
+
compressed_kv, k_pe = torch.split(
|
998 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
999 |
+
)
|
1000 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
1001 |
+
kv = (
|
1002 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
1003 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
1004 |
+
.transpose(1, 2)
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
k_nope, value_states = torch.split(
|
1008 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
1009 |
+
)
|
1010 |
+
kv_seq_len = value_states.shape[-2]
|
1011 |
+
if past_key_value is not None:
|
1012 |
+
if self.layer_idx is None:
|
1013 |
+
raise ValueError(
|
1014 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
1015 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
1016 |
+
"with a layer index."
|
1017 |
+
)
|
1018 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
1019 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
1020 |
+
|
1021 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
1022 |
+
|
1023 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1024 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
1025 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
1026 |
+
|
1027 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1028 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
1029 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
1030 |
+
if past_key_value is not None:
|
1031 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1032 |
+
key_states, value_states = past_key_value.update(
|
1033 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
attn_weights = (
|
1037 |
+
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
1041 |
+
raise ValueError(
|
1042 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
1043 |
+
f" {attn_weights.size()}"
|
1044 |
+
)
|
1045 |
+
assert attention_mask is not None
|
1046 |
+
if attention_mask is not None:
|
1047 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
1048 |
+
raise ValueError(
|
1049 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
1050 |
+
)
|
1051 |
+
attn_weights = attn_weights + attention_mask
|
1052 |
+
|
1053 |
+
# upcast attention to fp32
|
1054 |
+
attn_weights = nn.functional.softmax(
|
1055 |
+
attn_weights, dim=-1, dtype=torch.float32
|
1056 |
+
).to(query_states.dtype)
|
1057 |
+
attn_weights = nn.functional.dropout(
|
1058 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
1059 |
+
)
|
1060 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
1061 |
+
|
1062 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
|
1063 |
+
raise ValueError(
|
1064 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
|
1065 |
+
f" {attn_output.size()}"
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
1069 |
+
|
1070 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
1071 |
+
|
1072 |
+
attn_output = self.o_proj(attn_output)
|
1073 |
+
|
1074 |
+
if not output_attentions:
|
1075 |
+
attn_weights = None
|
1076 |
+
|
1077 |
+
return attn_output, attn_weights, past_key_value
|
1078 |
+
|
1079 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
|
1080 |
+
class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
1081 |
+
"""
|
1082 |
+
DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
|
1083 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
1084 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
1085 |
+
"""
|
1086 |
+
|
1087 |
+
def __init__(self, *args, **kwargs):
|
1088 |
+
super().__init__(*args, **kwargs)
|
1089 |
+
|
1090 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
1091 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
1092 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
1093 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
1094 |
+
|
1095 |
+
def forward(
|
1096 |
+
self,
|
1097 |
+
hidden_states: torch.Tensor,
|
1098 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1099 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1100 |
+
past_key_value: Optional[Cache] = None,
|
1101 |
+
output_attentions: bool = False,
|
1102 |
+
use_cache: bool = False,
|
1103 |
+
**kwargs,
|
1104 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
1105 |
+
# DeepseekV2FlashAttention2 attention does not support output_attentions
|
1106 |
+
if "padding_mask" in kwargs:
|
1107 |
+
warnings.warn(
|
1108 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
# overwrite attention_mask with padding_mask
|
1112 |
+
attention_mask = kwargs.pop("padding_mask")
|
1113 |
+
|
1114 |
+
output_attentions = False
|
1115 |
+
|
1116 |
+
bsz, q_len, _ = hidden_states.size()
|
1117 |
+
|
1118 |
+
if self.q_lora_rank is None:
|
1119 |
+
q = self.q_proj(hidden_states)
|
1120 |
+
else:
|
1121 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
1122 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
1123 |
+
q_nope, q_pe = torch.split(
|
1124 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
# Flash attention requires the input to have the shape
|
1128 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
1129 |
+
# therefore we just need to keep the original shape
|
1130 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
1131 |
+
compressed_kv, k_pe = torch.split(
|
1132 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
1133 |
+
)
|
1134 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
1135 |
+
kv = (
|
1136 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
1137 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
1138 |
+
.transpose(1, 2)
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
k_nope, value_states = torch.split(
|
1142 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
1143 |
+
)
|
1144 |
+
kv_seq_len = value_states.shape[-2]
|
1145 |
+
|
1146 |
+
kv_seq_len = value_states.shape[-2]
|
1147 |
+
if past_key_value is not None:
|
1148 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
1149 |
+
|
1150 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
1151 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
1152 |
+
|
1153 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1154 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
1155 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
1156 |
+
|
1157 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
1158 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
1159 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
1160 |
+
|
1161 |
+
if self.q_head_dim != self.v_head_dim:
|
1162 |
+
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
1163 |
+
|
1164 |
+
if past_key_value is not None:
|
1165 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1166 |
+
key_states, value_states = past_key_value.update(
|
1167 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
1171 |
+
# to be able to avoid many of these transpose/reshape/view.
|
1172 |
+
query_states = query_states.transpose(1, 2)
|
1173 |
+
key_states = key_states.transpose(1, 2)
|
1174 |
+
value_states = value_states.transpose(1, 2)
|
1175 |
+
|
1176 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
1177 |
+
|
1178 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
1179 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
1180 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
1181 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
1182 |
+
# in fp32. (DeepseekV2RMSNorm handles it correctly)
|
1183 |
+
|
1184 |
+
input_dtype = query_states.dtype
|
1185 |
+
if input_dtype == torch.float32:
|
1186 |
+
# Handle the case where the model is quantized
|
1187 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
1188 |
+
target_dtype = self.config._pre_quantization_dtype
|
1189 |
+
elif torch.is_autocast_enabled():
|
1190 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
1191 |
+
else:
|
1192 |
+
target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype
|
1193 |
+
|
1194 |
+
logger.warning_once(
|
1195 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
1196 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
1197 |
+
f" {target_dtype}."
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
query_states = query_states.to(target_dtype)
|
1201 |
+
key_states = key_states.to(target_dtype)
|
1202 |
+
value_states = value_states.to(target_dtype)
|
1203 |
+
|
1204 |
+
attn_output = self._flash_attention_forward(
|
1205 |
+
query_states,
|
1206 |
+
key_states,
|
1207 |
+
value_states,
|
1208 |
+
attention_mask,
|
1209 |
+
q_len,
|
1210 |
+
dropout=dropout_rate,
|
1211 |
+
softmax_scale=self.softmax_scale,
|
1212 |
+
)
|
1213 |
+
if self.q_head_dim != self.v_head_dim:
|
1214 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
1215 |
+
|
1216 |
+
attn_output = attn_output.reshape(
|
1217 |
+
bsz, q_len, self.num_heads * self.v_head_dim
|
1218 |
+
).contiguous()
|
1219 |
+
attn_output = self.o_proj(attn_output)
|
1220 |
+
|
1221 |
+
if not output_attentions:
|
1222 |
+
attn_weights = None
|
1223 |
+
|
1224 |
+
return attn_output, attn_weights, past_key_value
|
1225 |
+
|
1226 |
+
def _flash_attention_forward(
|
1227 |
+
self,
|
1228 |
+
query_states,
|
1229 |
+
key_states,
|
1230 |
+
value_states,
|
1231 |
+
attention_mask,
|
1232 |
+
query_length,
|
1233 |
+
dropout=0.0,
|
1234 |
+
softmax_scale=None,
|
1235 |
+
):
|
1236 |
+
"""
|
1237 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
1238 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
1239 |
+
|
1240 |
+
Args:
|
1241 |
+
query_states (`torch.Tensor`):
|
1242 |
+
Input query states to be passed to Flash Attention API
|
1243 |
+
key_states (`torch.Tensor`):
|
1244 |
+
Input key states to be passed to Flash Attention API
|
1245 |
+
value_states (`torch.Tensor`):
|
1246 |
+
Input value states to be passed to Flash Attention API
|
1247 |
+
attention_mask (`torch.Tensor`):
|
1248 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
1249 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
1250 |
+
dropout (`int`, *optional*):
|
1251 |
+
Attention dropout
|
1252 |
+
softmax_scale (`float`, *optional*):
|
1253 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
1254 |
+
"""
|
1255 |
+
if not self._flash_attn_uses_top_left_mask:
|
1256 |
+
causal = self.is_causal
|
1257 |
+
else:
|
1258 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
|
1259 |
+
causal = self.is_causal and query_length != 1
|
1260 |
+
|
1261 |
+
# Contains at least one padding token in the sequence
|
1262 |
+
if attention_mask is not None:
|
1263 |
+
batch_size = query_states.shape[0]
|
1264 |
+
(
|
1265 |
+
query_states,
|
1266 |
+
key_states,
|
1267 |
+
value_states,
|
1268 |
+
indices_q,
|
1269 |
+
cu_seq_lens,
|
1270 |
+
max_seq_lens,
|
1271 |
+
) = self._upad_input(
|
1272 |
+
query_states, key_states, value_states, attention_mask, query_length
|
1273 |
+
)
|
1274 |
+
|
1275 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
1276 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
1277 |
+
|
1278 |
+
attn_output_unpad = flash_attn_varlen_func(
|
1279 |
+
query_states,
|
1280 |
+
key_states,
|
1281 |
+
value_states,
|
1282 |
+
cu_seqlens_q=cu_seqlens_q,
|
1283 |
+
cu_seqlens_k=cu_seqlens_k,
|
1284 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1285 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1286 |
+
dropout_p=dropout,
|
1287 |
+
softmax_scale=softmax_scale,
|
1288 |
+
causal=causal,
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
attn_output = pad_input(
|
1292 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
1293 |
+
)
|
1294 |
+
else:
|
1295 |
+
attn_output = flash_attn_func(
|
1296 |
+
query_states,
|
1297 |
+
key_states,
|
1298 |
+
value_states,
|
1299 |
+
dropout,
|
1300 |
+
softmax_scale=softmax_scale,
|
1301 |
+
causal=causal,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
return attn_output
|
1305 |
+
|
1306 |
+
def _upad_input(
|
1307 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1308 |
+
):
|
1309 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1310 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1311 |
+
|
1312 |
+
key_layer = index_first_axis(
|
1313 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1314 |
+
indices_k,
|
1315 |
+
)
|
1316 |
+
value_layer = index_first_axis(
|
1317 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1318 |
+
indices_k,
|
1319 |
+
)
|
1320 |
+
if query_length == kv_seq_len:
|
1321 |
+
query_layer = index_first_axis(
|
1322 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
1323 |
+
indices_k,
|
1324 |
+
)
|
1325 |
+
cu_seqlens_q = cu_seqlens_k
|
1326 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1327 |
+
indices_q = indices_k
|
1328 |
+
elif query_length == 1:
|
1329 |
+
max_seqlen_in_batch_q = 1
|
1330 |
+
cu_seqlens_q = torch.arange(
|
1331 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
1332 |
+
) # There is a memcpy here, that is very bad.
|
1333 |
+
indices_q = cu_seqlens_q[:-1]
|
1334 |
+
query_layer = query_layer.squeeze(1)
|
1335 |
+
else:
|
1336 |
+
# The -q_len: slice assumes left padding.
|
1337 |
+
attention_mask = attention_mask[:, -query_length:]
|
1338 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1339 |
+
query_layer, attention_mask
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
return (
|
1343 |
+
query_layer,
|
1344 |
+
key_layer,
|
1345 |
+
value_layer,
|
1346 |
+
indices_q,
|
1347 |
+
(cu_seqlens_q, cu_seqlens_k),
|
1348 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
|
1352 |
+
ATTENTION_CLASSES = {
|
1353 |
+
"eager": DeepseekV2Attention,
|
1354 |
+
"flash_attention_2": DeepseekV2FlashAttention2,
|
1355 |
+
}
|
1356 |
+
|
1357 |
+
|
1358 |
+
class DeepseekV2DecoderLayer(nn.Module):
|
1359 |
+
def __init__(self, config: DeepseekV2Config, layer_idx: int):
|
1360 |
+
super().__init__()
|
1361 |
+
self.hidden_size = config.hidden_size
|
1362 |
+
|
1363 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
|
1364 |
+
config=config, layer_idx=layer_idx
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
self.mlp = (
|
1368 |
+
FusedMOE(config)
|
1369 |
+
if (
|
1370 |
+
config.n_routed_experts is not None
|
1371 |
+
and layer_idx >= config.first_k_dense_replace
|
1372 |
+
and layer_idx % config.moe_layer_freq == 0
|
1373 |
+
)
|
1374 |
+
else DeepseekV2MLP(config)
|
1375 |
+
)
|
1376 |
+
self.input_layernorm = DeepseekV2RMSNorm(
|
1377 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1378 |
+
)
|
1379 |
+
self.post_attention_layernorm = DeepseekV2RMSNorm(
|
1380 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
def forward(
|
1384 |
+
self,
|
1385 |
+
hidden_states: torch.Tensor,
|
1386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1387 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1388 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1389 |
+
output_attentions: Optional[bool] = False,
|
1390 |
+
use_cache: Optional[bool] = False,
|
1391 |
+
**kwargs,
|
1392 |
+
) -> Tuple[
|
1393 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
1394 |
+
]:
|
1395 |
+
"""
|
1396 |
+
Args:
|
1397 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1398 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
1399 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
1400 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
1401 |
+
output_attentions (`bool`, *optional*):
|
1402 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1403 |
+
returned tensors for more detail.
|
1404 |
+
use_cache (`bool`, *optional*):
|
1405 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1406 |
+
(see `past_key_values`).
|
1407 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1408 |
+
"""
|
1409 |
+
if "padding_mask" in kwargs:
|
1410 |
+
warnings.warn(
|
1411 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1412 |
+
)
|
1413 |
+
residual = hidden_states
|
1414 |
+
|
1415 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1416 |
+
|
1417 |
+
# Self Attention
|
1418 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1419 |
+
hidden_states=hidden_states,
|
1420 |
+
attention_mask=attention_mask,
|
1421 |
+
position_ids=position_ids,
|
1422 |
+
past_key_value=past_key_value,
|
1423 |
+
output_attentions=output_attentions,
|
1424 |
+
use_cache=use_cache,
|
1425 |
+
**kwargs,
|
1426 |
+
)
|
1427 |
+
hidden_states = residual + hidden_states
|
1428 |
+
|
1429 |
+
# Fully Connected
|
1430 |
+
residual = hidden_states
|
1431 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1432 |
+
hidden_states = self.mlp(hidden_states)
|
1433 |
+
hidden_states = residual + hidden_states
|
1434 |
+
|
1435 |
+
outputs = (hidden_states,)
|
1436 |
+
|
1437 |
+
if output_attentions:
|
1438 |
+
outputs += (self_attn_weights,)
|
1439 |
+
|
1440 |
+
if use_cache:
|
1441 |
+
outputs += (present_key_value,)
|
1442 |
+
|
1443 |
+
return outputs
|
1444 |
+
|
1445 |
+
|
1446 |
+
DeepseekV2_START_DOCSTRING = r"""
|
1447 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1448 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1449 |
+
etc.)
|
1450 |
+
|
1451 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1452 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1453 |
+
and behavior.
|
1454 |
+
|
1455 |
+
Parameters:
|
1456 |
+
config ([`DeepseekV2Config`]):
|
1457 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1458 |
+
load the weights associated with the model, only the configuration. Check out the
|
1459 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1460 |
+
"""
|
1461 |
+
|
1462 |
+
|
1463 |
+
@add_start_docstrings(
|
1464 |
+
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
1465 |
+
DeepseekV2_START_DOCSTRING,
|
1466 |
+
)
|
1467 |
+
class DeepseekV2PreTrainedModel(PreTrainedModel):
|
1468 |
+
config_class = DeepseekV2Config
|
1469 |
+
base_model_prefix = "model"
|
1470 |
+
supports_gradient_checkpointing = True
|
1471 |
+
_no_split_modules = ["DeepseekV2DecoderLayer"]
|
1472 |
+
_skip_keys_device_placement = "past_key_values"
|
1473 |
+
_supports_flash_attn_2 = True
|
1474 |
+
_supports_cache_class = True
|
1475 |
+
|
1476 |
+
def _init_weights(self, module):
|
1477 |
+
std = self.config.initializer_range
|
1478 |
+
if isinstance(module, nn.Linear):
|
1479 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1480 |
+
if module.bias is not None:
|
1481 |
+
module.bias.data.zero_()
|
1482 |
+
elif isinstance(module, nn.Embedding):
|
1483 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1484 |
+
if module.padding_idx is not None:
|
1485 |
+
module.weight.data[module.padding_idx].zero_()
|
1486 |
+
|
1487 |
+
|
1488 |
+
DeepseekV2_INPUTS_DOCSTRING = r"""
|
1489 |
+
Args:
|
1490 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1491 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1492 |
+
it.
|
1493 |
+
|
1494 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1495 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1496 |
+
|
1497 |
+
[What are input IDs?](../glossary#input-ids)
|
1498 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1499 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1500 |
+
|
1501 |
+
- 1 for tokens that are **not masked**,
|
1502 |
+
- 0 for tokens that are **masked**.
|
1503 |
+
|
1504 |
+
[What are attention masks?](../glossary#attention-mask)
|
1505 |
+
|
1506 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1507 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1508 |
+
|
1509 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1510 |
+
`past_key_values`).
|
1511 |
+
|
1512 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1513 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1514 |
+
information on the default strategy.
|
1515 |
+
|
1516 |
+
- 1 indicates the head is **not masked**,
|
1517 |
+
- 0 indicates the head is **masked**.
|
1518 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1519 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1520 |
+
config.n_positions - 1]`.
|
1521 |
+
|
1522 |
+
[What are position IDs?](../glossary#position-ids)
|
1523 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1524 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1525 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1526 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1527 |
+
|
1528 |
+
Two formats are allowed:
|
1529 |
+
- a [`~cache_utils.Cache`] instance;
|
1530 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1531 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1532 |
+
cache format.
|
1533 |
+
|
1534 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1535 |
+
legacy cache format will be returned.
|
1536 |
+
|
1537 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1538 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1539 |
+
of shape `(batch_size, sequence_length)`.
|
1540 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1541 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1542 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1543 |
+
model's internal embedding lookup matrix.
|
1544 |
+
use_cache (`bool`, *optional*):
|
1545 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1546 |
+
`past_key_values`).
|
1547 |
+
output_attentions (`bool`, *optional*):
|
1548 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1549 |
+
tensors for more detail.
|
1550 |
+
output_hidden_states (`bool`, *optional*):
|
1551 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1552 |
+
more detail.
|
1553 |
+
return_dict (`bool`, *optional*):
|
1554 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1555 |
+
"""
|
1556 |
+
|
1557 |
+
|
1558 |
+
@add_start_docstrings(
|
1559 |
+
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
1560 |
+
DeepseekV2_START_DOCSTRING,
|
1561 |
+
)
|
1562 |
+
class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
1563 |
+
"""
|
1564 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
|
1565 |
+
|
1566 |
+
Args:
|
1567 |
+
config: DeepseekV2Config
|
1568 |
+
"""
|
1569 |
+
|
1570 |
+
def __init__(self, config: DeepseekV2Config):
|
1571 |
+
super().__init__(config)
|
1572 |
+
self.padding_idx = config.pad_token_id
|
1573 |
+
self.vocab_size = config.vocab_size
|
1574 |
+
|
1575 |
+
self.embed_tokens = nn.Embedding(
|
1576 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
1577 |
+
)
|
1578 |
+
self.layers = nn.ModuleList(
|
1579 |
+
[
|
1580 |
+
DeepseekV2DecoderLayer(config, layer_idx)
|
1581 |
+
for layer_idx in range(config.num_hidden_layers)
|
1582 |
+
]
|
1583 |
+
)
|
1584 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1585 |
+
self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1586 |
+
|
1587 |
+
self.gradient_checkpointing = False
|
1588 |
+
# Initialize weights and apply final processing
|
1589 |
+
self.post_init()
|
1590 |
+
|
1591 |
+
def get_input_embeddings(self):
|
1592 |
+
return self.embed_tokens
|
1593 |
+
|
1594 |
+
def set_input_embeddings(self, value):
|
1595 |
+
self.embed_tokens = value
|
1596 |
+
|
1597 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1598 |
+
def forward(
|
1599 |
+
self,
|
1600 |
+
input_ids: torch.LongTensor = None,
|
1601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1602 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1603 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1604 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1605 |
+
use_cache: Optional[bool] = None,
|
1606 |
+
output_attentions: Optional[bool] = None,
|
1607 |
+
output_hidden_states: Optional[bool] = None,
|
1608 |
+
return_dict: Optional[bool] = None,
|
1609 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1610 |
+
output_attentions = (
|
1611 |
+
output_attentions
|
1612 |
+
if output_attentions is not None
|
1613 |
+
else self.config.output_attentions
|
1614 |
+
)
|
1615 |
+
output_hidden_states = (
|
1616 |
+
output_hidden_states
|
1617 |
+
if output_hidden_states is not None
|
1618 |
+
else self.config.output_hidden_states
|
1619 |
+
)
|
1620 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1621 |
+
|
1622 |
+
return_dict = (
|
1623 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
# retrieve input_ids and inputs_embeds
|
1627 |
+
if input_ids is not None and inputs_embeds is not None:
|
1628 |
+
raise ValueError(
|
1629 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1630 |
+
)
|
1631 |
+
elif input_ids is not None:
|
1632 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1633 |
+
elif inputs_embeds is not None:
|
1634 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1635 |
+
else:
|
1636 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1637 |
+
|
1638 |
+
if self.gradient_checkpointing and self.training:
|
1639 |
+
if use_cache:
|
1640 |
+
logger.warning_once(
|
1641 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
1642 |
+
)
|
1643 |
+
use_cache = False
|
1644 |
+
|
1645 |
+
past_key_values_length = 0
|
1646 |
+
if use_cache:
|
1647 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1648 |
+
if use_legacy_cache:
|
1649 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1650 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1651 |
+
|
1652 |
+
if position_ids is None:
|
1653 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1654 |
+
position_ids = torch.arange(
|
1655 |
+
past_key_values_length,
|
1656 |
+
seq_length + past_key_values_length,
|
1657 |
+
dtype=torch.long,
|
1658 |
+
device=device,
|
1659 |
+
)
|
1660 |
+
position_ids = position_ids.unsqueeze(0)
|
1661 |
+
|
1662 |
+
if inputs_embeds is None:
|
1663 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1664 |
+
|
1665 |
+
if self._use_flash_attention_2:
|
1666 |
+
# 2d mask is passed through the layers
|
1667 |
+
attention_mask = (
|
1668 |
+
attention_mask
|
1669 |
+
if (attention_mask is not None and 0 in attention_mask)
|
1670 |
+
else None
|
1671 |
+
)
|
1672 |
+
else:
|
1673 |
+
# 4d mask is passed through the layers
|
1674 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1675 |
+
attention_mask,
|
1676 |
+
(batch_size, seq_length),
|
1677 |
+
inputs_embeds,
|
1678 |
+
past_key_values_length,
|
1679 |
+
)
|
1680 |
+
|
1681 |
+
# embed positions
|
1682 |
+
hidden_states = inputs_embeds
|
1683 |
+
|
1684 |
+
# decoder layers
|
1685 |
+
all_hidden_states = () if output_hidden_states else None
|
1686 |
+
all_self_attns = () if output_attentions else None
|
1687 |
+
next_decoder_cache = None
|
1688 |
+
|
1689 |
+
for decoder_layer in self.layers:
|
1690 |
+
if output_hidden_states:
|
1691 |
+
all_hidden_states += (hidden_states,)
|
1692 |
+
|
1693 |
+
if self.gradient_checkpointing and self.training:
|
1694 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1695 |
+
decoder_layer.__call__,
|
1696 |
+
hidden_states,
|
1697 |
+
attention_mask,
|
1698 |
+
position_ids,
|
1699 |
+
past_key_values,
|
1700 |
+
output_attentions,
|
1701 |
+
use_cache,
|
1702 |
+
)
|
1703 |
+
else:
|
1704 |
+
layer_outputs = decoder_layer(
|
1705 |
+
hidden_states,
|
1706 |
+
attention_mask=attention_mask,
|
1707 |
+
position_ids=position_ids,
|
1708 |
+
past_key_value=past_key_values,
|
1709 |
+
output_attentions=output_attentions,
|
1710 |
+
use_cache=use_cache,
|
1711 |
+
)
|
1712 |
+
|
1713 |
+
hidden_states = layer_outputs[0]
|
1714 |
+
|
1715 |
+
if use_cache:
|
1716 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1717 |
+
|
1718 |
+
if output_attentions:
|
1719 |
+
all_self_attns += (layer_outputs[1],)
|
1720 |
+
|
1721 |
+
hidden_states = self.norm(hidden_states)
|
1722 |
+
|
1723 |
+
# add hidden states from the last decoder layer
|
1724 |
+
if output_hidden_states:
|
1725 |
+
all_hidden_states += (hidden_states,)
|
1726 |
+
|
1727 |
+
next_cache = None
|
1728 |
+
if use_cache:
|
1729 |
+
next_cache = (
|
1730 |
+
next_decoder_cache.to_legacy_cache()
|
1731 |
+
if use_legacy_cache
|
1732 |
+
else next_decoder_cache
|
1733 |
+
)
|
1734 |
+
if not return_dict:
|
1735 |
+
return tuple(
|
1736 |
+
v
|
1737 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1738 |
+
if v is not None
|
1739 |
+
)
|
1740 |
+
return BaseModelOutputWithPast(
|
1741 |
+
last_hidden_state=hidden_states,
|
1742 |
+
past_key_values=next_cache,
|
1743 |
+
hidden_states=all_hidden_states,
|
1744 |
+
attentions=all_self_attns,
|
1745 |
+
)
|
1746 |
+
|
1747 |
+
|
1748 |
+
class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
1749 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1750 |
+
|
1751 |
+
def __init__(self, config):
|
1752 |
+
super().__init__(config)
|
1753 |
+
self.model = DeepseekV2Model(config)
|
1754 |
+
self.vocab_size = config.vocab_size
|
1755 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1756 |
+
|
1757 |
+
# Initialize weights and apply final processing
|
1758 |
+
self.post_init()
|
1759 |
+
|
1760 |
+
def get_input_embeddings(self):
|
1761 |
+
return self.model.embed_tokens
|
1762 |
+
|
1763 |
+
def set_input_embeddings(self, value):
|
1764 |
+
self.model.embed_tokens = value
|
1765 |
+
|
1766 |
+
def get_output_embeddings(self):
|
1767 |
+
return self.lm_head
|
1768 |
+
|
1769 |
+
def set_output_embeddings(self, new_embeddings):
|
1770 |
+
self.lm_head = new_embeddings
|
1771 |
+
|
1772 |
+
def set_decoder(self, decoder):
|
1773 |
+
self.model = decoder
|
1774 |
+
|
1775 |
+
def get_decoder(self):
|
1776 |
+
return self.model
|
1777 |
+
|
1778 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1779 |
+
@replace_return_docstrings(
|
1780 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1781 |
+
)
|
1782 |
+
def forward(
|
1783 |
+
self,
|
1784 |
+
input_ids: torch.LongTensor = None,
|
1785 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1786 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1787 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1788 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1789 |
+
labels: Optional[torch.LongTensor] = None,
|
1790 |
+
use_cache: Optional[bool] = None,
|
1791 |
+
output_attentions: Optional[bool] = None,
|
1792 |
+
output_hidden_states: Optional[bool] = None,
|
1793 |
+
return_dict: Optional[bool] = None,
|
1794 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1795 |
+
r"""
|
1796 |
+
Args:
|
1797 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1798 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
|
1799 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1800 |
+
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
|
1801 |
+
|
1802 |
+
Returns:
|
1803 |
+
|
1804 |
+
Example:
|
1805 |
+
|
1806 |
+
```python
|
1807 |
+
>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
|
1808 |
+
|
1809 |
+
>>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1810 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1811 |
+
|
1812 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1813 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1814 |
+
|
1815 |
+
>>> # Generate
|
1816 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1817 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1818 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1819 |
+
```"""
|
1820 |
+
output_attentions = (
|
1821 |
+
output_attentions
|
1822 |
+
if output_attentions is not None
|
1823 |
+
else self.config.output_attentions
|
1824 |
+
)
|
1825 |
+
output_hidden_states = (
|
1826 |
+
output_hidden_states
|
1827 |
+
if output_hidden_states is not None
|
1828 |
+
else self.config.output_hidden_states
|
1829 |
+
)
|
1830 |
+
return_dict = (
|
1831 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1832 |
+
)
|
1833 |
+
|
1834 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1835 |
+
outputs = self.model(
|
1836 |
+
input_ids=input_ids,
|
1837 |
+
attention_mask=attention_mask,
|
1838 |
+
position_ids=position_ids,
|
1839 |
+
past_key_values=past_key_values,
|
1840 |
+
inputs_embeds=inputs_embeds,
|
1841 |
+
use_cache=use_cache,
|
1842 |
+
output_attentions=output_attentions,
|
1843 |
+
output_hidden_states=output_hidden_states,
|
1844 |
+
return_dict=return_dict,
|
1845 |
+
)
|
1846 |
+
|
1847 |
+
hidden_states = outputs[0]
|
1848 |
+
logits = self.lm_head(hidden_states)
|
1849 |
+
logits = logits.float()
|
1850 |
+
|
1851 |
+
loss = None
|
1852 |
+
if labels is not None:
|
1853 |
+
# Shift so that tokens < n predict n
|
1854 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1855 |
+
shift_labels = labels[..., 1:].contiguous()
|
1856 |
+
# Flatten the tokens
|
1857 |
+
loss_fct = CrossEntropyLoss()
|
1858 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1859 |
+
shift_labels = shift_labels.view(-1)
|
1860 |
+
# Enable model parallelism
|
1861 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1862 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1863 |
+
|
1864 |
+
if not return_dict:
|
1865 |
+
output = (logits,) + outputs[1:]
|
1866 |
+
return (loss,) + output if loss is not None else output
|
1867 |
+
|
1868 |
+
return CausalLMOutputWithPast(
|
1869 |
+
loss=loss,
|
1870 |
+
logits=logits,
|
1871 |
+
past_key_values=outputs.past_key_values,
|
1872 |
+
hidden_states=outputs.hidden_states,
|
1873 |
+
attentions=outputs.attentions,
|
1874 |
+
)
|
1875 |
+
|
1876 |
+
def prepare_inputs_for_generation(
|
1877 |
+
self,
|
1878 |
+
input_ids,
|
1879 |
+
past_key_values=None,
|
1880 |
+
attention_mask=None,
|
1881 |
+
inputs_embeds=None,
|
1882 |
+
**kwargs,
|
1883 |
+
):
|
1884 |
+
if past_key_values is not None:
|
1885 |
+
if isinstance(past_key_values, Cache):
|
1886 |
+
cache_length = past_key_values.get_seq_length()
|
1887 |
+
past_length = past_key_values.seen_tokens
|
1888 |
+
max_cache_length = past_key_values.get_max_length()
|
1889 |
+
else:
|
1890 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1891 |
+
max_cache_length = None
|
1892 |
+
|
1893 |
+
# Keep only the unprocessed tokens:
|
1894 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1895 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1896 |
+
# input)
|
1897 |
+
if (
|
1898 |
+
attention_mask is not None
|
1899 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1900 |
+
):
|
1901 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1902 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1903 |
+
# input_ids based on the past_length.
|
1904 |
+
elif past_length < input_ids.shape[1]:
|
1905 |
+
input_ids = input_ids[:, past_length:]
|
1906 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1907 |
+
|
1908 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1909 |
+
if (
|
1910 |
+
max_cache_length is not None
|
1911 |
+
and attention_mask is not None
|
1912 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1913 |
+
):
|
1914 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1915 |
+
|
1916 |
+
position_ids = kwargs.get("position_ids", None)
|
1917 |
+
if attention_mask is not None and position_ids is None:
|
1918 |
+
# create position_ids on the fly for batch generation
|
1919 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1920 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1921 |
+
if past_key_values:
|
1922 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1923 |
+
|
1924 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1925 |
+
if inputs_embeds is not None and past_key_values is None:
|
1926 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1927 |
+
else:
|
1928 |
+
model_inputs = {"input_ids": input_ids}
|
1929 |
+
|
1930 |
+
model_inputs.update(
|
1931 |
+
{
|
1932 |
+
"position_ids": position_ids,
|
1933 |
+
"past_key_values": past_key_values,
|
1934 |
+
"use_cache": kwargs.get("use_cache"),
|
1935 |
+
"attention_mask": attention_mask,
|
1936 |
+
}
|
1937 |
+
)
|
1938 |
+
return model_inputs
|
1939 |
+
|
1940 |
+
@staticmethod
|
1941 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1942 |
+
reordered_past = ()
|
1943 |
+
for layer_past in past_key_values:
|
1944 |
+
reordered_past += (
|
1945 |
+
tuple(
|
1946 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1947 |
+
for past_state in layer_past
|
1948 |
+
),
|
1949 |
+
)
|
1950 |
+
return reordered_past
|
1951 |
+
|
1952 |
+
|
1953 |
+
@add_start_docstrings(
|
1954 |
+
"""
|
1955 |
+
The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
|
1956 |
+
|
1957 |
+
[`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1958 |
+
(e.g. GPT-2) do.
|
1959 |
+
|
1960 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1961 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1962 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1963 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1964 |
+
each row of the batch).
|
1965 |
+
""",
|
1966 |
+
DeepseekV2_START_DOCSTRING,
|
1967 |
+
)
|
1968 |
+
class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
1969 |
+
def __init__(self, config):
|
1970 |
+
super().__init__(config)
|
1971 |
+
self.num_labels = config.num_labels
|
1972 |
+
self.model = DeepseekV2Model(config)
|
1973 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1974 |
+
|
1975 |
+
# Initialize weights and apply final processing
|
1976 |
+
self.post_init()
|
1977 |
+
|
1978 |
+
def get_input_embeddings(self):
|
1979 |
+
return self.model.embed_tokens
|
1980 |
+
|
1981 |
+
def set_input_embeddings(self, value):
|
1982 |
+
self.model.embed_tokens = value
|
1983 |
+
|
1984 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1985 |
+
def forward(
|
1986 |
+
self,
|
1987 |
+
input_ids: torch.LongTensor = None,
|
1988 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1989 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1990 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1991 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1992 |
+
labels: Optional[torch.LongTensor] = None,
|
1993 |
+
use_cache: Optional[bool] = None,
|
1994 |
+
output_attentions: Optional[bool] = None,
|
1995 |
+
output_hidden_states: Optional[bool] = None,
|
1996 |
+
return_dict: Optional[bool] = None,
|
1997 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1998 |
+
r"""
|
1999 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2000 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
|
2001 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
2002 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
2003 |
+
"""
|
2004 |
+
return_dict = (
|
2005 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
2006 |
+
)
|
2007 |
+
|
2008 |
+
transformer_outputs = self.model(
|
2009 |
+
input_ids,
|
2010 |
+
attention_mask=attention_mask,
|
2011 |
+
position_ids=position_ids,
|
2012 |
+
past_key_values=past_key_values,
|
2013 |
+
inputs_embeds=inputs_embeds,
|
2014 |
+
use_cache=use_cache,
|
2015 |
+
output_attentions=output_attentions,
|
2016 |
+
output_hidden_states=output_hidden_states,
|
2017 |
+
return_dict=return_dict,
|
2018 |
+
)
|
2019 |
+
hidden_states = transformer_outputs[0]
|
2020 |
+
logits = self.score(hidden_states)
|
2021 |
+
|
2022 |
+
if input_ids is not None:
|
2023 |
+
batch_size = input_ids.shape[0]
|
2024 |
+
else:
|
2025 |
+
batch_size = inputs_embeds.shape[0]
|
2026 |
+
|
2027 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
2028 |
+
raise ValueError(
|
2029 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
2030 |
+
)
|
2031 |
+
if self.config.pad_token_id is None:
|
2032 |
+
sequence_lengths = -1
|
2033 |
+
else:
|
2034 |
+
if input_ids is not None:
|
2035 |
+
sequence_lengths = (
|
2036 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
2037 |
+
).to(logits.device)
|
2038 |
+
else:
|
2039 |
+
sequence_lengths = -1
|
2040 |
+
|
2041 |
+
pooled_logits = logits[
|
2042 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
2043 |
+
]
|
2044 |
+
|
2045 |
+
loss = None
|
2046 |
+
if labels is not None:
|
2047 |
+
labels = labels.to(logits.device)
|
2048 |
+
if self.config.problem_type is None:
|
2049 |
+
if self.num_labels == 1:
|
2050 |
+
self.config.problem_type = "regression"
|
2051 |
+
elif self.num_labels > 1 and (
|
2052 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
2053 |
+
):
|
2054 |
+
self.config.problem_type = "single_label_classification"
|
2055 |
+
else:
|
2056 |
+
self.config.problem_type = "multi_label_classification"
|
2057 |
+
|
2058 |
+
if self.config.problem_type == "regression":
|
2059 |
+
loss_fct = MSELoss()
|
2060 |
+
if self.num_labels == 1:
|
2061 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
2062 |
+
else:
|
2063 |
+
loss = loss_fct(pooled_logits, labels)
|
2064 |
+
elif self.config.problem_type == "single_label_classification":
|
2065 |
+
loss_fct = CrossEntropyLoss()
|
2066 |
+
loss = loss_fct(
|
2067 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
2068 |
+
)
|
2069 |
+
elif self.config.problem_type == "multi_label_classification":
|
2070 |
+
loss_fct = BCEWithLogitsLoss()
|
2071 |
+
loss = loss_fct(pooled_logits, labels)
|
2072 |
+
if not return_dict:
|
2073 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
2074 |
+
return ((loss,) + output) if loss is not None else output
|
2075 |
+
|
2076 |
+
return SequenceClassifierOutputWithPast(
|
2077 |
+
loss=loss,
|
2078 |
+
logits=pooled_logits,
|
2079 |
+
past_key_values=transformer_outputs.past_key_values,
|
2080 |
+
hidden_states=transformer_outputs.hidden_states,
|
2081 |
+
attentions=transformer_outputs.attentions,
|
2082 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"100000": {
|
7 |
+
"content": "<|begin▁of▁sentence|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"100001": {
|
15 |
+
"content": "<|end▁of▁sentence|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"100002": {
|
23 |
+
"content": "<|fim▁hole|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"100003": {
|
31 |
+
"content": "<|fim▁begin|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"100004": {
|
39 |
+
"content": "<|fim▁end|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"100005": {
|
47 |
+
"content": "<|completion|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"100006": {
|
55 |
+
"content": "<|User|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"100007": {
|
63 |
+
"content": "<|Assistant|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"100008": {
|
71 |
+
"content": "<|EOT|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"100009": {
|
79 |
+
"content": "<|tool▁calls▁begin|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"100010": {
|
87 |
+
"content": "<|tool▁calls▁end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"100011": {
|
95 |
+
"content": "<|tool▁call▁begin|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"100012": {
|
103 |
+
"content": "<|tool▁call▁end|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"100013": {
|
111 |
+
"content": "<|tool▁outputs▁begin|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"100014": {
|
119 |
+
"content": "<|tool▁outputs▁end|>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"100015": {
|
127 |
+
"content": "<|tool▁output▁begin|>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"100016": {
|
135 |
+
"content": "<|tool▁output▁end|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"100017": {
|
143 |
+
"content": "<|tool▁sep|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
}
|
150 |
+
},
|
151 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
152 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
|
153 |
+
"clean_up_tokenization_spaces": false,
|
154 |
+
"eos_token": "<|end▁of▁sentence|>",
|
155 |
+
"extra_special_tokens": {},
|
156 |
+
"legacy": true,
|
157 |
+
"model_max_length": 16384,
|
158 |
+
"pad_token": "<|end▁of▁sentence|>",
|
159 |
+
"sp_model_kwargs": {},
|
160 |
+
"tokenizer_class": "LlamaTokenizer",
|
161 |
+
"unk_token": null,
|
162 |
+
"use_default_system_prompt": false
|
163 |
+
}
|