AlphaGaO commited on
Commit
0b7ff43
·
verified ·
1 Parent(s): 11fcbcc

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - Qwen/Qwen3-14B-Base
8
+ ---
9
+
10
+ # Qwen3-14B
11
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
12
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
13
+ </a>
14
+
15
+ ## Qwen3 Highlights
16
+
17
+ Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
18
+
19
+ - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
20
+ - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
21
+ - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
22
+ - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
23
+ - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
24
+
25
+ ## Model Overview
26
+
27
+ **Qwen3-14B** has the following features:
28
+ - Type: Causal Language Models
29
+ - Training Stage: Pretraining & Post-training
30
+ - Number of Parameters: 14.8B
31
+ - Number of Paramaters (Non-Embedding): 13.2B
32
+ - Number of Layers: 40
33
+ - Number of Attention Heads (GQA): 40 for Q and 8 for KV
34
+ - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
35
+
36
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
37
+
38
+ ## Quickstart
39
+
40
+ The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
41
+
42
+ With `transformers<4.51.0`, you will encounter the following error:
43
+ ```
44
+ KeyError: 'qwen3'
45
+ ```
46
+
47
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
48
+ ```python
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+
51
+ model_name = "Qwen/Qwen3-14B"
52
+
53
+ # load the tokenizer and the model
54
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
55
+ model = AutoModelForCausalLM.from_pretrained(
56
+ model_name,
57
+ torch_dtype="auto",
58
+ device_map="auto"
59
+ )
60
+
61
+ # prepare the model input
62
+ prompt = "Give me a short introduction to large language model."
63
+ messages = [
64
+ {"role": "user", "content": prompt}
65
+ ]
66
+ text = tokenizer.apply_chat_template(
67
+ messages,
68
+ tokenize=False,
69
+ add_generation_prompt=True,
70
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
71
+ )
72
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
73
+
74
+ # conduct text completion
75
+ generated_ids = model.generate(
76
+ **model_inputs,
77
+ max_new_tokens=32768
78
+ )
79
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
80
+
81
+ # parsing thinking content
82
+ try:
83
+ # rindex finding 151668 (</think>)
84
+ index = len(output_ids) - output_ids[::-1].index(151668)
85
+ except ValueError:
86
+ index = 0
87
+
88
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
89
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
90
+
91
+ print("thinking content:", thinking_content)
92
+ print("content:", content)
93
+ ```
94
+
95
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
96
+ - SGLang:
97
+ ```shell
98
+ python -m sglang.launch_server --model-path Qwen/Qwen3-14B --reasoning-parser qwen3
99
+ ```
100
+ - vLLM:
101
+ ```shell
102
+ vllm serve Qwen/Qwen3-14B --enable-reasoning --reasoning-parser deepseek_r1
103
+ ```
104
+
105
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
106
+
107
+ ## Switching Between Thinking and Non-Thinking Mode
108
+
109
+ > [!TIP]
110
+ > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
111
+ > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
112
+
113
+ ### `enable_thinking=True`
114
+
115
+ By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
116
+
117
+ ```python
118
+ text = tokenizer.apply_chat_template(
119
+ messages,
120
+ tokenize=False,
121
+ add_generation_prompt=True,
122
+ enable_thinking=True # True is the default value for enable_thinking
123
+ )
124
+ ```
125
+
126
+ In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
127
+
128
+ > [!NOTE]
129
+ > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
130
+
131
+
132
+ ### `enable_thinking=False`
133
+
134
+ We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
135
+
136
+ ```python
137
+ text = tokenizer.apply_chat_template(
138
+ messages,
139
+ tokenize=False,
140
+ add_generation_prompt=True,
141
+ enable_thinking=False # Setting enable_thinking=False disables thinking mode
142
+ )
143
+ ```
144
+
145
+ In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
146
+
147
+ > [!NOTE]
148
+ > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
149
+
150
+ ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
151
+
152
+ We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
153
+
154
+ Here is an example of a multi-turn conversation:
155
+
156
+ ```python
157
+ from transformers import AutoModelForCausalLM, AutoTokenizer
158
+
159
+ class QwenChatbot:
160
+ def __init__(self, model_name="Qwen/Qwen3-14B"):
161
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
162
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
163
+ self.history = []
164
+
165
+ def generate_response(self, user_input):
166
+ messages = self.history + [{"role": "user", "content": user_input}]
167
+
168
+ text = self.tokenizer.apply_chat_template(
169
+ messages,
170
+ tokenize=False,
171
+ add_generation_prompt=True
172
+ )
173
+
174
+ inputs = self.tokenizer(text, return_tensors="pt")
175
+ response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
176
+ response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
177
+
178
+ # Update history
179
+ self.history.append({"role": "user", "content": user_input})
180
+ self.history.append({"role": "assistant", "content": response})
181
+
182
+ return response
183
+
184
+ # Example Usage
185
+ if __name__ == "__main__":
186
+ chatbot = QwenChatbot()
187
+
188
+ # First input (without /think or /no_think tags, thinking mode is enabled by default)
189
+ user_input_1 = "How many r's in strawberries?"
190
+ print(f"User: {user_input_1}")
191
+ response_1 = chatbot.generate_response(user_input_1)
192
+ print(f"Bot: {response_1}")
193
+ print("----------------------")
194
+
195
+ # Second input with /no_think
196
+ user_input_2 = "Then, how many r's in blueberries? /no_think"
197
+ print(f"User: {user_input_2}")
198
+ response_2 = chatbot.generate_response(user_input_2)
199
+ print(f"Bot: {response_2}")
200
+ print("----------------------")
201
+
202
+ # Third input with /think
203
+ user_input_3 = "Really? /think"
204
+ print(f"User: {user_input_3}")
205
+ response_3 = chatbot.generate_response(user_input_3)
206
+ print(f"Bot: {response_3}")
207
+ ```
208
+
209
+ > [!NOTE]
210
+ > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
211
+ > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
212
+
213
+ ## Agentic Use
214
+
215
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
216
+
217
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
218
+ ```python
219
+ from qwen_agent.agents import Assistant
220
+
221
+ # Define LLM
222
+ llm_cfg = {
223
+ 'model': 'Qwen3-14B',
224
+
225
+ # Use the endpoint provided by Alibaba Model Studio:
226
+ # 'model_type': 'qwen_dashscope',
227
+ # 'api_key': os.getenv('DASHSCOPE_API_KEY'),
228
+
229
+ # Use a custom endpoint compatible with OpenAI API:
230
+ 'model_server': 'http://localhost:8000/v1', # api_base
231
+ 'api_key': 'EMPTY',
232
+
233
+ # Other parameters:
234
+ # 'generate_cfg': {
235
+ # # Add: When the response content is `<think>this is the thought</think>this is the answer;
236
+ # # Do not add: When the response has been separated by reasoning_content and content.
237
+ # 'thought_in_content': True,
238
+ # },
239
+ }
240
+
241
+ # Define Tools
242
+ tools = [
243
+ {'mcpServers': { # You can specify the MCP configuration file
244
+ 'time': {
245
+ 'command': 'uvx',
246
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
247
+ },
248
+ "fetch": {
249
+ "command": "uvx",
250
+ "args": ["mcp-server-fetch"]
251
+ }
252
+ }
253
+ },
254
+ 'code_interpreter', # Built-in tools
255
+ ]
256
+
257
+ # Define Agent
258
+ bot = Assistant(llm=llm_cfg, function_list=tools)
259
+
260
+ # Streaming generation
261
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
262
+ for responses in bot.run(messages=messages):
263
+ pass
264
+ print(responses)
265
+ ```
266
+
267
+ ## Processing Long Texts
268
+
269
+ Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
270
+
271
+ YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
272
+
273
+ - Modifying the model files:
274
+ In the `config.json` file, add the `rope_scaling` fields:
275
+ ```json
276
+ {
277
+ ...,
278
+ "rope_scaling": {
279
+ "rope_type": "yarn",
280
+ "factor": 4.0,
281
+ "original_max_position_embeddings": 32768
282
+ }
283
+ }
284
+ ```
285
+ For `llama.cpp`, you need to regenerate the GGUF file after the modification.
286
+
287
+ - Passing command line arguments:
288
+
289
+ For `vllm`, you can use
290
+ ```shell
291
+ vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
292
+ ```
293
+
294
+ For `sglang`, you can use
295
+ ```shell
296
+ python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
297
+ ```
298
+
299
+ For `llama-server` from `llama.cpp`, you can use
300
+ ```shell
301
+ llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
302
+ ```
303
+
304
+ > [!IMPORTANT]
305
+ > If you encounter the following warning
306
+ > ```
307
+ > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
308
+ > ```
309
+ > please upgrade `transformers>=4.51.0`.
310
+
311
+ > [!NOTE]
312
+ > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
313
+ > We advise adding the `rope_scaling` configuration only when processing long contexts is required.
314
+ > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
315
+
316
+ > [!NOTE]
317
+ > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
318
+
319
+ > [!TIP]
320
+ > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
321
+
322
+ ## Best Practices
323
+
324
+ To achieve optimal performance, we recommend the following settings:
325
+
326
+ 1. **Sampling Parameters**:
327
+ - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
328
+ - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
329
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
330
+
331
+ 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
332
+
333
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
334
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
335
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
336
+
337
+ 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
338
+
339
+ ### Citation
340
+
341
+ If you find our work helpful, feel free to give us a cite.
342
+
343
+ ```
344
+ @misc{qwen3,
345
+ title = {Qwen3},
346
+ url = {https://qwenlm.github.io/blog/qwen3/},
347
+ author = {Qwen Team},
348
+ month = {April},
349
+ year = {2025}
350
+ }
351
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 17408,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 40,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 40,
18
+ "num_hidden_layers": 40,
19
+ "num_key_value_heads": 8,
20
+ "quantization_config": {
21
+ "bits": 4,
22
+ "checkpoint_format": "gptq",
23
+ "desc_act": true,
24
+ "group_size": 128,
25
+ "lm_head": false,
26
+ "meta": {
27
+ "damp_auto_increment": 0.0025,
28
+ "damp_percent": 0.01,
29
+ "mse": 0.0,
30
+ "quantizer": [
31
+ "gptqmodel:2.2.0"
32
+ ],
33
+ "static_groups": false,
34
+ "true_sequential": true,
35
+ "uri": "https://github.com/modelcloud/gptqmodel"
36
+ },
37
+ "pack_dtype": "int32",
38
+ "quant_method": "gptq",
39
+ "sym": true
40
+ },
41
+ "rms_norm_eps": 1e-06,
42
+ "rope_scaling": null,
43
+ "rope_theta": 1000000,
44
+ "sliding_window": null,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.51.3",
48
+ "use_cache": true,
49
+ "use_sliding_window": false,
50
+ "vocab_size": 151936
51
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.51.3"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9927741972d556aecfac52f4df254fd52159bb24a01c763b5324d5aa47c25374
3
+ size 3994061392
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdc0a1e3d10eca03e3f17461ace308c375ad3bf98fa97715a5bee8de8ce7118b
3
+ size 3998164048
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4615b3c0caac9542874edb159cca9fc69d65d3ad50c5c355d526dfedfc0858ff
3
+ size 1992195352
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
quant_log.csv ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ layer,module,loss,samples,damp,time
2
+ 0,self_attn.k_proj,0.00070515,0.01000,1.385
3
+ 0,self_attn.v_proj,0.00059307,0.01000,1.121
4
+ 0,self_attn.q_proj,0.00258521,0.01000,1.172
5
+ 0,self_attn.o_proj,0.01955252,0.01000,1.172
6
+ 0,mlp.up_proj,0.14081547,0.01000,1.232
7
+ 0,mlp.gate_proj,0.21270670,0.01000,1.184
8
+ 0,mlp.down_proj,0.10341728,0.01000,5.008
9
+ 1,self_attn.k_proj,0.00179484,0.01000,1.179
10
+ 1,self_attn.v_proj,0.00185646,0.01000,1.124
11
+ 1,self_attn.q_proj,0.00755967,0.01000,1.148
12
+ 1,self_attn.o_proj,0.01750864,0.01000,1.186
13
+ 1,mlp.up_proj,1.93339133,0.01000,1.241
14
+ 1,mlp.gate_proj,6.46621895,0.01000,1.194
15
+ 1,mlp.down_proj,0.24397323,0.01000,5.021
16
+ 2,self_attn.k_proj,0.00402845,0.01000,1.159
17
+ 2,self_attn.v_proj,0.00421844,0.01000,1.105
18
+ 2,self_attn.q_proj,0.01554210,0.01000,1.128
19
+ 2,self_attn.o_proj,0.03608973,0.01000,1.185
20
+ 2,mlp.up_proj,4.04899502,0.01000,1.237
21
+ 2,mlp.gate_proj,8.89684391,0.01000,1.193
22
+ 2,mlp.down_proj,0.22869286,0.01000,5.269
23
+ 3,self_attn.k_proj,0.00834207,0.01000,1.177
24
+ 3,self_attn.v_proj,0.00874612,0.01000,1.128
25
+ 3,self_attn.q_proj,0.03258161,0.01000,1.150
26
+ 3,self_attn.o_proj,0.04409736,0.01000,1.186
27
+ 3,mlp.up_proj,6.68514776,0.01000,1.248
28
+ 3,mlp.gate_proj,15.11703968,0.01000,1.198
29
+ 3,mlp.down_proj,0.36655888,0.01000,5.079
30
+ 4,self_attn.k_proj,0.01444592,0.01000,1.173
31
+ 4,self_attn.v_proj,0.01500741,0.01000,1.124
32
+ 4,self_attn.q_proj,0.05909440,0.01000,1.146
33
+ 4,self_attn.o_proj,0.06205442,0.01000,1.186
34
+ 4,mlp.up_proj,13.67866325,0.01000,1.243
35
+ 4,mlp.gate_proj,23.40497398,0.01000,1.194
36
+ 4,mlp.down_proj,0.41648334,0.01000,5.070
37
+ 5,self_attn.k_proj,0.01607831,0.01000,1.166
38
+ 5,self_attn.v_proj,0.01557913,0.01000,1.172
39
+ 5,self_attn.q_proj,0.06674744,0.01000,1.141
40
+ 5,self_attn.o_proj,0.07189713,0.01000,1.191
41
+ 5,mlp.up_proj,10.08458900,0.01000,1.240
42
+ 5,mlp.gate_proj,25.65925598,0.01000,1.196
43
+ 5,mlp.down_proj,0.72814405,0.01000,5.078
44
+ 6,self_attn.k_proj,0.02797525,0.01000,1.180
45
+ 6,self_attn.v_proj,0.02999315,0.01000,1.124
46
+ 6,self_attn.q_proj,0.11771373,0.01000,1.149
47
+ 6,self_attn.o_proj,0.10042808,0.01000,1.207
48
+ 6,mlp.up_proj,22.71648407,0.01000,1.237
49
+ 6,mlp.gate_proj,43.64604950,0.01000,1.202
50
+ 6,mlp.down_proj,55.64929581,0.01000,5.161
51
+ 7,self_attn.k_proj,0.11195987,0.01000,1.207
52
+ 7,self_attn.v_proj,0.12252167,0.01000,1.138
53
+ 7,self_attn.q_proj,0.49221504,0.01000,1.171
54
+ 7,self_attn.o_proj,0.22399020,0.01000,1.270
55
+ 7,mlp.up_proj,19.27217484,0.01000,1.261
56
+ 7,mlp.gate_proj,40.91525650,0.01000,1.273
57
+ 7,mlp.down_proj,1.07534313,0.01000,5.317
58
+ 8,self_attn.k_proj,0.12188863,0.01000,1.208
59
+ 8,self_attn.v_proj,0.14043301,0.01000,1.150
60
+ 8,self_attn.q_proj,0.52052939,0.01000,1.178
61
+ 8,self_attn.o_proj,0.24562880,0.01000,1.208
62
+ 8,mlp.up_proj,7.53962708,0.01000,1.258
63
+ 8,mlp.gate_proj,13.18854618,0.01000,1.213
64
+ 8,mlp.down_proj,1.41018748,0.01000,5.144
65
+ 9,self_attn.k_proj,0.08431721,0.01000,1.234
66
+ 9,self_attn.v_proj,0.07946551,0.01000,1.142
67
+ 9,self_attn.q_proj,0.35178173,0.01000,1.163
68
+ 9,self_attn.o_proj,0.21273188,0.01000,1.203
69
+ 9,mlp.up_proj,7.51564360,0.01000,1.257
70
+ 9,mlp.gate_proj,8.31024075,0.01000,1.209
71
+ 9,mlp.down_proj,1.97027135,0.01000,5.389
72
+ 10,self_attn.k_proj,0.13970166,0.01000,1.189
73
+ 10,self_attn.v_proj,0.15342611,0.01000,1.234
74
+ 10,self_attn.q_proj,0.60267645,0.01000,1.171
75
+ 10,self_attn.o_proj,0.36029112,0.01000,1.272
76
+ 10,mlp.up_proj,8.76702881,0.01000,1.317
77
+ 10,mlp.gate_proj,9.45533562,0.01000,1.285
78
+ 10,mlp.down_proj,1.95001364,0.01000,5.389
79
+ 11,self_attn.k_proj,0.22548521,0.01000,1.192
80
+ 11,self_attn.v_proj,0.23918489,0.01000,1.141
81
+ 11,self_attn.q_proj,0.96112633,0.01000,1.161
82
+ 11,self_attn.o_proj,0.64858180,0.01000,1.272
83
+ 11,mlp.up_proj,10.80723763,0.01000,1.253
84
+ 11,mlp.gate_proj,11.55856419,0.01000,1.207
85
+ 11,mlp.down_proj,2.57149935,0.01000,5.577
86
+ 12,self_attn.k_proj,0.19354048,0.01000,1.188
87
+ 12,self_attn.v_proj,0.19336683,0.01000,1.143
88
+ 12,self_attn.q_proj,0.81618583,0.01000,1.180
89
+ 12,self_attn.o_proj,0.62866342,0.01000,1.198
90
+ 12,mlp.up_proj,12.84583282,0.01000,1.271
91
+ 12,mlp.gate_proj,13.82784271,0.01000,1.221
92
+ 12,mlp.down_proj,3.34642506,0.01000,5.156
93
+ 13,self_attn.k_proj,0.42784294,0.01000,1.198
94
+ 13,self_attn.v_proj,0.46224689,0.01000,1.143
95
+ 13,self_attn.q_proj,1.86821342,0.01000,1.167
96
+ 13,self_attn.o_proj,1.11543632,0.01000,1.197
97
+ 13,mlp.up_proj,14.57806587,0.01000,1.250
98
+ 13,mlp.gate_proj,16.80974579,0.01000,1.202
99
+ 13,mlp.down_proj,3.90047622,0.01000,5.149
100
+ 14,self_attn.k_proj,0.30829912,0.01000,1.198
101
+ 14,self_attn.v_proj,0.32090122,0.01000,1.148
102
+ 14,self_attn.q_proj,1.31513786,0.01000,1.188
103
+ 14,self_attn.o_proj,1.03302169,0.01000,1.200
104
+ 14,mlp.up_proj,14.98736763,0.01000,1.282
105
+ 14,mlp.gate_proj,16.62957382,0.01000,1.281
106
+ 14,mlp.down_proj,4.07754374,0.01000,5.408
107
+ 15,self_attn.k_proj,0.29759282,0.01000,1.200
108
+ 15,self_attn.v_proj,0.29929948,0.01000,1.155
109
+ 15,self_attn.q_proj,1.26697755,0.01000,1.172
110
+ 15,self_attn.o_proj,0.93979216,0.01000,1.206
111
+ 15,mlp.up_proj,15.57353783,0.01000,1.258
112
+ 15,mlp.gate_proj,16.22858429,0.01000,1.210
113
+ 15,mlp.down_proj,4.35530853,0.01000,5.379
114
+ 16,self_attn.k_proj,0.37539023,0.01000,1.211
115
+ 16,self_attn.v_proj,0.40242690,0.01000,1.188
116
+ 16,self_attn.q_proj,1.57348514,0.01000,1.164
117
+ 16,self_attn.o_proj,1.27471220,0.01000,1.221
118
+ 16,mlp.up_proj,14.90924168,0.01000,1.265
119
+ 16,mlp.gate_proj,14.57688999,0.01000,1.254
120
+ 16,mlp.down_proj,4.53259277,0.01000,5.613
121
+ 17,self_attn.k_proj,0.39300671,0.01000,1.238
122
+ 17,self_attn.v_proj,0.40721723,0.01000,1.254
123
+ 17,self_attn.q_proj,1.74801767,0.01000,1.281
124
+ 17,self_attn.o_proj,1.37048018,0.01000,1.276
125
+ 17,mlp.up_proj,16.27043724,0.01000,1.324
126
+ 17,mlp.gate_proj,15.69502831,0.01000,1.274
127
+ 17,mlp.down_proj,4.69274473,0.01000,5.326
128
+ 18,self_attn.k_proj,0.56768882,0.01000,1.254
129
+ 18,self_attn.v_proj,0.58766353,0.01000,1.206
130
+ 18,self_attn.q_proj,2.51605034,0.01000,1.226
131
+ 18,self_attn.o_proj,1.34994674,0.01000,1.279
132
+ 18,mlp.up_proj,17.51553345,0.01000,1.301
133
+ 18,mlp.gate_proj,16.32071114,0.01000,1.243
134
+ 18,mlp.down_proj,5.31907988,0.01000,5.185
135
+ 19,self_attn.k_proj,0.78620756,0.01000,1.265
136
+ 19,self_attn.v_proj,0.81862819,0.01000,1.223
137
+ 19,self_attn.q_proj,3.35753012,0.01000,1.248
138
+ 19,self_attn.o_proj,1.61737394,0.01000,1.276
139
+ 19,mlp.up_proj,19.24126816,0.01000,1.260
140
+ 19,mlp.gate_proj,18.14963341,0.01000,1.271
141
+ 19,mlp.down_proj,16.54980850,0.01000,5.439
142
+ 20,self_attn.k_proj,1.43805170,0.01000,1.279
143
+ 20,self_attn.v_proj,1.62246335,0.01000,1.220
144
+ 20,self_attn.q_proj,6.66899490,0.01000,1.245
145
+ 20,self_attn.o_proj,2.46310806,0.01000,1.201
146
+ 20,mlp.up_proj,20.68938828,0.01000,1.266
147
+ 20,mlp.gate_proj,19.20712280,0.01000,1.212
148
+ 20,mlp.down_proj,7.44412184,0.01000,5.173
149
+ 21,self_attn.k_proj,1.47485924,0.01000,1.214
150
+ 21,self_attn.v_proj,1.44628322,0.01000,1.172
151
+ 21,self_attn.q_proj,6.17815638,0.01000,1.199
152
+ 21,self_attn.o_proj,3.53289413,0.01000,1.277
153
+ 21,mlp.up_proj,22.05725479,0.01000,1.293
154
+ 21,mlp.gate_proj,20.82827759,0.01000,1.230
155
+ 21,mlp.down_proj,8.68605137,0.01000,5.657
156
+ 22,self_attn.k_proj,1.44943690,0.01000,1.189
157
+ 22,self_attn.v_proj,1.64447689,0.01000,1.138
158
+ 22,self_attn.q_proj,6.54392338,0.01000,1.163
159
+ 22,self_attn.o_proj,3.19042945,0.01000,1.196
160
+ 22,mlp.up_proj,24.60332108,0.01000,1.252
161
+ 22,mlp.gate_proj,23.00504684,0.01000,1.206
162
+ 22,mlp.down_proj,9.71904182,0.01000,5.351
163
+ 23,self_attn.k_proj,2.18464589,0.01000,1.190
164
+ 23,self_attn.v_proj,2.59843898,0.01000,1.139
165
+ 23,self_attn.q_proj,10.36781311,0.01000,1.162
166
+ 23,self_attn.o_proj,2.85652900,0.01000,1.191
167
+ 23,mlp.up_proj,25.49422836,0.01000,1.325
168
+ 23,mlp.gate_proj,23.43290138,0.01000,1.289
169
+ 23,mlp.down_proj,11.47138596,0.01000,5.225
170
+ 24,self_attn.k_proj,2.77395487,0.01000,1.258
171
+ 24,self_attn.v_proj,3.21030664,0.01000,1.207
172
+ 24,self_attn.q_proj,13.67599678,0.01000,1.229
173
+ 24,self_attn.o_proj,4.96184969,0.01000,1.273
174
+ 24,mlp.up_proj,27.81478119,0.01000,1.267
175
+ 24,mlp.gate_proj,26.07052231,0.01000,1.219
176
+ 24,mlp.down_proj,12.45972443,0.01000,5.404
177
+ 25,self_attn.k_proj,2.77749777,0.01000,1.225
178
+ 25,self_attn.v_proj,3.10713243,0.01000,1.174
179
+ 25,self_attn.q_proj,12.99405098,0.01000,1.177
180
+ 25,self_attn.o_proj,4.33352947,0.01000,1.236
181
+ 25,mlp.up_proj,30.71481323,0.01000,1.303
182
+ 25,mlp.gate_proj,29.03659439,0.01000,1.212
183
+ 25,mlp.down_proj,15.96378517,0.01000,5.203
184
+ 26,self_attn.k_proj,3.00112486,0.01000,1.196
185
+ 26,self_attn.v_proj,3.52014399,0.01000,1.144
186
+ 26,self_attn.q_proj,14.48973846,0.01000,1.170
187
+ 26,self_attn.o_proj,4.95573711,0.01000,1.204
188
+ 26,mlp.up_proj,34.63649368,0.01000,1.258
189
+ 26,mlp.gate_proj,33.71157837,0.01000,1.213
190
+ 26,mlp.down_proj,24.53585052,0.01000,5.392
191
+ 27,self_attn.k_proj,4.64402103,0.01000,1.284
192
+ 27,self_attn.v_proj,5.38009834,0.01000,1.139
193
+ 27,self_attn.q_proj,21.22321701,0.01000,1.161
194
+ 27,self_attn.o_proj,8.20958328,0.01000,1.190
195
+ 27,mlp.up_proj,42.48213577,0.01000,1.255
196
+ 27,mlp.gate_proj,41.43994904,0.01000,1.205
197
+ 27,mlp.down_proj,35.94324112,0.01000,5.184
198
+ 28,self_attn.k_proj,7.01647139,0.01000,1.188
199
+ 28,self_attn.v_proj,8.68221283,0.01000,1.138
200
+ 28,self_attn.q_proj,33.62464905,0.01000,1.161
201
+ 28,self_attn.o_proj,10.86140060,0.01000,1.195
202
+ 28,mlp.up_proj,53.62960052,0.01000,1.254
203
+ 28,mlp.gate_proj,51.62405777,0.01000,1.208
204
+ 28,mlp.down_proj,46.18000793,0.01000,5.157
205
+ 29,self_attn.k_proj,10.72468376,0.01000,1.193
206
+ 29,self_attn.v_proj,11.93986320,0.01000,1.186
207
+ 29,self_attn.q_proj,49.06664658,0.01000,1.157
208
+ 29,self_attn.o_proj,9.47833252,0.01000,1.215
209
+ 29,mlp.up_proj,60.01675797,0.01000,1.259
210
+ 29,mlp.gate_proj,57.49778748,0.01000,1.211
211
+ 29,mlp.down_proj,66.30590820,0.01000,5.373
212
+ 30,self_attn.k_proj,16.15894699,0.01000,1.194
213
+ 30,self_attn.v_proj,20.22811890,0.01000,1.148
214
+ 30,self_attn.q_proj,72.88484192,0.01000,1.168
215
+ 30,self_attn.o_proj,17.97172165,0.01000,1.201
216
+ 30,mlp.up_proj,77.35546875,0.01000,1.258
217
+ 30,mlp.gate_proj,73.98342133,0.01000,1.215
218
+ 30,mlp.down_proj,80.41363525,0.01000,5.146
219
+ 31,self_attn.k_proj,16.20863724,0.01000,1.197
220
+ 31,self_attn.v_proj,17.44694710,0.01000,1.148
221
+ 31,self_attn.q_proj,71.93412018,0.01000,1.170
222
+ 31,self_attn.o_proj,15.64772701,0.01000,1.271
223
+ 31,mlp.up_proj,84.93713379,0.01000,1.329
224
+ 31,mlp.gate_proj,79.64702606,0.01000,1.266
225
+ 31,mlp.down_proj,102.10330963,0.01000,5.332
226
+ 32,self_attn.k_proj,30.03628540,0.01000,1.195
227
+ 32,self_attn.v_proj,39.24974823,0.01000,1.158
228
+ 32,self_attn.q_proj,132.09585571,0.01000,1.170
229
+ 32,self_attn.o_proj,16.91402435,0.01000,1.204
230
+ 32,mlp.up_proj,97.01721954,0.01000,1.331
231
+ 32,mlp.gate_proj,89.70504761,0.01000,1.293
232
+ 32,mlp.down_proj,119.89739990,0.01000,5.660
233
+ 33,self_attn.k_proj,37.31489944,0.01000,1.247
234
+ 33,self_attn.v_proj,54.59365082,0.01000,1.219
235
+ 33,self_attn.q_proj,164.40927124,0.01000,1.245
236
+ 33,self_attn.o_proj,19.79536247,0.01000,1.270
237
+ 33,mlp.up_proj,104.77709198,0.01000,1.325
238
+ 33,mlp.gate_proj,94.75755310,0.01000,1.279
239
+ 33,mlp.down_proj,140.76945496,0.01000,5.166
240
+ 34,self_attn.k_proj,67.91184998,0.01000,1.190
241
+ 34,self_attn.v_proj,88.80003357,0.01000,1.139
242
+ 34,self_attn.q_proj,298.65936279,0.01000,1.165
243
+ 34,self_attn.o_proj,25.28427124,0.01000,1.197
244
+ 34,mlp.up_proj,118.75723267,0.01000,1.255
245
+ 34,mlp.gate_proj,105.32444000,0.01000,1.219
246
+ 34,mlp.down_proj,166.93191528,0.01000,5.414
247
+ 35,self_attn.k_proj,88.77953339,0.01000,1.293
248
+ 35,self_attn.v_proj,130.98645020,0.01000,1.221
249
+ 35,self_attn.q_proj,409.77334595,0.01000,1.170
250
+ 35,self_attn.o_proj,25.57363319,0.01000,1.293
251
+ 35,mlp.up_proj,128.79974365,0.01000,1.258
252
+ 35,mlp.gate_proj,112.65682983,0.01000,1.212
253
+ 35,mlp.down_proj,207.04046631,0.01000,5.163
254
+ 36,self_attn.k_proj,83.83846283,0.01000,1.198
255
+ 36,self_attn.v_proj,105.56782532,0.01000,1.146
256
+ 36,self_attn.q_proj,385.79064941,0.01000,1.169
257
+ 36,self_attn.o_proj,52.55107117,0.01000,1.204
258
+ 36,mlp.up_proj,139.16838074,0.01000,1.259
259
+ 36,mlp.gate_proj,118.08029938,0.01000,1.213
260
+ 36,mlp.down_proj,276.03088379,0.01000,5.362
261
+ 37,self_attn.k_proj,107.06826782,0.01000,1.199
262
+ 37,self_attn.v_proj,182.47669983,0.01000,1.144
263
+ 37,self_attn.q_proj,516.48419189,0.01000,1.173
264
+ 37,self_attn.o_proj,67.11089325,0.01000,1.206
265
+ 37,mlp.up_proj,146.49134827,0.01000,1.256
266
+ 37,mlp.gate_proj,122.33524323,0.01000,1.212
267
+ 37,mlp.down_proj,372.25158691,0.01000,5.430
268
+ 38,self_attn.k_proj,117.78956604,0.01000,1.198
269
+ 38,self_attn.v_proj,178.97363281,0.01000,1.149
270
+ 38,self_attn.q_proj,535.84649658,0.01000,1.171
271
+ 38,self_attn.o_proj,128.42825317,0.01000,1.201
272
+ 38,mlp.up_proj,165.81509399,0.01000,1.263
273
+ 38,mlp.gate_proj,146.40844727,0.01000,1.216
274
+ 38,mlp.down_proj,547.92755127,0.01000,5.405
275
+ 39,self_attn.k_proj,54.57062149,0.01000,1.236
276
+ 39,self_attn.v_proj,73.58613586,0.01000,1.202
277
+ 39,self_attn.q_proj,241.50205994,0.01000,1.173
278
+ 39,self_attn.o_proj,100.98907471,0.01000,1.230
279
+ 39,mlp.up_proj,214.80130005,0.01000,1.248
280
+ 39,mlp.gate_proj,195.37448120,0.01000,1.197
281
+ 39,mlp.down_proj,1378.51818848,0.01000,5.398
quantize_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "desc_act": true,
5
+ "sym": true,
6
+ "lm_head": false,
7
+ "quant_method": "gptq",
8
+ "checkpoint_format": "gptq",
9
+ "pack_dtype": "int32",
10
+ "meta": {
11
+ "quantizer": [
12
+ "gptqmodel:2.2.0"
13
+ ],
14
+ "uri": "https://github.com/modelcloud/gptqmodel",
15
+ "damp_percent": 0.01,
16
+ "damp_auto_increment": 0.0025,
17
+ "static_groups": false,
18
+ "true_sequential": true,
19
+ "mse": 0.0
20
+ }
21
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<unk>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<unk>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2TokenizerFast",
239
+ "unk_token": null,
240
+ "_commit_hash": null
241
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff