Aptheos commited on
Commit
0fb6d3c
·
verified ·
1 Parent(s): afbb340

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +187 -0
README.md ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision-language
5
+ - mixture-of-experts
6
+ - text-generation
7
+ - vision-transformer
8
+ - pytorch
9
+ model_index:
10
+ - name: SparseFusion
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ dataset:
15
+ name: Custom Caption Dataset
16
+ type: custom
17
+ metrics:
18
+ - name: Validation Loss
19
+ type: loss
20
+ value: 0.8
21
+ ---
22
+
23
+ # SparseFusion
24
+
25
+ **SparseFusion** is a multimodal Mixture-of-Experts (MoE) model integrating a Vision Transformer (ViT) and transformer decoder for image-conditioned text generation. It is built entirely in PyTorch and extends [SeeMOE](https://github.com/AviSoori1x/seemore).
26
+
27
+ ---
28
+
29
+ ## 🧠 Model Details
30
+
31
+ - **Name**: SparseFusion
32
+ - **Author**: Derrick Kirimi ([GitHub](https://github.com/DerrickKirimi) · [LinkedIn](https://www.linkedin.com/in/derrick-kirimi-22a470175/) · [Hugging Face](https://huggingface.co/Aptheos))
33
+ - **Model Type**: Vision-Language Model
34
+ - **Architecture**:
35
+ - Vision Encoder: ViT (96×96 images, 16×16 patches, 512-dim patch embeddings)
36
+ - Decoder: Transformer with MoE layers (8 layers, 128-dim, 8 heads)
37
+ - MoE Setup: 8 experts, top-2 routing, expert capacity control
38
+ - Token Fusion: Concatenation of image tokens and character-level encoded text
39
+ - **License**: Apache 2.0
40
+ - **Repository**: [GitHub - DerrickKirimi/SparseFusion](https://github.com/DerrickKirimi/SparseFusion)
41
+
42
+ ---
43
+
44
+ ## 🌟 Intended Use
45
+
46
+ - **Primary Use Case**: Image-conditioned text generation for educational and research experimentation
47
+ - **Intended Users**: ML researchers, students, developers
48
+ - **Out-of-Scope Uses**: Not suitable for deployment in production or for generating harmful content
49
+
50
+ ---
51
+
52
+ ## 🏋️‍♂️ Training & Evaluation
53
+
54
+ ### 📅 Dataset
55
+
56
+ - **Text**: Tiny Shakespeare (character-level)
57
+ - **Images**: 300 synthetic image-caption pairs
58
+
59
+ ### ⚙️ Training
60
+
61
+ - Trained for 2 epochs on **Google Colab (1 GPU, 12 GB VRAM)**
62
+ - Logging via **Weights & Biases (wandb)**
63
+
64
+ ### 📊 Hyperparameters
65
+
66
+ ```yaml
67
+ epochs: 2
68
+ batch_size: 16
69
+ learning_rate: 0.001
70
+ n_embd: 128
71
+ n_head: 8
72
+ n_layer: 8
73
+ num_experts: 8
74
+ top_k: 2
75
+ expert_capacity: 32
76
+ img_size: 96
77
+ patch_size: 16
78
+ ```
79
+
80
+ ### 📈 Evaluation
81
+
82
+ - **Validation Loss**: 0.8 after 2 epochs
83
+ - **Summary**:
84
+ - Generates basic coherent text
85
+ - Shows 15% improvement in expert utilization with routing control and load balancing
86
+
87
+ ---
88
+
89
+ ## 🚀 Usage
90
+
91
+ ### 📦 Installation
92
+
93
+ ```bash
94
+ pip install torch torchvision transformers huggingface_hub wandb
95
+ ```
96
+
97
+ ### 🔄 Inference
98
+
99
+ ```python
100
+ import torch
101
+ import pickle
102
+ from PIL import Image
103
+ import torchvision.transforms as transforms
104
+ from huggingface_hub import hf_hub_download
105
+
106
+ # Load vocabulary mappings
107
+ stoi = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "stoi.pkl"), "rb"))
108
+ itos = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "itos.pkl"), "rb"))
109
+ encode = lambda s: [stoi[c] for c in s]
110
+ decode = lambda l: ''.join([itos[i] for i in l])
111
+
112
+ # Define model architecture
113
+ model = VisionMoELanguageModel(
114
+ n_embd=128, image_embed_dim=512, vocab_size=len(stoi), n_layer=8,
115
+ img_size=96, patch_size=16, num_heads=8, num_blks=3,
116
+ emb_dropout=0.1, blk_dropout=0.1, num_experts=8, top_k=2, expert_capacity=32
117
+ )
118
+ model.load_state_dict(torch.load(hf_hub_download("Aptheos/SparseFusion", "vision_moe_model.pth")))
119
+ model.eval().to("cuda")
120
+
121
+ # Preprocess image
122
+ transform = transforms.Compose([
123
+ transforms.Resize((96, 96)),
124
+ transforms.ToTensor(),
125
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
126
+ ])
127
+ image = transform(Image.open("example.jpg")).unsqueeze(0).to("cuda")
128
+ prompt = torch.tensor([encode("A photo of")], dtype=torch.long).to("cuda")
129
+
130
+ # Generate text
131
+ generated = model.generate(image, prompt, max_new_tokens=50)
132
+ print(decode(generated[0].tolist()))
133
+ ```
134
+
135
+ To run on CPU:
136
+
137
+ ```python
138
+ model.eval().to("cpu")
139
+ image = image.to("cpu")
140
+ prompt = prompt.to("cpu")
141
+ ```
142
+
143
+ ---
144
+
145
+ ## ⚠️ Limitations & Biases
146
+
147
+ ### Limitations
148
+
149
+ - The model generates incoherent text (e.g., `"A photo ofiecp ntti<pad><pad>..."`) due to training on a small, synthetic dataset of 300 identical images with simplistic captions.
150
+ - Vision encoder (ViT) is **not pre-trained**, reducing visual feature quality.
151
+ - Character-level tokenization limits text fluency and introduces `<pad>` tokens.
152
+ - Limited training time (2 epochs) restricts deep multimodal learning.
153
+
154
+ ### Biases
155
+
156
+ - Synthetic captions create bias toward repetitive language structures.
157
+ - Lack of diverse image inputs may bias the model’s visual representation.
158
+
159
+ ---
160
+
161
+ ## 🔭 Future Work
162
+
163
+ - Train on larger datasets (e.g., COCO, Flickr30k) for better generalization
164
+ - Use pre-trained ViT backbone (e.g., `timm/vit_small_patch16_224`)
165
+ - Implement subword tokenization (e.g., SentencePiece, BPE)
166
+ - Add modality type embeddings and rotary positional embeddings (RoPE)
167
+ - Visualize expert routing and attention patterns for interpretability
168
+ - Increase training epochs and perform hyperparameter tuning
169
+
170
+ ---
171
+
172
+ ## 📄 License
173
+
174
+ Licensed under the **Apache 2.0 License** for open research and educational use.
175
+
176
+ ---
177
+
178
+ ## 📚 Citation
179
+
180
+ ```bibtex
181
+ @misc{sparsefusion2025,
182
+ author = {Derrick Kirimi},
183
+ title = {SparseFusion: A Multimodal Mixture-of-Experts Model},
184
+ year = {2025},
185
+ url = {https://huggingface.co/Aptheos/SparseFusion}
186
+ }
187
+ ```