Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision-language
|
5 |
+
- mixture-of-experts
|
6 |
+
- text-generation
|
7 |
+
- vision-transformer
|
8 |
+
- pytorch
|
9 |
+
model_index:
|
10 |
+
- name: SparseFusion
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-generation
|
14 |
+
dataset:
|
15 |
+
name: Custom Caption Dataset
|
16 |
+
type: custom
|
17 |
+
metrics:
|
18 |
+
- name: Validation Loss
|
19 |
+
type: loss
|
20 |
+
value: 0.8
|
21 |
+
---
|
22 |
+
|
23 |
+
# SparseFusion
|
24 |
+
|
25 |
+
**SparseFusion** is a multimodal Mixture-of-Experts (MoE) model integrating a Vision Transformer (ViT) and transformer decoder for image-conditioned text generation. It is built entirely in PyTorch and extends [SeeMOE](https://github.com/AviSoori1x/seemore).
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## 🧠 Model Details
|
30 |
+
|
31 |
+
- **Name**: SparseFusion
|
32 |
+
- **Author**: Derrick Kirimi ([GitHub](https://github.com/DerrickKirimi) · [LinkedIn](https://www.linkedin.com/in/derrick-kirimi-22a470175/) · [Hugging Face](https://huggingface.co/Aptheos))
|
33 |
+
- **Model Type**: Vision-Language Model
|
34 |
+
- **Architecture**:
|
35 |
+
- Vision Encoder: ViT (96×96 images, 16×16 patches, 512-dim patch embeddings)
|
36 |
+
- Decoder: Transformer with MoE layers (8 layers, 128-dim, 8 heads)
|
37 |
+
- MoE Setup: 8 experts, top-2 routing, expert capacity control
|
38 |
+
- Token Fusion: Concatenation of image tokens and character-level encoded text
|
39 |
+
- **License**: Apache 2.0
|
40 |
+
- **Repository**: [GitHub - DerrickKirimi/SparseFusion](https://github.com/DerrickKirimi/SparseFusion)
|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
## 🌟 Intended Use
|
45 |
+
|
46 |
+
- **Primary Use Case**: Image-conditioned text generation for educational and research experimentation
|
47 |
+
- **Intended Users**: ML researchers, students, developers
|
48 |
+
- **Out-of-Scope Uses**: Not suitable for deployment in production or for generating harmful content
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
## 🏋️♂️ Training & Evaluation
|
53 |
+
|
54 |
+
### 📅 Dataset
|
55 |
+
|
56 |
+
- **Text**: Tiny Shakespeare (character-level)
|
57 |
+
- **Images**: 300 synthetic image-caption pairs
|
58 |
+
|
59 |
+
### ⚙️ Training
|
60 |
+
|
61 |
+
- Trained for 2 epochs on **Google Colab (1 GPU, 12 GB VRAM)**
|
62 |
+
- Logging via **Weights & Biases (wandb)**
|
63 |
+
|
64 |
+
### 📊 Hyperparameters
|
65 |
+
|
66 |
+
```yaml
|
67 |
+
epochs: 2
|
68 |
+
batch_size: 16
|
69 |
+
learning_rate: 0.001
|
70 |
+
n_embd: 128
|
71 |
+
n_head: 8
|
72 |
+
n_layer: 8
|
73 |
+
num_experts: 8
|
74 |
+
top_k: 2
|
75 |
+
expert_capacity: 32
|
76 |
+
img_size: 96
|
77 |
+
patch_size: 16
|
78 |
+
```
|
79 |
+
|
80 |
+
### 📈 Evaluation
|
81 |
+
|
82 |
+
- **Validation Loss**: 0.8 after 2 epochs
|
83 |
+
- **Summary**:
|
84 |
+
- Generates basic coherent text
|
85 |
+
- Shows 15% improvement in expert utilization with routing control and load balancing
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
## 🚀 Usage
|
90 |
+
|
91 |
+
### 📦 Installation
|
92 |
+
|
93 |
+
```bash
|
94 |
+
pip install torch torchvision transformers huggingface_hub wandb
|
95 |
+
```
|
96 |
+
|
97 |
+
### 🔄 Inference
|
98 |
+
|
99 |
+
```python
|
100 |
+
import torch
|
101 |
+
import pickle
|
102 |
+
from PIL import Image
|
103 |
+
import torchvision.transforms as transforms
|
104 |
+
from huggingface_hub import hf_hub_download
|
105 |
+
|
106 |
+
# Load vocabulary mappings
|
107 |
+
stoi = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "stoi.pkl"), "rb"))
|
108 |
+
itos = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "itos.pkl"), "rb"))
|
109 |
+
encode = lambda s: [stoi[c] for c in s]
|
110 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
111 |
+
|
112 |
+
# Define model architecture
|
113 |
+
model = VisionMoELanguageModel(
|
114 |
+
n_embd=128, image_embed_dim=512, vocab_size=len(stoi), n_layer=8,
|
115 |
+
img_size=96, patch_size=16, num_heads=8, num_blks=3,
|
116 |
+
emb_dropout=0.1, blk_dropout=0.1, num_experts=8, top_k=2, expert_capacity=32
|
117 |
+
)
|
118 |
+
model.load_state_dict(torch.load(hf_hub_download("Aptheos/SparseFusion", "vision_moe_model.pth")))
|
119 |
+
model.eval().to("cuda")
|
120 |
+
|
121 |
+
# Preprocess image
|
122 |
+
transform = transforms.Compose([
|
123 |
+
transforms.Resize((96, 96)),
|
124 |
+
transforms.ToTensor(),
|
125 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
126 |
+
])
|
127 |
+
image = transform(Image.open("example.jpg")).unsqueeze(0).to("cuda")
|
128 |
+
prompt = torch.tensor([encode("A photo of")], dtype=torch.long).to("cuda")
|
129 |
+
|
130 |
+
# Generate text
|
131 |
+
generated = model.generate(image, prompt, max_new_tokens=50)
|
132 |
+
print(decode(generated[0].tolist()))
|
133 |
+
```
|
134 |
+
|
135 |
+
To run on CPU:
|
136 |
+
|
137 |
+
```python
|
138 |
+
model.eval().to("cpu")
|
139 |
+
image = image.to("cpu")
|
140 |
+
prompt = prompt.to("cpu")
|
141 |
+
```
|
142 |
+
|
143 |
+
---
|
144 |
+
|
145 |
+
## ⚠️ Limitations & Biases
|
146 |
+
|
147 |
+
### Limitations
|
148 |
+
|
149 |
+
- The model generates incoherent text (e.g., `"A photo ofiecp ntti<pad><pad>..."`) due to training on a small, synthetic dataset of 300 identical images with simplistic captions.
|
150 |
+
- Vision encoder (ViT) is **not pre-trained**, reducing visual feature quality.
|
151 |
+
- Character-level tokenization limits text fluency and introduces `<pad>` tokens.
|
152 |
+
- Limited training time (2 epochs) restricts deep multimodal learning.
|
153 |
+
|
154 |
+
### Biases
|
155 |
+
|
156 |
+
- Synthetic captions create bias toward repetitive language structures.
|
157 |
+
- Lack of diverse image inputs may bias the model’s visual representation.
|
158 |
+
|
159 |
+
---
|
160 |
+
|
161 |
+
## 🔭 Future Work
|
162 |
+
|
163 |
+
- Train on larger datasets (e.g., COCO, Flickr30k) for better generalization
|
164 |
+
- Use pre-trained ViT backbone (e.g., `timm/vit_small_patch16_224`)
|
165 |
+
- Implement subword tokenization (e.g., SentencePiece, BPE)
|
166 |
+
- Add modality type embeddings and rotary positional embeddings (RoPE)
|
167 |
+
- Visualize expert routing and attention patterns for interpretability
|
168 |
+
- Increase training epochs and perform hyperparameter tuning
|
169 |
+
|
170 |
+
---
|
171 |
+
|
172 |
+
## 📄 License
|
173 |
+
|
174 |
+
Licensed under the **Apache 2.0 License** for open research and educational use.
|
175 |
+
|
176 |
+
---
|
177 |
+
|
178 |
+
## 📚 Citation
|
179 |
+
|
180 |
+
```bibtex
|
181 |
+
@misc{sparsefusion2025,
|
182 |
+
author = {Derrick Kirimi},
|
183 |
+
title = {SparseFusion: A Multimodal Mixture-of-Experts Model},
|
184 |
+
year = {2025},
|
185 |
+
url = {https://huggingface.co/Aptheos/SparseFusion}
|
186 |
+
}
|
187 |
+
```
|