--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: whisper-small-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 id type: mozilla-foundation/common_voice_17_0 config: id split: None args: id metrics: - name: Wer type: wer value: 0.16172444196946495 --- # whisper-small-id This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_17_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.3506 - Wer: 0.1617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0547 | 3.8462 | 1000 | 0.2570 | 0.1687 | | 0.0034 | 7.6923 | 2000 | 0.3144 | 0.1589 | | 0.0011 | 11.5385 | 3000 | 0.3358 | 0.1615 | | 0.0007 | 15.3846 | 4000 | 0.3460 | 0.1614 | | 0.0006 | 19.2308 | 5000 | 0.3506 | 0.1617 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1