Behnam's picture
New LunarLander
583b0b2
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efc295cbb80>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc295cbc10>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc295cbca0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc295cbd30>",
"_build": "<function ActorCriticPolicy._build at 0x7efc295cbdc0>",
"forward": "<function ActorCriticPolicy.forward at 0x7efc295cbe50>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc295cbee0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc295cbf70>",
"_predict": "<function ActorCriticPolicy._predict at 0x7efc295cf040>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc295cf0d0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc295cf160>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc295cf1f0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7efc295d0100>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1680600779791270847,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACblh7249vG5l0sBvFzSiDbSdnQ5g5j5tQAAgD8AAIA/8DTsvt+AJj9aZvG9hy6VvuIQk76C2xa9AAAAAAAAAACaFti8owhVPSVdgb2XnJa+80ZIvRat7LsAAAAAAAAAAJoddr0p/wi8yqyLPQmPEb1wMrW8OzvdvQAAgD8AAIA/mm2VviWvQz/9bYs+stGAvjpgnD1uCfQ7AAAAAAAAAACa4bO8uIaDubNr3DoVKcU1mAI1un8XALoAAIA/AACAPzMnuruPHi66s2O8Ou+1FzZlm786ErbcuQAAgD8AAIA/8t+CvlLHGD+B+yk+ZPZDviZnV7yK6z88AAAAAAAAAACzUZ69Keh/uoAhsbv5JNg3avVdu3KhGbcAAIA/AACAP1qRoL2rCdo9iBjqvezeTr7tGle9KS4WvAAAAAAAAAAAM4gOvZ/ZsD6LCrG8B816vqHR2Ly92gw9AAAAAAAAAABmrZ29XPtJunL0sbuCTD04Vr57OrMShTgAAIA/AACAP3oDE76yE4k/wUiFvjMJsr5uHOi9XmQIPQAAAAAAAAAAzfdUvXsyj7ojrY05v+GDNL8f1boQd6S4AACAPwAAgD9aRoa9exaNuu3uXDpmcumyagkRutqMfbkAAIA/AACAP0ZdGL5xcnO7koD5PAzGID2euIm9+JETPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhCugUE+/NECUhpRSlIwBbJRL2IwBdJRHQKtAauTRplB1fZQoaAZoCWgPQwjjVdY2xT1lQJSGlFKUaBVN6ANoFkdAq0QKuyNXHXV9lChoBmgJaA9DCFqEYivodWFAlIaUUpRoFU3oA2gWR0CrRg3yZrpJdX2UKGgGaAloD0MIxvmbUAhAYkCUhpRSlGgVTegDaBZHQKtHh5qubI91fZQoaAZoCWgPQwjymld11pRlQJSGlFKUaBVN6ANoFkdAq0gne54GEHV9lChoBmgJaA9DCKn3VE57nlxAlIaUUpRoFU3oA2gWR0CrTA3jlxOtdX2UKGgGaAloD0MI/isrTUrvYkCUhpRSlGgVTegDaBZHQKtNSophF3J1fZQoaAZoCWgPQwgMIef9fyVUQJSGlFKUaBVN6ANoFkdAq04oQDmr83V9lChoBmgJaA9DCKM6Hcj6tmtAlIaUUpRoFU0xAWgWR0CrTmxFI/Z/dX2UKGgGaAloD0MIDB6mfXNBRECUhpRSlGgVTQMBaBZHQKtQXXvphWp1fZQoaAZoCWgPQwinr+drlvxaQJSGlFKUaBVN6ANoFkdAq1GoLJCBw3V9lChoBmgJaA9DCBaGyOnr40hAlIaUUpRoFU0SAWgWR0CrUcB5ooNNdX2UKGgGaAloD0MID18mipDbZkCUhpRSlGgVTegDaBZHQKtSUHAymAN1fZQoaAZoCWgPQwgV4LvNGy1PQJSGlFKUaBVN6ANoFkdAq2V5+8XenHV9lChoBmgJaA9DCLD/Ojdt5lxAlIaUUpRoFU3oA2gWR0CrZZQ2MsH0dX2UKGgGaAloD0MIeCrgnudCYkCUhpRSlGgVTegDaBZHQKtnu1qnFYN1fZQoaAZoCWgPQwjturcisXZmQJSGlFKUaBVN6ANoFkdAq2198PWhAXV9lChoBmgJaA9DCIV5jzPN8GJAlIaUUpRoFU3oA2gWR0Crb6I8yN4rdX2UKGgGaAloD0MIomDGFKw6YECUhpRSlGgVTegDaBZHQKtv3fQa73B1fZQoaAZoCWgPQwizQSYZeZNwQJSGlFKUaBVNNwJoFkdAq2/wcaOxS3V9lChoBmgJaA9DCH9Ma9NYnXFAlIaUUpRoFU0fAWgWR0Crcm/p2U0OdX2UKGgGaAloD0MI9TC0OvmpcECUhpRSlGgVTbEBaBZHQKt2DVo6CDp1fZQoaAZoCWgPQwhMFvcfmYVgQJSGlFKUaBVN6ANoFkdAq3miprDZUXV9lChoBmgJaA9DCCxhbYwdbGNAlIaUUpRoFU3oA2gWR0CrfIdS/CZXdX2UKGgGaAloD0MIayqLwi67YUCUhpRSlGgVTegDaBZHQKuC58dgfEJ1fZQoaAZoCWgPQwjJsIo3MlNmQJSGlFKUaBVN6ANoFkdAq4RJcqvvB3V9lChoBmgJaA9DCN/98V61IFxAlIaUUpRoFU3oA2gWR0CrhLLYPGyYdX2UKGgGaAloD0MIxeI3hRUlYUCUhpRSlGgVTegDaBZHQKuHPyy2QXB1fZQoaAZoCWgPQwgw9l580VNaQJSGlFKUaBVN6ANoFkdAq4huI0qH5HV9lChoBmgJaA9DCBNE3Qcgbl9AlIaUUpRoFU3oA2gWR0CriIQjD8+BdX2UKGgGaAloD0MIbf30nzXpWkCUhpRSlGgVTegDaBZHQKuJA6RQrMF1fZQoaAZoCWgPQwiaQ1ILJYtcQJSGlFKUaBVN6ANoFkdAq5jTTSb6QHV9lChoBmgJaA9DCGk2j8NgtldAlIaUUpRoFU3oA2gWR0CroKDPWxyGdX2UKGgGaAloD0MIMlab/1c1YECUhpRSlGgVTegDaBZHQKujcz/p+tt1fZQoaAZoCWgPQwh+rOC3oTloQJSGlFKUaBVN6ANoFkdAq6PC4rjHXHV9lChoBmgJaA9DCIwwRbm0jGBAlIaUUpRoFU3oA2gWR0Cro9tvOyE+dX2UKGgGaAloD0MIdcjNcAN5WkCUhpRSlGgVTegDaBZHQKumV5WzWwx1fZQoaAZoCWgPQwhwlScQdj9WQJSGlFKUaBVN6ANoFkdAq6mgHAymAXV9lChoBmgJaA9DCG2P3nAfO2BAlIaUUpRoFU3oA2gWR0CrrPVoHs1LdX2UKGgGaAloD0MIbhYvFoYgZkCUhpRSlGgVTegDaBZHQKuvsk0Jng51fZQoaAZoCWgPQwjt72yPXiBhQJSGlFKUaBVN6ANoFkdAq7RKg5BC2XV9lChoBmgJaA9DCE27mGa62mNAlIaUUpRoFU3oA2gWR0CrtToQFs55dX2UKGgGaAloD0MICiyAKQPzXECUhpRSlGgVTegDaBZHQKu1hMRpUPx1fZQoaAZoCWgPQwg7Vb5nJCJfQJSGlFKUaBVN6ANoFkdAq7eHcclw+HV9lChoBmgJaA9DCARauoJthFVAlIaUUpRoFU3oA2gWR0CruN8L8aXKdX2UKGgGaAloD0MIdEF9y5ypWECUhpRSlGgVTegDaBZHQKu5BNFjNIN1fZQoaAZoCWgPQwivBigNNZxcQJSGlFKUaBVN6ANoFkdAq7nDHZK3/nV9lChoBmgJaA9DCOCik6XWimJAlIaUUpRoFU3oA2gWR0CrzF6JqIrOdX2UKGgGaAloD0MI06OpnsxSakCUhpRSlGgVTZQBaBZHQKvQKqrilzl1fZQoaAZoCWgPQwhFLGLYIRtxQJSGlFKUaBVNMQFoFkdAq9EvPw/gSHV9lChoBmgJaA9DCA4V4/zNxGJAlIaUUpRoFU3oA2gWR0Cr0gacAimmdX2UKGgGaAloD0MIb9bgfVXoYkCUhpRSlGgVTegDaBZHQKvTnvqC6H11fZQoaAZoCWgPQwhlHY6u0qViQJSGlFKUaBVN6ANoFkdAq9PNmOEM9nV9lChoBmgJaA9DCBJMNbMWcWJAlIaUUpRoFU3oA2gWR0Cr09st9QXRdX2UKGgGaAloD0MIXyUfuwtbX0CUhpRSlGgVTegDaBZHQKvVvCaZx711fZQoaAZoCWgPQwgp54u9F5RgQJSGlFKUaBVN6ANoFkdAq9lINsnAqXV9lChoBmgJaA9DCFkzMsjdf2BAlIaUUpRoFU3oA2gWR0Cr3XV4HHFQdX2UKGgGaAloD0MIyaze4Xbnb0CUhpRSlGgVTY0BaBZHQKvdlnkkrwx1fZQoaAZoCWgPQwhVhJuMKhVhQJSGlFKUaBVN6ANoFkdAq+CyT0QK8nV9lChoBmgJaA9DCEn3cwpyU2RAlIaUUpRoFU3oA2gWR0Cr5dJOWSlndX2UKGgGaAloD0MIzO80mXEqZECUhpRSlGgVTegDaBZHQKvmHIZIg/11fZQoaAZoCWgPQwirJR3lYLhaQJSGlFKUaBVN6ANoFkdAq+gZhz/6wnV9lChoBmgJaA9DCJmAXyNJomNAlIaUUpRoFU3oA2gWR0Cr6W/IKc/ddX2UKGgGaAloD0MI6Z0KuOcHZUCUhpRSlGgVTegDaBZHQKvqB+az/qB1fZQoaAZoCWgPQwgNxR1vMkFxQJSGlFKUaBVNWgFoFkdAq+wAAn2IwnV9lChoBmgJaA9DCOyjU1c+GVtAlIaUUpRoFU3oA2gWR0Cr/Lmplz2fdX2UKGgGaAloD0MIlSpR9pZ8XUCUhpRSlGgVTegDaBZHQKwCuSYgJTl1fZQoaAZoCWgPQwjKjLeV3iZkQJSGlFKUaBVN6ANoFkdArAOtsenyeHV9lChoBmgJaA9DCKyPh767ul9AlIaUUpRoFU3oA2gWR0CsBaflyR0VdX2UKGgGaAloD0MIsaNxqF/haECUhpRSlGgVTegDaBZHQKwF3HXmNip1fZQoaAZoCWgPQwhn0qbqnnViQJSGlFKUaBVN6ANoFkdArAXswYcebXV9lChoBmgJaA9DCI4CRMGMul1AlIaUUpRoFU3oA2gWR0CsCBvDP4VRdX2UKGgGaAloD0MIN9+I7llzZUCUhpRSlGgVTegDaBZHQKwK/TUAks11fZQoaAZoCWgPQwgsD9JT5C9cQJSGlFKUaBVN6ANoFkdArA5I3vQWvnV9lChoBmgJaA9DCOf7qfHSS1hAlIaUUpRoFU3oA2gWR0CsDmQZOzppdX2UKGgGaAloD0MIf74tWKoZYECUhpRSlGgVTegDaBZHQKwY5utwJgN1fZQoaAZoCWgPQwhU/yCSoSlgQJSGlFKUaBVN6ANoFkdArBlg1FYuCnV9lChoBmgJaA9DCM4WEFoPEF1AlIaUUpRoFU3oA2gWR0CsHCRtgrpadX2UKGgGaAloD0MIldIzvcSrbECUhpRSlGgVTUQCaBZHQKwcVoUSIxh1fZQoaAZoCWgPQwh47GexlMVlQJSGlFKUaBVN6ANoFkdArB1uOdXkpHV9lChoBmgJaA9DCKjg8IKIgGRAlIaUUpRoFU3oA2gWR0CsHfku6ErYdX2UKGgGaAloD0MIW+7MBMMnXECUhpRSlGgVTegDaBZHQKwfz9QXQ+l1fZQoaAZoCWgPQwiYiSKk7jJlQJSGlFKUaBVN6ANoFkdArCEESf16FHV9lChoBmgJaA9DCAoRcAhVI2JAlIaUUpRoFU3oA2gWR0CsNWpudf9hdX2UKGgGaAloD0MIxAlMp3WgX0CUhpRSlGgVTegDaBZHQKw2ydyT6i11fZQoaAZoCWgPQwgJjWDjehRmQJSGlFKUaBVN6ANoFkdArDnE3++/QHV9lChoBmgJaA9DCJcfuMoTTldAlIaUUpRoFU3oA2gWR0CsOdXuE25ydX2UKGgGaAloD0MI/3qFBXeYY0CUhpRSlGgVTegDaBZHQKw8J+mWMS91fZQoaAZoCWgPQwi139qJEsdiQJSGlFKUaBVN6ANoFkdArD901KoQ4HV9lChoBmgJaA9DCGL03ELXMGNAlIaUUpRoFU3oA2gWR0CsQrjVhCtzdX2UKGgGaAloD0MIX+tSI/SmWkCUhpRSlGgVTegDaBZHQKxC0iiZfD11fZQoaAZoCWgPQwi6u86GfGNiQJSGlFKUaBVN6ANoFkdArEqo+W4Vh3V9lChoBmgJaA9DCG9IowIn4mRAlIaUUpRoFU3oA2gWR0CsSvVjqfOEdX2UKGgGaAloD0MILq7xmWzXYECUhpRSlGgVTegDaBZHQKxNA2H+Idl1fZQoaAZoCWgPQwjusfShi35kQJSGlFKUaBVN6ANoFkdArE0z1qWTo3V9lChoBmgJaA9DCF2LFqAtY3FAlIaUUpRoFU1RAWgWR0CsTqbDMvAXdX2UKGgGaAloD0MI/tKiPkm5Y0CUhpRSlGgVTegDaBZHQKxOvSKFZgZ1fZQoaAZoCWgPQwhE3JxKBuBhQJSGlFKUaBVN6ANoFkdArE92QOnVG3V9lChoBmgJaA9DCJs4ud+hTF9AlIaUUpRoFU3oA2gWR0CsUglk6LfldX2UKGgGaAloD0MIJ92WyIU7Y0CUhpRSlGgVTegDaBZHQKxT6TvAoG91ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 372,
"n_steps": 1024,
"gamma": 0.9995,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 6,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}