BirdieByte1024 commited on
Commit
bf5fade
·
verified ·
1 Parent(s): 0ab3af7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -5
README.md CHANGED
@@ -1,5 +1,56 @@
1
- ---
2
- license: mit
3
- tags:
4
- - unsloth
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - medical
5
+ - dental
6
+ - lora
7
+ - qwen
8
+ - instruction-tuning
9
+ - unsloth
10
+ - adapter
11
+ - peft
12
+ - transformers
13
+ ---
14
+
15
+ # 🦷 doctor-dental-implant-LoRA-Qwen2.5-7B-Instruct
16
+
17
+ This is a **LoRA adapter** fine-tuned with [Unsloth](https://github.com/unslothai/unsloth) on a domain-specific dataset that combines:
18
+
19
+ - **Realistic doctor–patient conversations**
20
+ - **Dental implant Q&A** extracted from Straumann® technical manuals
21
+
22
+ > 🔬 Designed to make Qwen2.5-7B-Instruct capable of answering both general health questions and dental-specific scenarios.
23
+
24
+ ---
25
+
26
+ ## 🧠 Base Model
27
+
28
+ - **Base**: [`Qwen/Qwen2.5-VL-7B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)
29
+ - **Adapter**: LoRA (PEFT-based)
30
+
31
+ This repo contains only the **LoRA adapter weights**, not the full model.
32
+
33
+ ---
34
+
35
+ ## 🗂 Files
36
+
37
+ | File | Purpose |
38
+ |-------------------------|-------------------------------------|
39
+ | `adapter_model.safetensors` | LoRA weight file (for PEFT loading) |
40
+ | `adapter_config.json` | LoRA hyperparameter configuration |
41
+ | `tokenizer.json`, `vocab.json`, `merges.txt` | Tokenizer (shared with base model) |
42
+
43
+ ---
44
+
45
+ ## 📦 How to Use
46
+
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModelForCausalLM
49
+ from peft import PeftModel
50
+
51
+ # Load base model
52
+ base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
53
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
54
+
55
+ # Load adapter
56
+ model = PeftModel.from_pretrained(base, "BirdieByte1024/doctor-dental-implant-LoRA-Qwen2.5-7B-Instruct")