Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,56 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
tags:
|
4 |
-
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- medical
|
5 |
+
- dental
|
6 |
+
- lora
|
7 |
+
- qwen
|
8 |
+
- instruction-tuning
|
9 |
+
- unsloth
|
10 |
+
- adapter
|
11 |
+
- peft
|
12 |
+
- transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# 🦷 doctor-dental-implant-LoRA-Qwen2.5-7B-Instruct
|
16 |
+
|
17 |
+
This is a **LoRA adapter** fine-tuned with [Unsloth](https://github.com/unslothai/unsloth) on a domain-specific dataset that combines:
|
18 |
+
|
19 |
+
- **Realistic doctor–patient conversations**
|
20 |
+
- **Dental implant Q&A** extracted from Straumann® technical manuals
|
21 |
+
|
22 |
+
> 🔬 Designed to make Qwen2.5-7B-Instruct capable of answering both general health questions and dental-specific scenarios.
|
23 |
+
|
24 |
+
---
|
25 |
+
|
26 |
+
## 🧠 Base Model
|
27 |
+
|
28 |
+
- **Base**: [`Qwen/Qwen2.5-VL-7B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)
|
29 |
+
- **Adapter**: LoRA (PEFT-based)
|
30 |
+
|
31 |
+
This repo contains only the **LoRA adapter weights**, not the full model.
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## 🗂 Files
|
36 |
+
|
37 |
+
| File | Purpose |
|
38 |
+
|-------------------------|-------------------------------------|
|
39 |
+
| `adapter_model.safetensors` | LoRA weight file (for PEFT loading) |
|
40 |
+
| `adapter_config.json` | LoRA hyperparameter configuration |
|
41 |
+
| `tokenizer.json`, `vocab.json`, `merges.txt` | Tokenizer (shared with base model) |
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
## 📦 How to Use
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
49 |
+
from peft import PeftModel
|
50 |
+
|
51 |
+
# Load base model
|
52 |
+
base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
|
54 |
+
|
55 |
+
# Load adapter
|
56 |
+
model = PeftModel.from_pretrained(base, "BirdieByte1024/doctor-dental-implant-LoRA-Qwen2.5-7B-Instruct")
|