File size: 25,451 Bytes
889f18a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:498970
- loss:BPRLoss
base_model: nomic-ai/nomic-embed-text-v2-moe
widget:
- source_sentence: what was the start treaty 2010
sentences:
- "Strategic Offensive Reductions: The Treaty between the United States of America\
\ and the Russian Federation on Measures for the Further Reduction and Limitation\
\ of Strategic Offensive Arms, also known as the New START Treaty, entered into\
\ force on February 5, 2011.nder the Treaty, the United States and Russia must\
\ meet the Treatyâ\x80\x99s central limits on strategic arms by February 5, 2018;\
\ seven years from the date the Treaty entered into force. Each Party has the\
\ flexibility to determine for itself the structure of its strategic forces within\
\ the aggregate limits of the Treaty."
- 'Nuclear pharmacy practice: hour-for-hour credit in a licensed nuclear pharmacy
or health care facility approved by state or federal agencies to handle radioactive
materials, to a maximum of 4,000 hours.'
- 'Signed: 18 June 1979. Entered into Force: Never entered into force; superseded
by the START I Treaty in 1991. Duration: Until 31 December 1985; unless the Treaty
is replaced earlier by an agreement further limiting strategic offensive arms.
Parties: Soviet Union and United States.'
- source_sentence: is pez a word
sentences:
- From dispensers to candy, there's a PEZ for anyone and everyone. Look for these
PEZ products at your local retailer.rom dispensers to candy, there's a PEZ for
anyone and everyone. Look for these PEZ products at your local retailer.
- PEZ was first introduced in 1927 in Vienna, Austria as a breath mint for adults!
The word PEZ was created using the first, middle and last letter in the German
word for peppermint P feff E rmin Z.
- Boonville is a city in Boon Township, Warrick County, Indiana, United States.
The population was 6,246 at the 2010 census.The city is the county seat of Warrick
County.oonville was founded in 1818 and named for Jesse Boon, father of Ratliff
Boon. A post office has been in operation at Boonville since 1820. Boonville was
incorporated in 1858.
- source_sentence: us budget deficit by president
sentences:
- "By 2022, the government will once again be running trillion-dollar deficits,\
\ the report said. â\x80\x9CWe still have a lot of work to do,â\x80\x9D said House\
\ Budget Committee Chairman Paul Ryan. Lawmakers can take some credit for the\
\ short-term improvement in the budget outlook, the report showed, though the\
\ strengthening economy helps as well."
- However, when they are 3 to 4 months old, they become susceptible to the disease,
so all calves should be vaccinated for blackleg by 4 months of age. A revaccination
3 to 6 weeks later according to product label directions is necessary to provide
the best protec-tion.lackleg seldom affects cattle older than 2 years of age,
most likely due to immunity induced by vaccines or natural exposure. However,
sporadic cases do occur in cattle older than 2 years and are often associated
with the reuse of needles for multiple injections.
- According to this method, Barack Obama's budget is projected to run a deficit
of $7.3 trillion over his eight years, making him the president with the largest
budget deficit. George W. Bush is second, with a deficit of $3.29 trillion over
his eight years.
- source_sentence: what is a sixth sense
sentences:
- 1 Extrasensory perception (ESP), commonly called the sixth sense. 2 Equilibrioception
(sense of balance) and proprioception (sense of body position), commonly accepted
physiological senses in addition to the usually considered five senses.
- 'Glaze or glazing may refer to: 1 Glaze (metallurgy), a layer of compacted sintered
oxide formed on some metals. 2 Glaze (cooking technique), a coating of a glossy,
often sweet, mixture applied to food. Glaze (painting technique), a layer of
paint, thinned with a medium, so as to become somewhat transparent.'
- Definition of Proprioception. The term proprioception is used to describe the
sensory information that contributes to the sense of position of self and movement.
Sir Charles Bell named the sixth sense as the sense of the positions and actions
of the limbs (McCloskey 1978).eceptors of Proprioception. It is well recognized
that joint movements activate receptors in the joint, skin and muscle. In turn,
any of these receptors may play a role in the perception and control of limb movement
and joint angle.
- source_sentence: what services are offered by adult day care
sentences:
- The Met Life Market survey of 2008 on adult day services states the average cost
for adult day care services is $64 per day. There has been an increase of 5% in
these services in the past year.
- Consumer Guide to Long Term Care. Adult Day Care. Adult day care is a planned
program offered in a group setting that provides services that improve or maintain
health or functioning, and social activities for seniors and persons with disabilities.
- As nouns the difference between tackle and guard is that tackle is (nautical)
a system of ropes and blocks used to increase the force applied to the free end
of the rope while guard is a person who, or thing that, protects or watches over
something. As verbs the difference between tackle and guard
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on nomic-ai/nomic-embed-text-v2-moe
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) <!-- at revision f6a8873b415144a69ffc529ec1e234d1e00ee765 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BlackBeenie/nomic-embed-text-v2-moe-msmarco-bpr")
# Run inference
sentences = [
'what services are offered by adult day care',
'Consumer Guide to Long Term Care. Adult Day Care. Adult day care is a planned program offered in a group setting that provides services that improve or maintain health or functioning, and social activities for seniors and persons with disabilities.',
'The Met Life Market survey of 2008 on adult day services states the average cost for adult day care services is $64 per day. There has been an increase of 5% in these services in the past year.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 498,970 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.75 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 89.23 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 86.66 tokens</li><li>max: 280 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 |
|:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what the history of bluetooth</code> | <code>When asked about the name Bluetooth, I explained that Bluetooth was borrowed from the 10th century, second King of Denmark, King Harald Bluetooth; who was famous for uniting Scandinavia just as we intended to unite the PC and cellular industries with a short-range wireless link.</code> | <code>Technology: 1 How secure is a Bluetooth network? 2 What is Frequency-Hopping Spread Spectrum (FHSS)? 3 Will other RF (Radio Frequency) devices interfere with Bluetooth Devices? 4 Will Bluetooth and Wireless LAN (WLAN) interfere with each other? 5 What is the data throughput speed of a Bluetooth connection? 6 What is the range of Bluetooth 7 ... What kind of ...</code> |
| <code>how thin can a concrete slab be</code> | <code>Another issue that must be addressed is the added weight of the thin-slab. Poured gypsum thin-slabs typically add 13 to 15 pounds per square foot to the dead loading of a floor structure. Standard weight concrete thin slabs add about 18 pounds per square foot (at 1.5 thickness).</code> | <code>Find the Area in square feet: We will use a concrete slab pour for our example. Letâs say that we need to figure out the yardage for a slab that will be 15 feet long by 10 feet wide and 4 inches thick. First we find the area by multiplying the length times the width. 1 15 feet X 10 feet = 150 square feet.</code> |
| <code>how long to cook eggs to hard boil</code> | <code>This method works best if the eggs are in a single layer, but you can double them up as well, you'll just need to add more time to the steaming time. 3 Set your timer for 6 minutes for soft boiled, 10 minutes for hard boiled with a still translucent and bright yolk, or 12-15 minutes for cooked-through hard boiled.</code> | <code>Hard-Steamed Eggs. Fill a pot that can comfortably hold your steamer with the lid on with 1 to 2 inches of water. Bring to a rolling boil, 212 degrees Fahrenheit. Place your eggs in a metal steamer, and lower the basket into the pot. The eggs should sit above the boiling water. Cover and cook for 12 minutes. Hard-steamed eggs, like hard-boiled eggs, are eggs that are cooked until the egg yolk is fully set and has turned to a chalky texture.</code> |
* Loss: <code>beir.losses.bpr_loss.BPRLoss</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 5
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0321 | 500 | 0.3396 |
| 0.0641 | 1000 | 0.2094 |
| 0.0962 | 1500 | 0.21 |
| 0.1283 | 2000 | 0.1955 |
| 0.1603 | 2500 | 0.1989 |
| 0.1924 | 3000 | 0.1851 |
| 0.2245 | 3500 | 0.1839 |
| 0.2565 | 4000 | 0.1859 |
| 0.2886 | 4500 | 0.1892 |
| 0.3207 | 5000 | 0.1865 |
| 0.3527 | 5500 | 0.1773 |
| 0.3848 | 6000 | 0.1796 |
| 0.4169 | 6500 | 0.1929 |
| 0.4489 | 7000 | 0.1829 |
| 0.4810 | 7500 | 0.172 |
| 0.5131 | 8000 | 0.1792 |
| 0.5451 | 8500 | 0.1747 |
| 0.5772 | 9000 | 0.1802 |
| 0.6092 | 9500 | 0.1856 |
| 0.6413 | 10000 | 0.1751 |
| 0.6734 | 10500 | 0.173 |
| 0.7054 | 11000 | 0.1774 |
| 0.7375 | 11500 | 0.1722 |
| 0.7696 | 12000 | 0.1825 |
| 0.8016 | 12500 | 0.1714 |
| 0.8337 | 13000 | 0.1732 |
| 0.8658 | 13500 | 0.167 |
| 0.8978 | 14000 | 0.1792 |
| 0.9299 | 14500 | 0.1697 |
| 0.9620 | 15000 | 0.1682 |
| 0.9940 | 15500 | 0.1764 |
| 1.0 | 15593 | - |
| 1.0261 | 16000 | 0.0875 |
| 1.0582 | 16500 | 0.0798 |
| 1.0902 | 17000 | 0.0764 |
| 1.1223 | 17500 | 0.0783 |
| 1.1544 | 18000 | 0.0759 |
| 1.1864 | 18500 | 0.0834 |
| 1.2185 | 19000 | 0.082 |
| 1.2506 | 19500 | 0.0827 |
| 1.2826 | 20000 | 0.0876 |
| 1.3147 | 20500 | 0.0819 |
| 1.3468 | 21000 | 0.0841 |
| 1.3788 | 21500 | 0.0815 |
| 1.4109 | 22000 | 0.0819 |
| 1.4430 | 22500 | 0.0883 |
| 1.4750 | 23000 | 0.0826 |
| 1.5071 | 23500 | 0.0837 |
| 1.5392 | 24000 | 0.086 |
| 1.5712 | 24500 | 0.0806 |
| 1.6033 | 25000 | 0.0918 |
| 1.6353 | 25500 | 0.0885 |
| 1.6674 | 26000 | 0.0885 |
| 1.6995 | 26500 | 0.088 |
| 1.7315 | 27000 | 0.0843 |
| 1.7636 | 27500 | 0.0915 |
| 1.7957 | 28000 | 0.0843 |
| 1.8277 | 28500 | 0.0868 |
| 1.8598 | 29000 | 0.0857 |
| 1.8919 | 29500 | 0.0931 |
| 1.9239 | 30000 | 0.0852 |
| 1.9560 | 30500 | 0.0913 |
| 1.9881 | 31000 | 0.0857 |
| 2.0 | 31186 | - |
| 2.0201 | 31500 | 0.0547 |
| 2.0522 | 32000 | 0.0459 |
| 2.0843 | 32500 | 0.0451 |
| 2.1163 | 33000 | 0.0407 |
| 2.1484 | 33500 | 0.0469 |
| 2.1805 | 34000 | 0.0459 |
| 2.2125 | 34500 | 0.0508 |
| 2.2446 | 35000 | 0.0508 |
| 2.2767 | 35500 | 0.0518 |
| 2.3087 | 36000 | 0.0552 |
| 2.3408 | 36500 | 0.0491 |
| 2.3729 | 37000 | 0.0575 |
| 2.4049 | 37500 | 0.0558 |
| 2.4370 | 38000 | 0.0475 |
| 2.4691 | 38500 | 0.0486 |
| 2.5011 | 39000 | 0.0536 |
| 2.5332 | 39500 | 0.0559 |
| 2.5653 | 40000 | 0.0524 |
| 2.5973 | 40500 | 0.0496 |
| 2.6294 | 41000 | 0.0486 |
| 2.6615 | 41500 | 0.0526 |
| 2.6935 | 42000 | 0.0443 |
| 2.7256 | 42500 | 0.058 |
| 2.7576 | 43000 | 0.0543 |
| 2.7897 | 43500 | 0.0527 |
| 2.8218 | 44000 | 0.0528 |
| 2.8538 | 44500 | 0.0573 |
| 2.8859 | 45000 | 0.0628 |
| 2.9180 | 45500 | 0.0443 |
| 2.9500 | 46000 | 0.0531 |
| 2.9821 | 46500 | 0.0554 |
| 3.0 | 46779 | - |
| 3.0142 | 47000 | 0.0346 |
| 3.0462 | 47500 | 0.0288 |
| 3.0783 | 48000 | 0.0219 |
| 3.1104 | 48500 | 0.0259 |
| 3.1424 | 49000 | 0.0237 |
| 3.1745 | 49500 | 0.0307 |
| 3.2066 | 50000 | 0.0234 |
| 3.2386 | 50500 | 0.0312 |
| 3.2707 | 51000 | 0.0297 |
| 3.3028 | 51500 | 0.0299 |
| 3.3348 | 52000 | 0.0326 |
| 3.3669 | 52500 | 0.0266 |
| 3.3990 | 53000 | 0.0296 |
| 3.4310 | 53500 | 0.0289 |
| 3.4631 | 54000 | 0.0216 |
| 3.4952 | 54500 | 0.0289 |
| 3.5272 | 55000 | 0.033 |
| 3.5593 | 55500 | 0.0248 |
| 3.5914 | 56000 | 0.0246 |
| 3.6234 | 56500 | 0.0287 |
| 3.6555 | 57000 | 0.0267 |
| 3.6876 | 57500 | 0.0285 |
| 3.7196 | 58000 | 0.0288 |
| 3.7517 | 58500 | 0.0283 |
| 3.7837 | 59000 | 0.0283 |
| 3.8158 | 59500 | 0.029 |
| 3.8479 | 60000 | 0.0327 |
| 3.8799 | 60500 | 0.0239 |
| 3.9120 | 61000 | 0.0356 |
| 3.9441 | 61500 | 0.0323 |
| 3.9761 | 62000 | 0.0213 |
| 4.0 | 62372 | - |
| 4.0082 | 62500 | 0.0275 |
| 4.0403 | 63000 | 0.0125 |
| 4.0723 | 63500 | 0.0183 |
| 4.1044 | 64000 | 0.0138 |
| 4.1365 | 64500 | 0.0174 |
| 4.1685 | 65000 | 0.0088 |
| 4.2006 | 65500 | 0.0126 |
| 4.2327 | 66000 | 0.0134 |
| 4.2647 | 66500 | 0.0099 |
| 4.2968 | 67000 | 0.0188 |
| 4.3289 | 67500 | 0.0112 |
| 4.3609 | 68000 | 0.0156 |
| 4.3930 | 68500 | 0.0175 |
| 4.4251 | 69000 | 0.0128 |
| 4.4571 | 69500 | 0.0154 |
| 4.4892 | 70000 | 0.0127 |
| 4.5213 | 70500 | 0.0131 |
| 4.5533 | 71000 | 0.017 |
| 4.5854 | 71500 | 0.0116 |
| 4.6175 | 72000 | 0.0137 |
| 4.6495 | 72500 | 0.0156 |
| 4.6816 | 73000 | 0.0155 |
| 4.7137 | 73500 | 0.0078 |
| 4.7457 | 74000 | 0.0152 |
| 4.7778 | 74500 | 0.0089 |
| 4.8099 | 75000 | 0.0116 |
| 4.8419 | 75500 | 0.0144 |
| 4.8740 | 76000 | 0.0112 |
| 4.9060 | 76500 | 0.0108 |
| 4.9381 | 77000 | 0.0188 |
| 4.9702 | 77500 | 0.0109 |
| 5.0 | 77965 | - |
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |