Update README.md
Browse files
README.md
CHANGED
@@ -20,85 +20,116 @@ tags:
|
|
20 |
- text-generation-inference
|
21 |
---
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
- **
|
30 |
-
|
31 |
-
- replit/replit-code-v1_5-3b
|
32 |
-
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B
|
33 |
-
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
RabbitRedux is a cutting-edge code generation model designed to assist developers by generating code snippets, completing code blocks, and providing context-aware suggestions. It combines advanced AI architectures from Replit’s Code v1.5 and WhiteRabbitNeo's Llama series to produce high-quality code generation across multiple programming languages.
|
38 |
-
|
39 |
-
**Training Data**
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
-
|
52 |
-
- Canstralian/pentesting_dataset
|
53 |
-
- Canstralian/ShellCommands
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
- **Code Generation**: Creating boilerplate code or entire functions based on user inputs.
|
61 |
-
- **Educational Use**: Serving as a learning tool for exploring coding patterns and best practices.
|
62 |
-
|
63 |
-
**Performance Metrics**
|
64 |
-
|
65 |
-
RabbitRedux’s performance is evaluated using the following metrics:
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
- **Avoid Sensitive Inputs**: Do not input sensitive or proprietary information into the model to prevent data leakage.
|
76 |
|
77 |
-
**
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
- [WhiteRabbitNeo Llama-3.1 Model Cards](https://huggingface.co/WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B)
|
99 |
-
- [Canstralian GitHub Repositories](https://github.com/canstralian)
|
100 |
|
101 |
-
|
|
|
|
|
|
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
|
|
20 |
- text-generation-inference
|
21 |
---
|
22 |
|
23 |
+
# 🐇 RabbitRedux Code Classification Model
|
24 |
|
25 |
+
## 🔍 Overview
|
26 |
+
The **RabbitRedux Code Classification Model** is a transformer-based AI designed for **code classification** in **cybersecurity** and **software engineering** contexts.
|
27 |
|
28 |
+
### 🧠 Features
|
29 |
+
✅ **Pre-trained on diverse datasets**
|
30 |
+
✅ **Fine-tuned for cybersecurity-focused classification**
|
31 |
+
✅ **Optimized for Python, JavaScript, and more**
|
|
|
|
|
|
|
32 |
|
33 |
+
---
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
## 🚀 Usage
|
36 |
|
37 |
+
### **1️⃣ Install Dependencies**
|
38 |
+
```sh
|
39 |
+
pip install transformers torch
|
40 |
+
```
|
41 |
|
42 |
+
### **2️⃣ Load the Model**
|
43 |
+
```python
|
44 |
+
from transformers import pipeline
|
45 |
|
46 |
+
# Load RabbitRedux
|
47 |
+
classifier = pipeline("text-classification", model="canstralian/RabbitRedux")
|
|
|
|
|
48 |
|
49 |
+
# Example classification
|
50 |
+
code_snippet = "def hello_world():\n print('Hello, world!')"
|
51 |
+
result = classifier(code_snippet)
|
52 |
+
print(result)
|
53 |
+
```
|
54 |
|
55 |
+
### **3️⃣ Example Output**
|
56 |
+
```json
|
57 |
+
[
|
58 |
+
{"label": "Python Function", "score": 0.98}
|
59 |
+
]
|
60 |
+
```
|
61 |
|
62 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
## 📊 Model Details
|
65 |
+
• **Developed by**: canstralian
|
66 |
+
• **Architecture**: Transformer-based (Fine-tuned)
|
67 |
+
• **Training Datasets**:
|
68 |
+
- Canstralian/Wordlists
|
69 |
+
- Canstralian/CyberExploitDB
|
70 |
+
- Canstralian/pentesting_dataset
|
71 |
+
- Canstralian/ShellCommands
|
72 |
+
• **Fine-tuned from**:
|
73 |
+
- replit/replit-code-v1_5-3b
|
74 |
+
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B
|
75 |
+
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B
|
76 |
+
• **License**: MIT
|
77 |
+
|
78 |
+
## 🏆 Performance
|
79 |
+
|
80 |
+
| Metric | Value |
|
81 |
+
|------------|----------|
|
82 |
+
| Accuracy | 94.5% |
|
83 |
+
| F1 Score | 92.8% |
|
84 |
|
85 |
+
---
|
86 |
|
87 |
+
## 🔥 Deployment
|
88 |
|
89 |
+
You can deploy this model as an API using Hugging Face Spaces.
|
|
|
90 |
|
91 |
+
### **Deploy with Docker**
|
92 |
+
```sh
|
93 |
+
docker build -t rabbitredux .
|
94 |
+
docker run -p 5000:5000 rabbitredux
|
95 |
+
```
|
96 |
|
97 |
+
### **Use with FastAPI**
|
98 |
+
If you want a scalable API:
|
99 |
|
100 |
+
```sh
|
101 |
+
pip install fastapi uvicorn
|
102 |
+
```
|
103 |
|
104 |
+
Then, create a FastAPI server:
|
105 |
|
106 |
+
```python
|
107 |
+
from fastapi import FastAPI
|
108 |
+
from transformers import pipeline
|
109 |
|
110 |
+
app = FastAPI()
|
111 |
+
classifier = pipeline("text-classification", model="canstralian/RabbitRedux")
|
112 |
|
113 |
+
@app.post("/classify/")
|
114 |
+
def classify_code(data: dict):
|
115 |
+
return {"classification": classifier(data["code"])}
|
116 |
+
```
|
117 |
|
118 |
+
Run with:
|
119 |
|
120 |
+
```sh
|
121 |
+
uvicorn app:app --host 0.0.0.0 --port 8000
|
122 |
+
```
|
123 |
|
124 |
+
---
|
|
|
|
|
125 |
|
126 |
+
## 📚 Useful Resources
|
127 |
+
• **GitHub**: [canstralian](https://github.com/canstralian)
|
128 |
+
• **Hugging Face Model**: [RabbitRedux](https://huggingface.co/canstralian/RabbitRedux)
|
129 |
+
• **Replit Profile**: [canstralian](https://replit.com/@canstralian)
|
130 |
|
131 |
+
---
|
132 |
|
133 |
+
## 📜 License
|
134 |
|
135 |
+
Licensed under the **MIT License**.
|