|
|
import sys |
|
|
import os |
|
|
sys.path.append('/scratch/pranamlab/tong/ReDi_discrete/smiles') |
|
|
import xgboost as xgb |
|
|
import torch |
|
|
import numpy as np |
|
|
from transformers import AutoModelForMaskedLM |
|
|
from smiles_tokenizer.my_tokenizers import SMILES_SPE_Tokenizer |
|
|
import warnings |
|
|
import numpy as np |
|
|
import esm |
|
|
import torch.nn as nn |
|
|
from rdkit import Chem, rdBase, DataStructs |
|
|
|
|
|
rdBase.DisableLog('rdApp.error') |
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
|
|
|
class Analyzer: |
|
|
|
|
|
def __init__(self, tokenizer): |
|
|
self.tokenizer = tokenizer |
|
|
|
|
|
def get_scores(self, x): |
|
|
"""Check if the SMILES represents a peptide structure""" |
|
|
results = [] |
|
|
|
|
|
smiles_list = self.tokenizer.batch_decode(x) |
|
|
for smiles in smiles_list: |
|
|
mol = Chem.MolFromSmiles(smiles) |
|
|
if mol is None: |
|
|
results.append(0) |
|
|
continue |
|
|
|
|
|
|
|
|
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)') |
|
|
|
|
|
|
|
|
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)') |
|
|
|
|
|
if mol.HasSubstructMatch(peptide_bond_pattern) or mol.HasSubstructMatch(n_methyl_pattern): |
|
|
results.append(1) |
|
|
else: |
|
|
results.append(0) |
|
|
|
|
|
return torch.tensor(results) |
|
|
|
|
|
def __call__(self, x): |
|
|
scores = self.get_scores(x) |
|
|
return torch.tensor(scores) |
|
|
|
|
|
|
|
|
class Hemolysis: |
|
|
|
|
|
def __init__(self, device): |
|
|
self.predictor = xgb.Booster(model_file='/scratch/pranamlab/tong/ReDi_discrete/smiles/scoring/checkpoints/hemolysis-xgboost.json') |
|
|
self.emb_model = AutoModelForMaskedLM.from_pretrained('aaronfeller/PeptideCLM-23M-all').roformer.to(device) |
|
|
|
|
|
def get_scores(self, x): |
|
|
scores = np.ones(len(x)) |
|
|
features = np.array(self.emb_model(input_ids=x).last_hidden_state.mean(dim=1).detach().cpu()) |
|
|
|
|
|
if len(features) == 0: |
|
|
return scores |
|
|
|
|
|
features = np.nan_to_num(features, nan=0.) |
|
|
features = np.clip(features, np.finfo(np.float32).min, np.finfo(np.float32).max) |
|
|
|
|
|
features = xgb.DMatrix(features) |
|
|
|
|
|
probs = self.predictor.predict(features) |
|
|
|
|
|
return scores - probs |
|
|
|
|
|
def __call__(self, x): |
|
|
scores = self.get_scores(x) |
|
|
return torch.tensor(scores) |
|
|
|
|
|
|
|
|
class Nonfouling: |
|
|
|
|
|
def __init__(self, device): |
|
|
self.predictor = xgb.Booster(model_file='/scratch/pranamlab/tong/ReDi_discrete/smiles/scoring/checkpoints/nonfouling-xgboost.json') |
|
|
self.emb_model = AutoModelForMaskedLM.from_pretrained('aaronfeller/PeptideCLM-23M-all').roformer.to(device) |
|
|
|
|
|
def get_scores(self, x): |
|
|
scores = np.zeros(len(x)) |
|
|
features = np.array(self.emb_model(input_ids=x).last_hidden_state.mean(dim=1).detach().cpu()) |
|
|
|
|
|
if len(features) == 0: |
|
|
return scores |
|
|
|
|
|
features = np.nan_to_num(features, nan=0.) |
|
|
features = np.clip(features, np.finfo(np.float32).min, np.finfo(np.float32).max) |
|
|
|
|
|
features = xgb.DMatrix(features) |
|
|
|
|
|
scores = self.predictor.predict(features) |
|
|
|
|
|
return scores |
|
|
|
|
|
def __call__(self, x): |
|
|
scores = self.get_scores(x) |
|
|
return torch.tensor(scores) |
|
|
|
|
|
|
|
|
class Solubility: |
|
|
def __init__(self, device): |
|
|
self.predictor = xgb.Booster(model_file='/scratch/pranamlab/tong/ReDi_discrete/smiles/scoring/checkpoints/solubility-xgboost.json') |
|
|
self.emb_model = AutoModelForMaskedLM.from_pretrained('aaronfeller/PeptideCLM-23M-all').roformer.to(device) |
|
|
|
|
|
def get_scores(self, x): |
|
|
scores = np.zeros(len(x)) |
|
|
features = np.array(self.emb_model(input_ids=x).last_hidden_state.mean(dim=1).detach().cpu()) |
|
|
|
|
|
if len(features) == 0: |
|
|
return scores |
|
|
|
|
|
features = np.nan_to_num(features, nan=0.) |
|
|
features = np.clip(features, np.finfo(np.float32).min, np.finfo(np.float32).max) |
|
|
|
|
|
features = xgb.DMatrix(features) |
|
|
|
|
|
scores = self.predictor.predict(features) |
|
|
return scores |
|
|
|
|
|
def __call__(self, x): |
|
|
scores = self.get_scores(x) |
|
|
return torch.tensor(scores) |
|
|
|
|
|
|
|
|
class ImprovedBindingPredictor(nn.Module): |
|
|
def __init__(self, |
|
|
esm_dim=1280, |
|
|
smiles_dim=768, |
|
|
hidden_dim=512, |
|
|
n_heads=8, |
|
|
n_layers=3, |
|
|
dropout=0.1): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.tight_threshold = 7.5 |
|
|
self.weak_threshold = 6.0 |
|
|
|
|
|
|
|
|
self.smiles_projection = nn.Linear(smiles_dim, hidden_dim) |
|
|
self.protein_projection = nn.Linear(esm_dim, hidden_dim) |
|
|
self.protein_norm = nn.LayerNorm(hidden_dim) |
|
|
self.smiles_norm = nn.LayerNorm(hidden_dim) |
|
|
|
|
|
|
|
|
self.cross_attention_layers = nn.ModuleList([ |
|
|
nn.ModuleDict({ |
|
|
'attention': nn.MultiheadAttention(hidden_dim, n_heads, dropout=dropout), |
|
|
'norm1': nn.LayerNorm(hidden_dim), |
|
|
'ffn': nn.Sequential( |
|
|
nn.Linear(hidden_dim, hidden_dim * 4), |
|
|
nn.ReLU(), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(hidden_dim * 4, hidden_dim) |
|
|
), |
|
|
'norm2': nn.LayerNorm(hidden_dim) |
|
|
}) for _ in range(n_layers) |
|
|
]) |
|
|
|
|
|
|
|
|
self.shared_head = nn.Sequential( |
|
|
nn.Linear(hidden_dim * 2, hidden_dim), |
|
|
nn.ReLU(), |
|
|
nn.Dropout(dropout), |
|
|
) |
|
|
|
|
|
|
|
|
self.regression_head = nn.Linear(hidden_dim, 1) |
|
|
|
|
|
|
|
|
self.classification_head = nn.Linear(hidden_dim, 3) |
|
|
|
|
|
|
|
|
def get_binding_class(self, affinity): |
|
|
"""Convert affinity values to class indices |
|
|
0: tight binding (>= 7.5) |
|
|
1: medium binding (6.0-7.5) |
|
|
2: weak binding (< 6.0) |
|
|
""" |
|
|
if isinstance(affinity, torch.Tensor): |
|
|
tight_mask = affinity >= self.tight_threshold |
|
|
weak_mask = affinity < self.weak_threshold |
|
|
medium_mask = ~(tight_mask | weak_mask) |
|
|
|
|
|
classes = torch.zeros_like(affinity, dtype=torch.long) |
|
|
classes[medium_mask] = 1 |
|
|
classes[weak_mask] = 2 |
|
|
return classes |
|
|
else: |
|
|
if affinity >= self.tight_threshold: |
|
|
return 0 |
|
|
elif affinity < self.weak_threshold: |
|
|
return 2 |
|
|
else: |
|
|
return 1 |
|
|
|
|
|
def forward(self, protein_emb, smiles_emb): |
|
|
protein = self.protein_norm(self.protein_projection(protein_emb)) |
|
|
smiles = self.smiles_norm(self.smiles_projection(smiles_emb)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for layer in self.cross_attention_layers: |
|
|
|
|
|
attended_protein = layer['attention']( |
|
|
protein, smiles, smiles |
|
|
)[0] |
|
|
protein = layer['norm1'](protein + attended_protein) |
|
|
protein = layer['norm2'](protein + layer['ffn'](protein)) |
|
|
|
|
|
|
|
|
attended_smiles = layer['attention']( |
|
|
smiles, protein, protein |
|
|
)[0] |
|
|
smiles = layer['norm1'](smiles + attended_smiles) |
|
|
smiles = layer['norm2'](smiles + layer['ffn'](smiles)) |
|
|
|
|
|
|
|
|
protein_pool = torch.mean(protein, dim=0) |
|
|
smiles_pool = torch.mean(smiles, dim=0) |
|
|
|
|
|
|
|
|
combined = torch.cat([protein_pool, smiles_pool], dim=-1) |
|
|
|
|
|
|
|
|
shared_features = self.shared_head(combined) |
|
|
|
|
|
regression_output = self.regression_head(shared_features) |
|
|
classification_logits = self.classification_head(shared_features) |
|
|
|
|
|
return regression_output, classification_logits |
|
|
|
|
|
class BindingAffinity: |
|
|
def __init__(self, prot_seq, device, model_type='PeptideCLM'): |
|
|
super().__init__() |
|
|
|
|
|
self.pep_model = AutoModelForMaskedLM.from_pretrained('aaronfeller/PeptideCLM-23M-all').roformer.to(device) |
|
|
|
|
|
self.model = ImprovedBindingPredictor(smiles_dim=768).to(device) |
|
|
checkpoint = torch.load('/scratch/pranamlab/tong/ReDi_discrete/smiles/scoring/checkpoints/binding-affinity.pt', weights_only=False) |
|
|
self.model.load_state_dict(checkpoint['model_state_dict']) |
|
|
|
|
|
self.model.eval() |
|
|
|
|
|
self.esm_model, alphabet = esm.pretrained.esm2_t33_650M_UR50D() |
|
|
self.esm_model.to(device) |
|
|
self.prot_tokenizer = alphabet.get_batch_converter() |
|
|
|
|
|
data = [("target", prot_seq)] |
|
|
|
|
|
_, _, prot_tokens = self.prot_tokenizer(data) |
|
|
prot_tokens = prot_tokens.to(device) |
|
|
with torch.no_grad(): |
|
|
results = self.esm_model.forward(prot_tokens, repr_layers=[33]) |
|
|
prot_emb = results["representations"][33] |
|
|
|
|
|
self.prot_emb = prot_emb[0] |
|
|
self.prot_emb = torch.mean(self.prot_emb, dim=0, keepdim=True).to(device) |
|
|
|
|
|
def forward(self, x): |
|
|
with torch.no_grad(): |
|
|
scores = [] |
|
|
pep_emb = self.pep_model(input_ids=x, output_hidden_states=True).last_hidden_state.mean(dim=1, keepdim=True) |
|
|
for pep in pep_emb: |
|
|
score, logits = self.model.forward(self.prot_emb, pep) |
|
|
scores.append(score.item() / 10) |
|
|
|
|
|
return torch.tensor(scores) |
|
|
|
|
|
def __call__(self, x): |
|
|
return self.forward(x) |
|
|
|