File size: 28,694 Bytes
b7bb480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What is the date of the Gallup report regarding employer care for
    employee wellbeing?
  sentences:
  - sense of purpose Defining work wellbeing
  - What constitutes meaningful conversations between managers and employees? Gallup
    found they include recognition and discussion about collaboration, goals, and
    priorities, and the employee’s strengths. These conversations prevent employees
    from feeling disconnected from the organization because managers stay in touch
    with what each employee contributes and can then articulate how that work affects
    the larger organization. The conversations ensure that expectations can be adjusted
    as the business needs change and in what ways those changing expectations interact
    with coworker roles.
  - March 18, 2022 Gallup https://www.gallup.com/workplace/390776/percent-feel-employer-cares-wellbeing-plummets.aspx
    Gallup World Headquarters, 901 F Street, Washington, D.C., 20001, U.S.A +1 202.715.3030
- source_sentence: What services does Evernorth Health Services provide?
  sentences:
  - 'Focusing on employee wellbeing and acknowledging the whole person. Since work
    and life are blended for many, consider the demands of life inside and out of
    the workplace. Consider career, social, financial, physical, and community wellbeing
    impacts and resources.


    Tailoring communication to reach their team where they are. Transparent and creative
    omnichannel communication to employees and customers is more likely to reach and
    resonate with a wide variety of people in many different work-life situations.'
  - 'Investor Relations


    Careers


    Bottom FB - column 3


    COVID Resource Center


    Health and Wellness


    Member Resources


    Bottom FB - column 4


    The Cigna Group


    Cigna Healthcare


    Evernorth Health Services


    International'
  - 1. The evolution of the disease burden. While McKinsey & Company employs many
    medical experts and scientists, we are not a disease forecasting firm. We rely
    on disease-burden forecasts globally and for the United States provided by IHME,
    which maintains the most comprehensive database of the global disease burden and
    for the United States as whole. Forecasts of the global and US disease burden
    are inherently uncertain and health shocks such as the COVID-19 pandemic may affect
    forecasts.
- source_sentence: How does the theme of "Wellbeing" relate to employees' perceptions
    of their work-life balance?
  sentences:
  - "engagement as an extremely important priority—are effectively using metrics and\
    \ shared some best practices for tying engagement to business performance. \n\
    Copyright © 2013 Harvard Business School Publishing. All rights reserved.The Impact\
    \ of  \nEmployee Engagement on Performance\nhighlights\n71%\nof respondents rank\
    \  \nemployee engagement as  \nvery important to achieving  \noverall organizational\
    \ success.\n72%\nof respondents rank recognition  \ngiven for high performers\
    \ as  \nhaving a significant impact on  \nemployee engagement.\n24% \nof respondents\
    \ say employees  \nin their organization are  \nhighly engaged."
  - 'figure 10

    Senior managers were far more likely to be optimistic than their middle-management
    colleagues were in their perceptions of engagement levels. Since middle managers
    are tasked with handling more day-to-day employee issues, their assessment is
    likely the more accurate. This implies that in many firms senior man-agers may
    need to take off the rose-colored glasses and take a closer look at the barriers
    to engagement that may be present, and then find more effective ways of overcoming
    them.'
  - 'Gallup analysts identified individuals in its database who have declined in clarity
    of expectations from 2020 to 2023. Among this group, across job types and work
    locations, the largest areas of decline fit into five themes:


    Feedback and Performance Focus


    Received meaningful feedback in the last week


    Performance managed to motivate outstanding performance


    Manager keeps me informed on what is going on


    Pride in quality of products/services


    Freedom to make decisions needed to do my job well


    Goals/Priorities


    Manager includes me in goal setting


    Feel prepared to do my job


    Wellbeing


    Organization cares about my wellbeing


    Able to maintain a healthy balance between work and personal life


    Team


    Feel like part of the team'
- source_sentence: What impact does having one meaningful conversation per week with
    each team member have on high-performance relationships according to Gallup?
  sentences:
  - 'Fewer than one in four U.S. employees feel strongly that their organization cares
    about their wellbeing -- the lowest percentage in nearly a decade.


    This finding has significant implications, as work and life have never been more
    blended and employee wellbeing matters more than ever-- to employees and the resiliency
    of organizations. The discovery is based on a random sample of 15,001 full and
    part-time U.S. employees who were surveyed in February 2022.'
  - has developed an open-access dashboard for more than 80 measures at the county,
    state, and national levels. This data has highlighted, for example, the disproportionate
    impact of COVID-19 on communities of color as well as physical health and behavioral
    health vulnerability to COVID-19.
  - Gallup finds that a manager having one meaningful conversation per week with each
    team member develops high-performance relationships more than any other leadership
    activity. Gallup analytics have found managers can be quickly upskilled to have
    these ongoing strengths-based conversations that bring purpose and clear expectations
    to work, which is now deteriorating in U.S. organizations.
- source_sentence: How does Alexis Krivkovich's perspective as a mother influence
    her optimism about the future of women in the workplace?
  sentences:
  - 'Author(s)


    Jim Harter, Ph.D., is Chief Scientist, Workplace for Gallup and bestselling author
    of Culture Shock, Wellbeing at Work, It''s the Manager, 12: The Elements of Great
    Managing and Wellbeing: The Five Essential Elements. His research is also featured
    in the groundbreaking New York Times bestseller, First, Break All the Rules. Dr.
    Harter has led more than 1,000 studies of workplace effectiveness, including the
    largest ongoing meta-analysis of human potential and business-unit performance.
    His work has also appeared in many publications, including Harvard Business Review,
    The New York Times and The Wall Street Journal, and in many prominent academic
    journals.


    Sangeeta Agrawal contributed analysis to this article.


    Survey Methods'
  - "Learn more about the \nWork Happiness Score at: \ngo.indeed.com/happiness"
  - 'Lucia Rahilly: Sometimes, I feel that we’ve been talking about these issues since
    I was in college, and that can feel discouraging. What are you most optimistic
    about going into 2022, coming out of this Women in the Workplace report?


    Alexis Krivkovich: I’m most optimistic about the fact that we’re having an honest
    conversation, and now with a real fact base. We’re not talking about these things
    as perception but as real and measured experiences that companies can’t hide from—and
    they don’t want to.


    As a mother of three young daughters, it gives me real hope because I’ve been
    thinking about this question for 20 years. But in 20 years, when they’re fully
    in the workplace, maybe we’ll have a totally different paradigm.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.81
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.93
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.97
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.98
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.81
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30999999999999994
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19399999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09799999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.81
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.93
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.97
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.98
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9036533710134148
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8780952380952383
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8798376623376624
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.81
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.93
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.97
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.98
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.81
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.30999999999999994
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19399999999999995
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09799999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.81
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.93
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.97
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.98
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9036533710134148
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8780952380952383
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8798376623376624
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision 9a9e5834d2e89cdd8bb72b64111dde496e4fe78c -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CoExperiences/snowflake-l-marketing-tuned")
# Run inference
sentences = [
    "How does Alexis Krivkovich's perspective as a mother influence her optimism about the future of women in the workplace?",
    'Lucia Rahilly: Sometimes, I feel that we’ve been talking about these issues since I was in college, and that can feel discouraging. What are you most optimistic about going into 2022, coming out of this Women in the Workplace report?\n\nAlexis Krivkovich: I’m most optimistic about the fact that we’re having an honest conversation, and now with a real fact base. We’re not talking about these things as perception but as real and measured experiences that companies can’t hide from—and they don’t want to.\n\nAs a mother of three young daughters, it gives me real hope because I’ve been thinking about this question for 20 years. But in 20 years, when they’re fully in the workplace, maybe we’ll have a totally different paradigm.',
    'Learn more about the \nWork Happiness Score at: \ngo.indeed.com/happiness',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.81       |
| cosine_accuracy@3   | 0.93       |
| cosine_accuracy@5   | 0.97       |
| cosine_accuracy@10  | 0.98       |
| cosine_precision@1  | 0.81       |
| cosine_precision@3  | 0.31       |
| cosine_precision@5  | 0.194      |
| cosine_precision@10 | 0.098      |
| cosine_recall@1     | 0.81       |
| cosine_recall@3     | 0.93       |
| cosine_recall@5     | 0.97       |
| cosine_recall@10    | 0.98       |
| cosine_ndcg@10      | 0.9037     |
| cosine_mrr@10       | 0.8781     |
| **cosine_map@100**  | **0.8798** |
| dot_accuracy@1      | 0.81       |
| dot_accuracy@3      | 0.93       |
| dot_accuracy@5      | 0.97       |
| dot_accuracy@10     | 0.98       |
| dot_precision@1     | 0.81       |
| dot_precision@3     | 0.31       |
| dot_precision@5     | 0.194      |
| dot_precision@10    | 0.098      |
| dot_recall@1        | 0.81       |
| dot_recall@3        | 0.93       |
| dot_recall@5        | 0.97       |
| dot_recall@10       | 0.98       |
| dot_ndcg@10         | 0.9037     |
| dot_mrr@10          | 0.8781     |
| dot_map@100         | 0.8798     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
  |         | sentence_0                                                                        | sentence_1                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.08 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 110.85 tokens</li><li>max: 187 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What significant change occurred in employees' perceptions of their employer's care for their wellbeing during the pandemic?</code> | <code>Workplace<br><br>Percent Who Feel Employer Cares About Their Wellbeing Plummets<br><br>Share on LinkedIn<br><br>Share on Twitter<br><br>Share on Facebook<br><br>Share via Email<br><br>Print<br><br>Share on LinkedIn<br><br>Share on Twitter<br><br>Share on Facebook<br><br>Share via Email<br><br>Print<br><br>Workplace<br><br>March 18, 2022<br><br>Percent Who Feel Employer Cares About Their Wellbeing Plummets<br><br>by Jim Harter<br><br>Story Highlights<br><br>Employees' perceptions of their organization caring about their wellbeing drops<br><br>During the onset of the pandemic, employees felt employers had more care and concern<br><br>Employees who feel their employer cares about their wellbeing are 69% less likely to actively search for a job</code> |
  | <code>How does feeling cared for by an employer impact employees' job search behavior?</code>                                             | <code>Workplace<br><br>Percent Who Feel Employer Cares About Their Wellbeing Plummets<br><br>Share on LinkedIn<br><br>Share on Twitter<br><br>Share on Facebook<br><br>Share via Email<br><br>Print<br><br>Share on LinkedIn<br><br>Share on Twitter<br><br>Share on Facebook<br><br>Share via Email<br><br>Print<br><br>Workplace<br><br>March 18, 2022<br><br>Percent Who Feel Employer Cares About Their Wellbeing Plummets<br><br>by Jim Harter<br><br>Story Highlights<br><br>Employees' perceptions of their organization caring about their wellbeing drops<br><br>During the onset of the pandemic, employees felt employers had more care and concern<br><br>Employees who feel their employer cares about their wellbeing are 69% less likely to actively search for a job</code> |
  | <code>What percentage of U.S. employees feel strongly that their organization cares about their wellbeing?</code>                         | <code>Fewer than one in four U.S. employees feel strongly that their organization cares about their wellbeing -- the lowest percentage in nearly a decade.<br><br>This finding has significant implications, as work and life have never been more blended and employee wellbeing matters more than ever-- to employees and the resiliency of organizations. The discovery is based on a random sample of 15,001 full and part-time U.S. employees who were surveyed in February 2022.</code>                                                                                                                                                                                                                                                                                               |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0    | 30   | 0.8782         |
| 1.6667 | 50   | 0.8878         |
| 2.0    | 60   | 0.8854         |
| 3.0    | 90   | 0.8853         |
| 3.3333 | 100  | 0.8845         |
| 4.0    | 120  | 0.8793         |
| 5.0    | 150  | 0.8798         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.5.0+cu124
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->