Upload modeling_teleflm.py with huggingface_hub
Browse files- modeling_teleflm.py +1524 -0
    	
        modeling_teleflm.py
    ADDED
    
    | @@ -0,0 +1,1524 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            """ PyTorch Tele-FLM model, based on LLAMA implementation. """
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import math
         | 
| 5 | 
            +
            import warnings
         | 
| 6 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import torch.nn.functional as F
         | 
| 10 | 
            +
            import torch.utils.checkpoint
         | 
| 11 | 
            +
            from torch import nn
         | 
| 12 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from transformers.activations import ACT2FN
         | 
| 15 | 
            +
            from transformers.cache_utils import Cache, DynamicCache, StaticCache
         | 
| 16 | 
            +
            from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 17 | 
            +
            from transformers.modeling_outputs import (
         | 
| 18 | 
            +
                BaseModelOutputWithPast,
         | 
| 19 | 
            +
                CausalLMOutputWithPast,
         | 
| 20 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 21 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 22 | 
            +
            )
         | 
| 23 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 24 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 25 | 
            +
            from transformers.utils import (
         | 
| 26 | 
            +
                add_start_docstrings,
         | 
| 27 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 28 | 
            +
                is_flash_attn_2_available,
         | 
| 29 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 30 | 
            +
                logging,
         | 
| 31 | 
            +
                replace_return_docstrings,
         | 
| 32 | 
            +
            )
         | 
| 33 | 
            +
            from .configuration_teleflm import TeleFLMConfig
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            if is_flash_attn_2_available():
         | 
| 36 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 37 | 
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            _CONFIG_FOR_DOC = "TeleFLMConfig"
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 46 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 47 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 48 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 49 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         | 
| 50 | 
            +
                return (
         | 
| 51 | 
            +
                    indices,
         | 
| 52 | 
            +
                    cu_seqlens,
         | 
| 53 | 
            +
                    max_seqlen_in_batch,
         | 
| 54 | 
            +
                )
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            class TeleFLMRMSNorm(nn.Module):
         | 
| 58 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 59 | 
            +
                    """
         | 
| 60 | 
            +
                    TeleFLMRMSNorm is equivalent to T5LayerNorm
         | 
| 61 | 
            +
                    """
         | 
| 62 | 
            +
                    super().__init__()
         | 
| 63 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 64 | 
            +
                    self.variance_epsilon = eps
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def forward(self, hidden_states):
         | 
| 67 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 68 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 69 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 70 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 71 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            ALL_LAYERNORM_LAYERS.append(TeleFLMRMSNorm)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            class TeleFLMRotaryEmbedding(nn.Module):
         | 
| 78 | 
            +
                def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None, scaling_factor=1.0):
         | 
| 79 | 
            +
                    super().__init__()
         | 
| 80 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 81 | 
            +
                    self.dim = dim
         | 
| 82 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 83 | 
            +
                    self.base = base
         | 
| 84 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
         | 
| 85 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 86 | 
            +
                    # For BC we register cos and sin cached
         | 
| 87 | 
            +
                    self.max_seq_len_cached = max_position_embeddings
         | 
| 88 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
         | 
| 89 | 
            +
                    t = t / self.scaling_factor
         | 
| 90 | 
            +
                    freqs = torch.outer(t, self.inv_freq)
         | 
| 91 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 92 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 93 | 
            +
                    self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
         | 
| 94 | 
            +
                    self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
             | 
| 97 | 
            +
                @torch.no_grad()
         | 
| 98 | 
            +
                def forward(self, x, position_ids):
         | 
| 99 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 100 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 101 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 102 | 
            +
                    # Force float32 since bfloat16 loses precision on long contexts
         | 
| 103 | 
            +
                    # See https://github.com/huggingface/transformers/pull/29285
         | 
| 104 | 
            +
                    device_type = x.device.type
         | 
| 105 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
         | 
| 106 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 107 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 108 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 109 | 
            +
                        cos = emb.cos()
         | 
| 110 | 
            +
                        sin = emb.sin()
         | 
| 111 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
             | 
| 114 | 
            +
            class TeleFLMLinearScalingRotaryEmbedding(TeleFLMRotaryEmbedding):
         | 
| 115 | 
            +
                """TeleFLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def forward(self, x, position_ids):
         | 
| 118 | 
            +
                    # difference to the original RoPE: a scaling factor is aplied to the position ids
         | 
| 119 | 
            +
                    position_ids = position_ids.float() / self.scaling_factor
         | 
| 120 | 
            +
                    cos, sin = super().forward(x, position_ids)
         | 
| 121 | 
            +
                    return cos, sin
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            class TeleFLMDynamicNTKScalingRotaryEmbedding(TeleFLMRotaryEmbedding):
         | 
| 125 | 
            +
                """TeleFLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                def forward(self, x, position_ids):
         | 
| 128 | 
            +
                    # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
         | 
| 129 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 130 | 
            +
                    if seq_len > self.max_position_embeddings:
         | 
| 131 | 
            +
                        base = self.base * (
         | 
| 132 | 
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
         | 
| 133 | 
            +
                        ) ** (self.dim / (self.dim - 2))
         | 
| 134 | 
            +
                        inv_freq = 1.0 / (
         | 
| 135 | 
            +
                            base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
         | 
| 136 | 
            +
                        )
         | 
| 137 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: this may break with compilation
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    cos, sin = super().forward(x, position_ids)
         | 
| 140 | 
            +
                    return cos, sin
         | 
| 141 | 
            +
             | 
| 142 | 
            +
             | 
| 143 | 
            +
            def rotate_half(x):
         | 
| 144 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 145 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 146 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 147 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
         | 
| 151 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                Args:
         | 
| 154 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 155 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 156 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 157 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 158 | 
            +
                    position_ids (`torch.Tensor`, *optional*):
         | 
| 159 | 
            +
                        Deprecated and unused.
         | 
| 160 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 161 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 162 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 163 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 164 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 165 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 166 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 167 | 
            +
                Returns:
         | 
| 168 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 169 | 
            +
                """
         | 
| 170 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 171 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 172 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 173 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 174 | 
            +
                return q_embed, k_embed
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            class TeleFLMMLP(nn.Module):
         | 
| 178 | 
            +
                def __init__(self, config):
         | 
| 179 | 
            +
                    super().__init__()
         | 
| 180 | 
            +
                    self.config = config
         | 
| 181 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 182 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 183 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 184 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 185 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 186 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                def forward(self, x):
         | 
| 189 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 190 | 
            +
                        slice = self.intermediate_size // self.config.pretraining_tp
         | 
| 191 | 
            +
                        gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
         | 
| 192 | 
            +
                        up_proj_slices = self.up_proj.weight.split(slice, dim=0)
         | 
| 193 | 
            +
                        down_proj_slices = self.down_proj.weight.split(slice, dim=1)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                        gate_proj = torch.cat(
         | 
| 196 | 
            +
                            [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
         | 
| 197 | 
            +
                        )
         | 
| 198 | 
            +
                        up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                        intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
         | 
| 201 | 
            +
                        down_proj = [
         | 
| 202 | 
            +
                            F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
         | 
| 203 | 
            +
                        ]
         | 
| 204 | 
            +
                        down_proj = sum(down_proj)
         | 
| 205 | 
            +
                    else:
         | 
| 206 | 
            +
                        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    return down_proj
         | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 212 | 
            +
                """
         | 
| 213 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 214 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 215 | 
            +
                """
         | 
| 216 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 217 | 
            +
                if n_rep == 1:
         | 
| 218 | 
            +
                    return hidden_states
         | 
| 219 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 220 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            class TeleFLMAttention(nn.Module):
         | 
| 224 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                def __init__(self, config: TeleFLMConfig, layer_idx: Optional[int] = None):
         | 
| 227 | 
            +
                    super().__init__()
         | 
| 228 | 
            +
                    self.config = config
         | 
| 229 | 
            +
                    self.layer_idx = layer_idx
         | 
| 230 | 
            +
                    if layer_idx is None:
         | 
| 231 | 
            +
                        logger.warning_once(
         | 
| 232 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 233 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 234 | 
            +
                            "when creating this class."
         | 
| 235 | 
            +
                        )
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 238 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 239 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 240 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 241 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 242 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 243 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 244 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 245 | 
            +
                    self.is_causal = True
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 248 | 
            +
                        raise ValueError(
         | 
| 249 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 250 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 251 | 
            +
                        )
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
         | 
| 254 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 255 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 256 | 
            +
                    self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
         | 
| 257 | 
            +
                    self._init_rope()
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def _init_rope(self):
         | 
| 260 | 
            +
                    if self.config.rope_scaling is None:
         | 
| 261 | 
            +
                        self.rotary_emb = TeleFLMRotaryEmbedding(
         | 
| 262 | 
            +
                            self.head_dim,
         | 
| 263 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 264 | 
            +
                            base=self.rope_theta,
         | 
| 265 | 
            +
                        )
         | 
| 266 | 
            +
                    else:
         | 
| 267 | 
            +
                        scaling_type = self.config.rope_scaling["type"]
         | 
| 268 | 
            +
                        scaling_factor = self.config.rope_scaling["factor"]
         | 
| 269 | 
            +
                        if scaling_type == "linear":
         | 
| 270 | 
            +
                            self.rotary_emb = TeleFLMLinearScalingRotaryEmbedding(
         | 
| 271 | 
            +
                                self.head_dim,
         | 
| 272 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 273 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 274 | 
            +
                                base=self.rope_theta,
         | 
| 275 | 
            +
                            )
         | 
| 276 | 
            +
                        elif scaling_type == "dynamic":
         | 
| 277 | 
            +
                            self.rotary_emb = TeleFLMDynamicNTKScalingRotaryEmbedding(
         | 
| 278 | 
            +
                                self.head_dim,
         | 
| 279 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 280 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 281 | 
            +
                                base=self.rope_theta,
         | 
| 282 | 
            +
                            )
         | 
| 283 | 
            +
                        else:
         | 
| 284 | 
            +
                            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                def forward(
         | 
| 287 | 
            +
                    self,
         | 
| 288 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 289 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 290 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 291 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 292 | 
            +
                    output_attentions: bool = False,
         | 
| 293 | 
            +
                    use_cache: bool = False,
         | 
| 294 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 295 | 
            +
                    **kwargs,
         | 
| 296 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 297 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 300 | 
            +
                        key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
         | 
| 301 | 
            +
                        query_slices = self.q_proj.weight.split(
         | 
| 302 | 
            +
                            (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
         | 
| 303 | 
            +
                        )
         | 
| 304 | 
            +
                        key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
         | 
| 305 | 
            +
                        value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                        query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 308 | 
            +
                        query_states = torch.cat(query_states, dim=-1)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                        key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 311 | 
            +
                        key_states = torch.cat(key_states, dim=-1)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                        value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 314 | 
            +
                        value_states = torch.cat(value_states, dim=-1)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    else:
         | 
| 317 | 
            +
                        query_states = self.q_proj(hidden_states)
         | 
| 318 | 
            +
                        key_states = self.k_proj(hidden_states)
         | 
| 319 | 
            +
                        value_states = self.v_proj(hidden_states)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 322 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 323 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    past_key_value = getattr(self, "past_key_value", past_key_value)
         | 
| 326 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 327 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    if past_key_value is not None:
         | 
| 330 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 331 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 332 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 335 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    if attention_mask is not None:  # no matter the length, we just slice it
         | 
| 340 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 341 | 
            +
                        attn_weights = attn_weights + causal_mask
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    # upcast attention to fp32
         | 
| 344 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 345 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 346 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 349 | 
            +
                        raise ValueError(
         | 
| 350 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 351 | 
            +
                            f" {attn_output.size()}"
         | 
| 352 | 
            +
                        )
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 359 | 
            +
                        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
         | 
| 360 | 
            +
                        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
         | 
| 361 | 
            +
                        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
         | 
| 362 | 
            +
                    else:
         | 
| 363 | 
            +
                        attn_output = self.o_proj(attn_output)
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    if not output_attentions:
         | 
| 366 | 
            +
                        attn_weights = None
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 369 | 
            +
             | 
| 370 | 
            +
             | 
| 371 | 
            +
            class TeleFLMFlashAttention2(TeleFLMAttention):
         | 
| 372 | 
            +
                """
         | 
| 373 | 
            +
                Tele-FLM flash attention module. This module inherits from `TeleFLMAttention` as the weights of the module stays
         | 
| 374 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 375 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 376 | 
            +
                """
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 379 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 382 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 383 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 384 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                def forward(
         | 
| 387 | 
            +
                    self,
         | 
| 388 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 389 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 390 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 391 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 392 | 
            +
                    output_attentions: bool = False,
         | 
| 393 | 
            +
                    use_cache: bool = False,
         | 
| 394 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 395 | 
            +
                    **kwargs,
         | 
| 396 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 397 | 
            +
                    output_attentions = False
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 402 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 403 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 406 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 407 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 408 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 409 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 410 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 413 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    past_key_value = getattr(self, "past_key_value", past_key_value)
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    if past_key_value is not None:
         | 
| 418 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 419 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 420 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 423 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 424 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 425 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 426 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 431 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 432 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 433 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 434 | 
            +
                    # in fp32. (TeleFLMRMSNorm handles it correctly)
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                    input_dtype = query_states.dtype
         | 
| 437 | 
            +
                    if input_dtype == torch.float32:
         | 
| 438 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 439 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 440 | 
            +
                        # Handle the case where the model is quantized
         | 
| 441 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 442 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 443 | 
            +
                        else:
         | 
| 444 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                        logger.warning_once(
         | 
| 447 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 448 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 449 | 
            +
                            f" {target_dtype}."
         | 
| 450 | 
            +
                        )
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 453 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 454 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 457 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
         | 
| 458 | 
            +
                    )
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 461 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                    if not output_attentions:
         | 
| 464 | 
            +
                        attn_weights = None
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                def _flash_attention_forward(
         | 
| 469 | 
            +
                    self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
         | 
| 470 | 
            +
                ):
         | 
| 471 | 
            +
                    """
         | 
| 472 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 473 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    Args:
         | 
| 476 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 477 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 478 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 479 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 480 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 481 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 482 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 483 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 484 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 485 | 
            +
                        dropout (`float`):
         | 
| 486 | 
            +
                            Attention dropout
         | 
| 487 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 488 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 489 | 
            +
                    """
         | 
| 490 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 491 | 
            +
                        causal = self.is_causal
         | 
| 492 | 
            +
                    else:
         | 
| 493 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in TeleFLMFlashAttention2 __init__.
         | 
| 494 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 497 | 
            +
                    if attention_mask is not None:
         | 
| 498 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 499 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 500 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 501 | 
            +
                        )
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 504 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                        attn_output_unpad = flash_attn_varlen_func(
         | 
| 507 | 
            +
                            query_states,
         | 
| 508 | 
            +
                            key_states,
         | 
| 509 | 
            +
                            value_states,
         | 
| 510 | 
            +
                            cu_seqlens_q=cu_seqlens_q,
         | 
| 511 | 
            +
                            cu_seqlens_k=cu_seqlens_k,
         | 
| 512 | 
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 513 | 
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 514 | 
            +
                            dropout_p=dropout,
         | 
| 515 | 
            +
                            softmax_scale=softmax_scale,
         | 
| 516 | 
            +
                            causal=causal,
         | 
| 517 | 
            +
                        )
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 520 | 
            +
                    else:
         | 
| 521 | 
            +
                        attn_output = flash_attn_func(
         | 
| 522 | 
            +
                            query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
         | 
| 523 | 
            +
                        )
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    return attn_output
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 528 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 529 | 
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    key_layer = index_first_axis(
         | 
| 532 | 
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 533 | 
            +
                    )
         | 
| 534 | 
            +
                    value_layer = index_first_axis(
         | 
| 535 | 
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 536 | 
            +
                    )
         | 
| 537 | 
            +
                    if query_length == kv_seq_len:
         | 
| 538 | 
            +
                        query_layer = index_first_axis(
         | 
| 539 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
         | 
| 540 | 
            +
                        )
         | 
| 541 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 542 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 543 | 
            +
                        indices_q = indices_k
         | 
| 544 | 
            +
                    elif query_length == 1:
         | 
| 545 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 546 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 547 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 548 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 549 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 550 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 551 | 
            +
                    else:
         | 
| 552 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 553 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 554 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    return (
         | 
| 557 | 
            +
                        query_layer,
         | 
| 558 | 
            +
                        key_layer,
         | 
| 559 | 
            +
                        value_layer,
         | 
| 560 | 
            +
                        indices_q,
         | 
| 561 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 562 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 563 | 
            +
                    )
         | 
| 564 | 
            +
             | 
| 565 | 
            +
             | 
| 566 | 
            +
            class TeleFLMSdpaAttention(TeleFLMAttention):
         | 
| 567 | 
            +
                """
         | 
| 568 | 
            +
                Tele-FLM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 569 | 
            +
                `TeleFLMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 570 | 
            +
                SDPA API.
         | 
| 571 | 
            +
                """
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                # Adapted from TeleFLMAttention.forward
         | 
| 574 | 
            +
                def forward(
         | 
| 575 | 
            +
                    self,
         | 
| 576 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 577 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 578 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 579 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 580 | 
            +
                    output_attentions: bool = False,
         | 
| 581 | 
            +
                    use_cache: bool = False,
         | 
| 582 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 583 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 584 | 
            +
                    if output_attentions:
         | 
| 585 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 586 | 
            +
                        logger.warning_once(
         | 
| 587 | 
            +
                            "TeleFLMModel is using TeleFLMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 588 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 589 | 
            +
                        )
         | 
| 590 | 
            +
                        return super().forward(
         | 
| 591 | 
            +
                            hidden_states=hidden_states,
         | 
| 592 | 
            +
                            attention_mask=attention_mask,
         | 
| 593 | 
            +
                            position_ids=position_ids,
         | 
| 594 | 
            +
                            past_key_value=past_key_value,
         | 
| 595 | 
            +
                            output_attentions=output_attentions,
         | 
| 596 | 
            +
                            use_cache=use_cache,
         | 
| 597 | 
            +
                            cache_position=cache_position,
         | 
| 598 | 
            +
                        )
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 603 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 604 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 607 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 608 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 611 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                    # In case static cache is used, it is an instance attribute.
         | 
| 614 | 
            +
                    past_key_value = getattr(self, "past_key_value", past_key_value)
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                    if past_key_value is not None:
         | 
| 617 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 618 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 619 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 622 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                    causal_mask = attention_mask
         | 
| 625 | 
            +
                    # if attention_mask is not None and cache_position is not None:
         | 
| 626 | 
            +
                    if attention_mask is not None:
         | 
| 627 | 
            +
                        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 630 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 631 | 
            +
                    if query_states.device.type == "cuda" and causal_mask is not None:
         | 
| 632 | 
            +
                        query_states = query_states.contiguous()
         | 
| 633 | 
            +
                        key_states = key_states.contiguous()
         | 
| 634 | 
            +
                        value_states = value_states.contiguous()
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 637 | 
            +
                        query_states,
         | 
| 638 | 
            +
                        key_states,
         | 
| 639 | 
            +
                        value_states,
         | 
| 640 | 
            +
                        attn_mask=causal_mask,
         | 
| 641 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 642 | 
            +
                    )
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 645 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                    return attn_output, None, past_key_value
         | 
| 650 | 
            +
             | 
| 651 | 
            +
             | 
| 652 | 
            +
            TELEFLM_ATTENTION_CLASSES = {
         | 
| 653 | 
            +
                "eager": TeleFLMAttention,
         | 
| 654 | 
            +
                "flash_attention_2": TeleFLMFlashAttention2,
         | 
| 655 | 
            +
                "sdpa": TeleFLMSdpaAttention,
         | 
| 656 | 
            +
            }
         | 
| 657 | 
            +
             | 
| 658 | 
            +
             | 
| 659 | 
            +
            class TeleFLMDecoderLayer(nn.Module):
         | 
| 660 | 
            +
                def __init__(self, config: TeleFLMConfig, layer_idx: int):
         | 
| 661 | 
            +
                    super().__init__()
         | 
| 662 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 663 | 
            +
                    self.self_attn = TELEFLM_ATTENTION_CLASSES.get(config._attn_implementation, TeleFLMAttention)(config=config, layer_idx=layer_idx)
         | 
| 664 | 
            +
                    self.mlp = TeleFLMMLP(config)
         | 
| 665 | 
            +
                    self.input_layernorm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 666 | 
            +
                    self.post_attention_layernorm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                def forward(
         | 
| 669 | 
            +
                    self,
         | 
| 670 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 671 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 672 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 673 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 674 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 675 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 676 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 677 | 
            +
                    **kwargs,
         | 
| 678 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 679 | 
            +
                    """
         | 
| 680 | 
            +
                    Args:
         | 
| 681 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 682 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 683 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 684 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 685 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 686 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 687 | 
            +
                            returned tensors for more detail.
         | 
| 688 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 689 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 690 | 
            +
                            (see `past_key_values`).
         | 
| 691 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 692 | 
            +
                    """
         | 
| 693 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 694 | 
            +
                        warnings.warn(
         | 
| 695 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 696 | 
            +
                        )
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                    residual = hidden_states
         | 
| 699 | 
            +
             | 
| 700 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                    # Self Attention
         | 
| 703 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 704 | 
            +
                        hidden_states=hidden_states,
         | 
| 705 | 
            +
                        attention_mask=attention_mask,
         | 
| 706 | 
            +
                        position_ids=position_ids,
         | 
| 707 | 
            +
                        past_key_value=past_key_value,
         | 
| 708 | 
            +
                        output_attentions=output_attentions,
         | 
| 709 | 
            +
                        use_cache=use_cache,
         | 
| 710 | 
            +
                        cache_position=cache_position,
         | 
| 711 | 
            +
                        **kwargs,
         | 
| 712 | 
            +
                    )
         | 
| 713 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    # Fully Connected
         | 
| 716 | 
            +
                    residual = hidden_states
         | 
| 717 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 718 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 719 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    outputs = (hidden_states,)
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    if output_attentions:
         | 
| 724 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 725 | 
            +
             | 
| 726 | 
            +
                    if use_cache:
         | 
| 727 | 
            +
                        outputs += (present_key_value,)
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                    return outputs
         | 
| 730 | 
            +
             | 
| 731 | 
            +
             | 
| 732 | 
            +
            TELEFLM_START_DOCSTRING = r"""
         | 
| 733 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 734 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 735 | 
            +
                etc.)
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 738 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 739 | 
            +
                and behavior.
         | 
| 740 | 
            +
             | 
| 741 | 
            +
                Parameters:
         | 
| 742 | 
            +
                    config ([`TeleFLMConfig`]):
         | 
| 743 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 744 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 745 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 746 | 
            +
            """
         | 
| 747 | 
            +
             | 
| 748 | 
            +
             | 
| 749 | 
            +
            @add_start_docstrings(
         | 
| 750 | 
            +
                "The bare Tele-FLM Model outputting raw hidden-states without any specific head on top.",
         | 
| 751 | 
            +
                TELEFLM_START_DOCSTRING,
         | 
| 752 | 
            +
            )
         | 
| 753 | 
            +
            class TeleFLMPreTrainedModel(PreTrainedModel):
         | 
| 754 | 
            +
                config_class = TeleFLMConfig
         | 
| 755 | 
            +
                base_model_prefix = "model"
         | 
| 756 | 
            +
                supports_gradient_checkpointing = True
         | 
| 757 | 
            +
                _no_split_modules = ["TeleFLMDecoderLayer"]
         | 
| 758 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 759 | 
            +
                _supports_flash_attn_2 = True
         | 
| 760 | 
            +
                _supports_sdpa = True
         | 
| 761 | 
            +
                _supports_cache_class = True
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                def _init_weights(self, module):
         | 
| 764 | 
            +
                    std = self.config.initializer_range
         | 
| 765 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 766 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 767 | 
            +
                        if module.bias is not None:
         | 
| 768 | 
            +
                            module.bias.data.zero_()
         | 
| 769 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 770 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 771 | 
            +
                        if module.padding_idx is not None:
         | 
| 772 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
         | 
| 775 | 
            +
                    if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
         | 
| 776 | 
            +
                        raise ValueError(
         | 
| 777 | 
            +
                            "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
         | 
| 778 | 
            +
                            "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
         | 
| 779 | 
            +
                        )
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                    for layer in self.model.layers:
         | 
| 782 | 
            +
                        device = layer.input_layernorm.weight.device
         | 
| 783 | 
            +
                        if hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 784 | 
            +
                            dtype = self.config._pre_quantization_dtype
         | 
| 785 | 
            +
                        else:
         | 
| 786 | 
            +
                            dtype = layer.self_attn.o_proj.weight.dtype
         | 
| 787 | 
            +
                        layer.self_attn.past_key_value = cache_cls(
         | 
| 788 | 
            +
                            self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
         | 
| 789 | 
            +
                        )
         | 
| 790 | 
            +
             | 
| 791 | 
            +
                def _reset_cache(self):
         | 
| 792 | 
            +
                    for layer in self.model.layers:
         | 
| 793 | 
            +
                        layer.self_attn.past_key_value = None
         | 
| 794 | 
            +
             | 
| 795 | 
            +
             | 
| 796 | 
            +
            TELEFLM_INPUTS_DOCSTRING = r"""
         | 
| 797 | 
            +
                Args:
         | 
| 798 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 799 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 800 | 
            +
                        it.
         | 
| 801 | 
            +
             | 
| 802 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 803 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 804 | 
            +
             | 
| 805 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 806 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 807 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 808 | 
            +
             | 
| 809 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 810 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 815 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 818 | 
            +
                        `past_key_values`).
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 821 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 822 | 
            +
                        information on the default strategy.
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 825 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 826 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 827 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 828 | 
            +
                        config.n_positions - 1]`.
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 831 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 832 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 833 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 834 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                        Two formats are allowed:
         | 
| 837 | 
            +
                        - a [`~cache_utils.Cache`] instance;
         | 
| 838 | 
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         | 
| 839 | 
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         | 
| 840 | 
            +
                        cache format.
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         | 
| 843 | 
            +
                        legacy cache format will be returned.
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 846 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 847 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 848 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 849 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 850 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 851 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 852 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 853 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 854 | 
            +
                        `past_key_values`).
         | 
| 855 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 856 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 857 | 
            +
                        tensors for more detail.
         | 
| 858 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 859 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 860 | 
            +
                        more detail.
         | 
| 861 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 862 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 863 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 864 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
         | 
| 865 | 
            +
                        this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
         | 
| 866 | 
            +
                        the complete sequence length.
         | 
| 867 | 
            +
            """
         | 
| 868 | 
            +
             | 
| 869 | 
            +
             | 
| 870 | 
            +
            @add_start_docstrings(
         | 
| 871 | 
            +
                "The bare Tele-FLM Model outputting raw hidden-states without any specific head on top.",
         | 
| 872 | 
            +
                TELEFLM_START_DOCSTRING,
         | 
| 873 | 
            +
            )
         | 
| 874 | 
            +
            class TeleFLMModel(TeleFLMPreTrainedModel):
         | 
| 875 | 
            +
                """
         | 
| 876 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TeleFLMDecoderLayer`]
         | 
| 877 | 
            +
             | 
| 878 | 
            +
                Args:
         | 
| 879 | 
            +
                    config: TeleFLMConfig
         | 
| 880 | 
            +
                """
         | 
| 881 | 
            +
             | 
| 882 | 
            +
                def __init__(self, config: TeleFLMConfig):
         | 
| 883 | 
            +
                    super().__init__(config)
         | 
| 884 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 885 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 886 | 
            +
                    # Mup
         | 
| 887 | 
            +
                    self.use_mup = config.use_mup
         | 
| 888 | 
            +
                    if self.use_mup:
         | 
| 889 | 
            +
                        self.input_mult = config.input_mult
         | 
| 890 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 891 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 892 | 
            +
                        [TeleFLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 893 | 
            +
                    )
         | 
| 894 | 
            +
                    self.norm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 895 | 
            +
                    self.gradient_checkpointing = False
         | 
| 896 | 
            +
             | 
| 897 | 
            +
                    # Initialize weights and apply final processing
         | 
| 898 | 
            +
                    self.post_init()
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                def get_input_embeddings(self):
         | 
| 901 | 
            +
                    return self.embed_tokens
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                def set_input_embeddings(self, value):
         | 
| 904 | 
            +
                    self.embed_tokens = value
         | 
| 905 | 
            +
             | 
| 906 | 
            +
                @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
         | 
| 907 | 
            +
                def forward(
         | 
| 908 | 
            +
                    self,
         | 
| 909 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 910 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 911 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 912 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 913 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 914 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 915 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 916 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 917 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 918 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 919 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 920 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 921 | 
            +
                    output_hidden_states = (
         | 
| 922 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 923 | 
            +
                    )
         | 
| 924 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 925 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 926 | 
            +
             | 
| 927 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 928 | 
            +
                        raise ValueError(
         | 
| 929 | 
            +
                            "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
         | 
| 930 | 
            +
                        )
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 933 | 
            +
                        logger.warning_once(
         | 
| 934 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 935 | 
            +
                        )
         | 
| 936 | 
            +
                        use_cache = False
         | 
| 937 | 
            +
             | 
| 938 | 
            +
                    if inputs_embeds is None:
         | 
| 939 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 940 | 
            +
                    
         | 
| 941 | 
            +
                    # Mup
         | 
| 942 | 
            +
                    if self.use_mup:
         | 
| 943 | 
            +
                        inputs_embeds = inputs_embeds * self.input_mult
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                    past_seen_tokens = 0
         | 
| 946 | 
            +
                    if use_cache:  # kept for BC (cache positions)
         | 
| 947 | 
            +
                        if not isinstance(past_key_values, StaticCache):
         | 
| 948 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 949 | 
            +
                            past_seen_tokens = past_key_values.get_seq_length()
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                    if cache_position is None:
         | 
| 952 | 
            +
                        if isinstance(past_key_values, StaticCache):
         | 
| 953 | 
            +
                            raise ValueError("cache_position is a required argument when using StaticCache.")
         | 
| 954 | 
            +
                        cache_position = torch.arange(
         | 
| 955 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 956 | 
            +
                        )
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                    if position_ids is None:
         | 
| 959 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                    causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                    # embed positions
         | 
| 964 | 
            +
                    hidden_states = inputs_embeds
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    # decoder layers
         | 
| 967 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 968 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 969 | 
            +
                    next_decoder_cache = None
         | 
| 970 | 
            +
             | 
| 971 | 
            +
                    for decoder_layer in self.layers:
         | 
| 972 | 
            +
                        if output_hidden_states:
         | 
| 973 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 976 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 977 | 
            +
                                decoder_layer.__call__,
         | 
| 978 | 
            +
                                hidden_states,
         | 
| 979 | 
            +
                                causal_mask,
         | 
| 980 | 
            +
                                position_ids,
         | 
| 981 | 
            +
                                past_key_values,
         | 
| 982 | 
            +
                                output_attentions,
         | 
| 983 | 
            +
                                use_cache,
         | 
| 984 | 
            +
                                cache_position,
         | 
| 985 | 
            +
                            )
         | 
| 986 | 
            +
                        else:
         | 
| 987 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 988 | 
            +
                                hidden_states,
         | 
| 989 | 
            +
                                attention_mask=causal_mask,
         | 
| 990 | 
            +
                                position_ids=position_ids,
         | 
| 991 | 
            +
                                past_key_value=past_key_values,
         | 
| 992 | 
            +
                                output_attentions=output_attentions,
         | 
| 993 | 
            +
                                use_cache=use_cache,
         | 
| 994 | 
            +
                                cache_position=cache_position,
         | 
| 995 | 
            +
                            )
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                        if use_cache:
         | 
| 1000 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
                        if output_attentions:
         | 
| 1003 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1008 | 
            +
                    if output_hidden_states:
         | 
| 1009 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
                    next_cache = None
         | 
| 1012 | 
            +
                    if use_cache:
         | 
| 1013 | 
            +
                        next_cache = (
         | 
| 1014 | 
            +
                            next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
         | 
| 1015 | 
            +
                        )
         | 
| 1016 | 
            +
                    if not return_dict:
         | 
| 1017 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1018 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1019 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1020 | 
            +
                        past_key_values=next_cache,
         | 
| 1021 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1022 | 
            +
                        attentions=all_self_attns,
         | 
| 1023 | 
            +
                    )
         | 
| 1024 | 
            +
             | 
| 1025 | 
            +
                # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
         | 
| 1026 | 
            +
                # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
         | 
| 1027 | 
            +
                # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
         | 
| 1028 | 
            +
                # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
         | 
| 1029 | 
            +
                def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
         | 
| 1030 | 
            +
                    if self.config._attn_implementation == "flash_attention_2":
         | 
| 1031 | 
            +
                        if attention_mask is not None and 0.0 in attention_mask:
         | 
| 1032 | 
            +
                            return attention_mask
         | 
| 1033 | 
            +
                        return None
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                    dtype, device = input_tensor.dtype, input_tensor.device
         | 
| 1036 | 
            +
                    min_dtype = torch.finfo(dtype).min
         | 
| 1037 | 
            +
                    sequence_length = input_tensor.shape[1]
         | 
| 1038 | 
            +
                    if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"):  # static cache
         | 
| 1039 | 
            +
                        target_length = self.config.max_position_embeddings
         | 
| 1040 | 
            +
                    else:  # dynamic cache
         | 
| 1041 | 
            +
                        target_length = (
         | 
| 1042 | 
            +
                            attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
         | 
| 1043 | 
            +
                        )
         | 
| 1044 | 
            +
             | 
| 1045 | 
            +
                    causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
         | 
| 1046 | 
            +
                    if sequence_length != 1:
         | 
| 1047 | 
            +
                        causal_mask = torch.triu(causal_mask, diagonal=1)
         | 
| 1048 | 
            +
                    causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
         | 
| 1049 | 
            +
                    causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
         | 
| 1050 | 
            +
                    if attention_mask is not None:
         | 
| 1051 | 
            +
                        causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
         | 
| 1052 | 
            +
                        if attention_mask.dim() == 2:
         | 
| 1053 | 
            +
                            mask_length = attention_mask.shape[-1]
         | 
| 1054 | 
            +
                            padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
         | 
| 1055 | 
            +
                            causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
         | 
| 1056 | 
            +
                        elif attention_mask.dim() == 4:
         | 
| 1057 | 
            +
                            # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
         | 
| 1058 | 
            +
                            # cache. In that case, the 4D attention mask attends to the newest tokens only.
         | 
| 1059 | 
            +
                            if attention_mask.shape[-2] < cache_position[0] + sequence_length:
         | 
| 1060 | 
            +
                                offset = cache_position[0]
         | 
| 1061 | 
            +
                            else:
         | 
| 1062 | 
            +
                                offset = 0
         | 
| 1063 | 
            +
                            mask_shape = attention_mask.shape
         | 
| 1064 | 
            +
                            mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
         | 
| 1065 | 
            +
                            causal_mask[
         | 
| 1066 | 
            +
                                : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
         | 
| 1067 | 
            +
                            ] = mask_slice
         | 
| 1068 | 
            +
             | 
| 1069 | 
            +
                    if (
         | 
| 1070 | 
            +
                        self.config._attn_implementation == "sdpa"
         | 
| 1071 | 
            +
                        and attention_mask is not None
         | 
| 1072 | 
            +
                        and attention_mask.device.type == "cuda"
         | 
| 1073 | 
            +
                    ):
         | 
| 1074 | 
            +
                        # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
         | 
| 1075 | 
            +
                        # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 1076 | 
            +
                        # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 1077 | 
            +
                        causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                    return causal_mask
         | 
| 1080 | 
            +
             | 
| 1081 | 
            +
             | 
| 1082 | 
            +
            class TeleFLMForCausalLM(TeleFLMPreTrainedModel):
         | 
| 1083 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1084 | 
            +
             | 
| 1085 | 
            +
                def __init__(self, config):
         | 
| 1086 | 
            +
                    super().__init__(config)
         | 
| 1087 | 
            +
                    self.model = TeleFLMModel(config)
         | 
| 1088 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1089 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1090 | 
            +
                    self.use_mup = config.use_mup
         | 
| 1091 | 
            +
                    if self.use_mup:
         | 
| 1092 | 
            +
                        self.mup_scale_factor = config.mup_scale_factor
         | 
| 1093 | 
            +
                        self.output_mult = config.output_mult / self.mup_scale_factor
         | 
| 1094 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1095 | 
            +
                    self.post_init()
         | 
| 1096 | 
            +
             | 
| 1097 | 
            +
                def get_input_embeddings(self):
         | 
| 1098 | 
            +
                    return self.model.embed_tokens
         | 
| 1099 | 
            +
             | 
| 1100 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1101 | 
            +
                    self.model.embed_tokens = value
         | 
| 1102 | 
            +
             | 
| 1103 | 
            +
                def get_output_embeddings(self):
         | 
| 1104 | 
            +
                    return self.lm_head
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1107 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
                def set_decoder(self, decoder):
         | 
| 1110 | 
            +
                    self.model = decoder
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                def get_decoder(self):
         | 
| 1113 | 
            +
                    return self.model
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
         | 
| 1116 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1117 | 
            +
                def forward(
         | 
| 1118 | 
            +
                    self,
         | 
| 1119 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1120 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1121 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1122 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1123 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1124 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1125 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1126 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1127 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1128 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1129 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1130 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1131 | 
            +
                    r"""
         | 
| 1132 | 
            +
                    Args:
         | 
| 1133 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1134 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1135 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1136 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1137 | 
            +
             | 
| 1138 | 
            +
                    Returns:
         | 
| 1139 | 
            +
             | 
| 1140 | 
            +
                    Example:
         | 
| 1141 | 
            +
             | 
| 1142 | 
            +
                    ```python
         | 
| 1143 | 
            +
                    >>> from transformers import AutoTokenizer, TeleFLMForCausalLM
         | 
| 1144 | 
            +
             | 
| 1145 | 
            +
                    >>> model = TeleFLMForCausalLM.from_pretrained("CofeAI/Tele-FLM")
         | 
| 1146 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("CofeAI/Tele-FLM")
         | 
| 1147 | 
            +
             | 
| 1148 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1149 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
                    >>> # Generate
         | 
| 1152 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1153 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1154 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1155 | 
            +
                    ```"""
         | 
| 1156 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1157 | 
            +
                    output_hidden_states = (
         | 
| 1158 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1159 | 
            +
                    )
         | 
| 1160 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1161 | 
            +
             | 
| 1162 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1163 | 
            +
                    outputs = self.model(
         | 
| 1164 | 
            +
                        input_ids=input_ids,
         | 
| 1165 | 
            +
                        attention_mask=attention_mask,
         | 
| 1166 | 
            +
                        position_ids=position_ids,
         | 
| 1167 | 
            +
                        past_key_values=past_key_values,
         | 
| 1168 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1169 | 
            +
                        use_cache=use_cache,
         | 
| 1170 | 
            +
                        output_attentions=output_attentions,
         | 
| 1171 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1172 | 
            +
                        return_dict=return_dict,
         | 
| 1173 | 
            +
                        cache_position=cache_position,
         | 
| 1174 | 
            +
                    )
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                    hidden_states = outputs[0]
         | 
| 1177 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 1178 | 
            +
                        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
         | 
| 1179 | 
            +
                        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 1180 | 
            +
                        logits = torch.cat(logits, dim=-1)
         | 
| 1181 | 
            +
                    else:
         | 
| 1182 | 
            +
                        logits = self.lm_head(hidden_states)
         | 
| 1183 | 
            +
                    logits = logits.float()
         | 
| 1184 | 
            +
                    # Mup
         | 
| 1185 | 
            +
                    if self.use_mup:
         | 
| 1186 | 
            +
                        logits = logits * self.output_mult
         | 
| 1187 | 
            +
             | 
| 1188 | 
            +
                    loss = None
         | 
| 1189 | 
            +
                    if labels is not None:
         | 
| 1190 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1191 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1192 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1193 | 
            +
                        # Flatten the tokens
         | 
| 1194 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1195 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1196 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1197 | 
            +
                        # Enable model parallelism
         | 
| 1198 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1199 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1200 | 
            +
             | 
| 1201 | 
            +
                    if not return_dict:
         | 
| 1202 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1203 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1204 | 
            +
             | 
| 1205 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1206 | 
            +
                        loss=loss,
         | 
| 1207 | 
            +
                        logits=logits,
         | 
| 1208 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1209 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1210 | 
            +
                        attentions=outputs.attentions,
         | 
| 1211 | 
            +
                    )
         | 
| 1212 | 
            +
             | 
| 1213 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1214 | 
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
         | 
| 1215 | 
            +
                ):
         | 
| 1216 | 
            +
                    # With static cache, the `past_key_values` is None
         | 
| 1217 | 
            +
                    # TODO joao: standardize interface for the different Cache classes and remove of this if
         | 
| 1218 | 
            +
                    has_static_cache = False
         | 
| 1219 | 
            +
                    if past_key_values is None:
         | 
| 1220 | 
            +
                        past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
         | 
| 1221 | 
            +
                        has_static_cache = past_key_values is not None
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                    past_length = 0
         | 
| 1224 | 
            +
                    if past_key_values is not None:
         | 
| 1225 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1226 | 
            +
                            past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
         | 
| 1227 | 
            +
                            max_cache_length = (
         | 
| 1228 | 
            +
                                torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
         | 
| 1229 | 
            +
                                if past_key_values.get_max_length() is not None
         | 
| 1230 | 
            +
                                else None
         | 
| 1231 | 
            +
                            )
         | 
| 1232 | 
            +
                            cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
         | 
| 1233 | 
            +
                        # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
         | 
| 1234 | 
            +
                        else:
         | 
| 1235 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1236 | 
            +
                            max_cache_length = None
         | 
| 1237 | 
            +
             | 
| 1238 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1239 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1240 | 
            +
                        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
         | 
| 1241 | 
            +
                        # input)
         | 
| 1242 | 
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         | 
| 1243 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1244 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1245 | 
            +
                        # input_ids based on the past_length.
         | 
| 1246 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1247 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1248 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1249 | 
            +
             | 
| 1250 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1251 | 
            +
                        if (
         | 
| 1252 | 
            +
                            max_cache_length is not None
         | 
| 1253 | 
            +
                            and attention_mask is not None
         | 
| 1254 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1255 | 
            +
                        ):
         | 
| 1256 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         | 
| 1257 | 
            +
             | 
| 1258 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1259 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1260 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1261 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1262 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1263 | 
            +
                        if past_key_values:
         | 
| 1264 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1265 | 
            +
             | 
| 1266 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1267 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1268 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1269 | 
            +
                    else:
         | 
| 1270 | 
            +
                        # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
         | 
| 1271 | 
            +
                        # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
         | 
| 1272 | 
            +
                        # TODO: use `next_tokens` directly instead.
         | 
| 1273 | 
            +
                        model_inputs = {"input_ids": input_ids.contiguous()}
         | 
| 1274 | 
            +
             | 
| 1275 | 
            +
                    input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
         | 
| 1276 | 
            +
                    if cache_position is None:
         | 
| 1277 | 
            +
                        cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
         | 
| 1278 | 
            +
                    else:
         | 
| 1279 | 
            +
                        cache_position = cache_position[-input_length:]
         | 
| 1280 | 
            +
             | 
| 1281 | 
            +
                    if has_static_cache:
         | 
| 1282 | 
            +
                        past_key_values = None
         | 
| 1283 | 
            +
             | 
| 1284 | 
            +
                    model_inputs.update(
         | 
| 1285 | 
            +
                        {
         | 
| 1286 | 
            +
                            "position_ids": position_ids,
         | 
| 1287 | 
            +
                            "cache_position": cache_position,
         | 
| 1288 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1289 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1290 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1291 | 
            +
                        }
         | 
| 1292 | 
            +
                    )
         | 
| 1293 | 
            +
                    return model_inputs
         | 
| 1294 | 
            +
             | 
| 1295 | 
            +
                @staticmethod
         | 
| 1296 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1297 | 
            +
                    reordered_past = ()
         | 
| 1298 | 
            +
                    for layer_past in past_key_values:
         | 
| 1299 | 
            +
                        reordered_past += (
         | 
| 1300 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1301 | 
            +
                        )
         | 
| 1302 | 
            +
                    return reordered_past
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
             | 
| 1305 | 
            +
            @add_start_docstrings(
         | 
| 1306 | 
            +
                """
         | 
| 1307 | 
            +
                The Tele-FLM Model transformer with a sequence classification head on top (linear layer).
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
                [`TeleFLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1310 | 
            +
                (e.g. GPT-2) do.
         | 
| 1311 | 
            +
             | 
| 1312 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1313 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1314 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1315 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1316 | 
            +
                each row of the batch).
         | 
| 1317 | 
            +
                """,
         | 
| 1318 | 
            +
                TELEFLM_START_DOCSTRING,
         | 
| 1319 | 
            +
            )
         | 
| 1320 | 
            +
            class TeleFLMForSequenceClassification(TeleFLMPreTrainedModel):
         | 
| 1321 | 
            +
                def __init__(self, config):
         | 
| 1322 | 
            +
                    super().__init__(config)
         | 
| 1323 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1324 | 
            +
                    self.model = TeleFLMModel(config)
         | 
| 1325 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1326 | 
            +
             | 
| 1327 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1328 | 
            +
                    self.post_init()
         | 
| 1329 | 
            +
             | 
| 1330 | 
            +
                def get_input_embeddings(self):
         | 
| 1331 | 
            +
                    return self.model.embed_tokens
         | 
| 1332 | 
            +
             | 
| 1333 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1334 | 
            +
                    self.model.embed_tokens = value
         | 
| 1335 | 
            +
             | 
| 1336 | 
            +
                @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
         | 
| 1337 | 
            +
                def forward(
         | 
| 1338 | 
            +
                    self,
         | 
| 1339 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1340 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1341 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1342 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1343 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1344 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1345 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1346 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1347 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1348 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1349 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1350 | 
            +
                    r"""
         | 
| 1351 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1352 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1353 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1354 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1355 | 
            +
                    """
         | 
| 1356 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1357 | 
            +
             | 
| 1358 | 
            +
                    transformer_outputs = self.model(
         | 
| 1359 | 
            +
                        input_ids,
         | 
| 1360 | 
            +
                        attention_mask=attention_mask,
         | 
| 1361 | 
            +
                        position_ids=position_ids,
         | 
| 1362 | 
            +
                        past_key_values=past_key_values,
         | 
| 1363 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1364 | 
            +
                        use_cache=use_cache,
         | 
| 1365 | 
            +
                        output_attentions=output_attentions,
         | 
| 1366 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1367 | 
            +
                        return_dict=return_dict,
         | 
| 1368 | 
            +
                    )
         | 
| 1369 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1370 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1371 | 
            +
             | 
| 1372 | 
            +
                    if input_ids is not None:
         | 
| 1373 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1374 | 
            +
                    else:
         | 
| 1375 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1376 | 
            +
             | 
| 1377 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1378 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1379 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1380 | 
            +
                        sequence_lengths = -1
         | 
| 1381 | 
            +
                    else:
         | 
| 1382 | 
            +
                        if input_ids is not None:
         | 
| 1383 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1384 | 
            +
                            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1385 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1386 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1387 | 
            +
                        else:
         | 
| 1388 | 
            +
                            sequence_lengths = -1
         | 
| 1389 | 
            +
             | 
| 1390 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1391 | 
            +
             | 
| 1392 | 
            +
                    loss = None
         | 
| 1393 | 
            +
                    if labels is not None:
         | 
| 1394 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1395 | 
            +
                        if self.config.problem_type is None:
         | 
| 1396 | 
            +
                            if self.num_labels == 1:
         | 
| 1397 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1398 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1399 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1400 | 
            +
                            else:
         | 
| 1401 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1402 | 
            +
             | 
| 1403 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1404 | 
            +
                            loss_fct = MSELoss()
         | 
| 1405 | 
            +
                            if self.num_labels == 1:
         | 
| 1406 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1407 | 
            +
                            else:
         | 
| 1408 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1409 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1410 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1411 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1412 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1413 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1414 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1415 | 
            +
                    if not return_dict:
         | 
| 1416 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1417 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1418 | 
            +
             | 
| 1419 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1420 | 
            +
                        loss=loss,
         | 
| 1421 | 
            +
                        logits=pooled_logits,
         | 
| 1422 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1423 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1424 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1425 | 
            +
                    )
         | 
| 1426 | 
            +
             | 
| 1427 | 
            +
             | 
| 1428 | 
            +
            @add_start_docstrings(
         | 
| 1429 | 
            +
                """
         | 
| 1430 | 
            +
            The TeleFLM Model transformer with a span classification head on top for extractive question-answering tasks like
         | 
| 1431 | 
            +
            SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
         | 
| 1432 | 
            +
                """,
         | 
| 1433 | 
            +
                TELEFLM_START_DOCSTRING,
         | 
| 1434 | 
            +
            )
         | 
| 1435 | 
            +
            class TeleFLMForQuestionAnswering(TeleFLMPreTrainedModel):
         | 
| 1436 | 
            +
                base_model_prefix = "transformer"
         | 
| 1437 | 
            +
             | 
| 1438 | 
            +
                # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TeleFLM
         | 
| 1439 | 
            +
                def __init__(self, config):
         | 
| 1440 | 
            +
                    super().__init__(config)
         | 
| 1441 | 
            +
                    self.transformer = TeleFLMModel(config)
         | 
| 1442 | 
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, 2)
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1445 | 
            +
                    self.post_init()
         | 
| 1446 | 
            +
             | 
| 1447 | 
            +
                def get_input_embeddings(self):
         | 
| 1448 | 
            +
                    return self.transformer.embed_tokens
         | 
| 1449 | 
            +
             | 
| 1450 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1451 | 
            +
                    self.transformer.embed_tokens = value
         | 
| 1452 | 
            +
             | 
| 1453 | 
            +
                @add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
         | 
| 1454 | 
            +
                def forward(
         | 
| 1455 | 
            +
                    self,
         | 
| 1456 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 1457 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 1458 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1459 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1460 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1461 | 
            +
                    start_positions: Optional[torch.LongTensor] = None,
         | 
| 1462 | 
            +
                    end_positions: Optional[torch.LongTensor] = None,
         | 
| 1463 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1464 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1465 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1466 | 
            +
                ) -> Union[Tuple, QuestionAnsweringModelOutput]:
         | 
| 1467 | 
            +
                    r"""
         | 
| 1468 | 
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1469 | 
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         | 
| 1470 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1471 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1472 | 
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1473 | 
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         | 
| 1474 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1475 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1476 | 
            +
                    """
         | 
| 1477 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1478 | 
            +
             | 
| 1479 | 
            +
                    outputs = self.transformer(
         | 
| 1480 | 
            +
                        input_ids,
         | 
| 1481 | 
            +
                        attention_mask=attention_mask,
         | 
| 1482 | 
            +
                        position_ids=position_ids,
         | 
| 1483 | 
            +
                        past_key_values=past_key_values,
         | 
| 1484 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1485 | 
            +
                        output_attentions=output_attentions,
         | 
| 1486 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1487 | 
            +
                        return_dict=return_dict,
         | 
| 1488 | 
            +
                    )
         | 
| 1489 | 
            +
             | 
| 1490 | 
            +
                    sequence_output = outputs[0]
         | 
| 1491 | 
            +
             | 
| 1492 | 
            +
                    logits = self.qa_outputs(sequence_output)
         | 
| 1493 | 
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         | 
| 1494 | 
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         | 
| 1495 | 
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         | 
| 1496 | 
            +
             | 
| 1497 | 
            +
                    total_loss = None
         | 
| 1498 | 
            +
                    if start_positions is not None and end_positions is not None:
         | 
| 1499 | 
            +
                        # If we are on multi-GPU, split add a dimension
         | 
| 1500 | 
            +
                        if len(start_positions.size()) > 1:
         | 
| 1501 | 
            +
                            start_positions = start_positions.squeeze(-1).to(start_logits.device)
         | 
| 1502 | 
            +
                        if len(end_positions.size()) > 1:
         | 
| 1503 | 
            +
                            end_positions = end_positions.squeeze(-1).to(end_logits.device)
         | 
| 1504 | 
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         | 
| 1505 | 
            +
                        ignored_index = start_logits.size(1)
         | 
| 1506 | 
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         | 
| 1507 | 
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         | 
| 1508 | 
            +
             | 
| 1509 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         | 
| 1510 | 
            +
                        start_loss = loss_fct(start_logits, start_positions)
         | 
| 1511 | 
            +
                        end_loss = loss_fct(end_logits, end_positions)
         | 
| 1512 | 
            +
                        total_loss = (start_loss + end_loss) / 2
         | 
| 1513 | 
            +
             | 
| 1514 | 
            +
                    if not return_dict:
         | 
| 1515 | 
            +
                        output = (start_logits, end_logits) + outputs[2:]
         | 
| 1516 | 
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         | 
| 1517 | 
            +
             | 
| 1518 | 
            +
                    return QuestionAnsweringModelOutput(
         | 
| 1519 | 
            +
                        loss=total_loss,
         | 
| 1520 | 
            +
                        start_logits=start_logits,
         | 
| 1521 | 
            +
                        end_logits=end_logits,
         | 
| 1522 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1523 | 
            +
                        attentions=outputs.attentions,
         | 
| 1524 | 
            +
                    )
         | 
