Upload tokenization_teleflm.py with huggingface_hub
Browse files- tokenization_teleflm.py +403 -0
 
    	
        tokenization_teleflm.py
    ADDED
    
    | 
         @@ -0,0 +1,403 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 5 | 
         
            +
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 6 | 
         
            +
            # original forms to accommodate minor architectural differences compared
         
     | 
| 7 | 
         
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 10 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 11 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 12 | 
         
            +
            #
         
     | 
| 13 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 14 | 
         
            +
            #
         
     | 
| 15 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 16 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 17 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 18 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 19 | 
         
            +
            # limitations under the License.
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            """Tokenization classes for Tele-FLM."""
         
     | 
| 22 | 
         
            +
            import os
         
     | 
| 23 | 
         
            +
            from shutil import copyfile
         
     | 
| 24 | 
         
            +
            from typing import Any, Dict, List, Optional, Tuple
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            import sentencepiece as spm
         
     | 
| 27 | 
         
            +
            import re
         
     | 
| 28 | 
         
            +
            from transformers.convert_slow_tokenizer import import_protobuf
         
     | 
| 29 | 
         
            +
            from transformers import AddedToken, PreTrainedTokenizer
         
     | 
| 30 | 
         
            +
            from transformers.utils import logging
         
     | 
| 31 | 
         
            +
            from transformers.tokenization_utils_base import TextInput
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            PRETRAINED_VOCAB_FILES_MAP = {
         
     | 
| 38 | 
         
            +
                "vocab_file": {},
         
     | 
| 39 | 
         
            +
                "tokenizer_file": {},
         
     | 
| 40 | 
         
            +
            }
         
     | 
| 41 | 
         
            +
            PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
         
     | 
| 42 | 
         
            +
                "teleflm-tokenizer": 8192,
         
     | 
| 43 | 
         
            +
            }
         
     | 
| 44 | 
         
            +
            SPIECE_UNDERLINE = "▁"
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            class TeleFLMTokenizer(PreTrainedTokenizer):
         
     | 
| 48 | 
         
            +
                """
         
     | 
| 49 | 
         
            +
                Construct a Tele-FLM tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
         
     | 
| 50 | 
         
            +
                no padding token in the original model.
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                Args:
         
     | 
| 53 | 
         
            +
                    vocab_file (`str`):
         
     | 
| 54 | 
         
            +
                        Path to the vocabulary file.
         
     | 
| 55 | 
         
            +
                    unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
         
     | 
| 56 | 
         
            +
                        The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
         
     | 
| 57 | 
         
            +
                        token instead.
         
     | 
| 58 | 
         
            +
                    bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
         
     | 
| 59 | 
         
            +
                        The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
         
     | 
| 60 | 
         
            +
                    eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
         
     | 
| 61 | 
         
            +
                        The end of sequence token.
         
     | 
| 62 | 
         
            +
                    pad_token (`str` or `tokenizers.AddedToken`, *optional*):
         
     | 
| 63 | 
         
            +
                        A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
         
     | 
| 64 | 
         
            +
                        attention mechanisms or loss computation.
         
     | 
| 65 | 
         
            +
                    sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
         
     | 
| 66 | 
         
            +
                        Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
         
     | 
| 67 | 
         
            +
                        SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
         
     | 
| 68 | 
         
            +
                        to set:
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                        - `enable_sampling`: Enable subword regularization.
         
     | 
| 71 | 
         
            +
                        - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                          - `nbest_size = {0,1}`: No sampling is performed.
         
     | 
| 74 | 
         
            +
                          - `nbest_size > 1`: samples from the nbest_size results.
         
     | 
| 75 | 
         
            +
                          - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
         
     | 
| 76 | 
         
            +
                            using forward-filtering-and-backward-sampling algorithm.
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                        - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
         
     | 
| 79 | 
         
            +
                          BPE-dropout.
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    add_bos_token (`bool`, *optional*, defaults to `True`):
         
     | 
| 82 | 
         
            +
                        Whether or not to add an `bos_token` at the start of sequences.
         
     | 
| 83 | 
         
            +
                    add_eos_token (`bool`, *optional*, defaults to `False`):
         
     | 
| 84 | 
         
            +
                        Whether or not to add an `eos_token` at the end of sequences.
         
     | 
| 85 | 
         
            +
                    clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
         
     | 
| 86 | 
         
            +
                        Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
         
     | 
| 87 | 
         
            +
                        extra spaces.
         
     | 
| 88 | 
         
            +
                    spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
         
     | 
| 89 | 
         
            +
                        Whether or not to add spaces between special tokens.
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                """
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                vocab_files_names = VOCAB_FILES_NAMES
         
     | 
| 94 | 
         
            +
                pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
         
     | 
| 95 | 
         
            +
                max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
         
     | 
| 96 | 
         
            +
                model_input_names = ["input_ids", "attention_mask"]
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                def __init__(
         
     | 
| 99 | 
         
            +
                    self,
         
     | 
| 100 | 
         
            +
                    vocab_file,
         
     | 
| 101 | 
         
            +
                    bos_token="<s>",
         
     | 
| 102 | 
         
            +
                    eos_token="</s>",
         
     | 
| 103 | 
         
            +
                    unk_token="<unk>",
         
     | 
| 104 | 
         
            +
                    pad_token=None,
         
     | 
| 105 | 
         
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 106 | 
         
            +
                    add_bos_token=False,
         
     | 
| 107 | 
         
            +
                    add_eos_token=False,
         
     | 
| 108 | 
         
            +
                    clean_up_tokenization_spaces=False,
         
     | 
| 109 | 
         
            +
                    spaces_between_special_tokens=False,
         
     | 
| 110 | 
         
            +
                    **kwargs,
         
     | 
| 111 | 
         
            +
                ):
         
     | 
| 112 | 
         
            +
                    self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
         
     | 
| 113 | 
         
            +
                    bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
         
     | 
| 114 | 
         
            +
                    eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
         
     | 
| 115 | 
         
            +
                    pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
         
     | 
| 116 | 
         
            +
                    self.vocab_file = vocab_file
         
     | 
| 117 | 
         
            +
                    self.add_bos_token = add_bos_token
         
     | 
| 118 | 
         
            +
                    self.add_eos_token = add_eos_token
         
     | 
| 119 | 
         
            +
                    self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
         
     | 
| 120 | 
         
            +
                    super().__init__(
         
     | 
| 121 | 
         
            +
                        bos_token=bos_token,
         
     | 
| 122 | 
         
            +
                        eos_token=eos_token,
         
     | 
| 123 | 
         
            +
                        unk_token=unk_token,
         
     | 
| 124 | 
         
            +
                        pad_token=pad_token,
         
     | 
| 125 | 
         
            +
                        add_bos_token=add_bos_token,
         
     | 
| 126 | 
         
            +
                        add_eos_token=add_eos_token,
         
     | 
| 127 | 
         
            +
                        sp_model_kwargs=self.sp_model_kwargs,
         
     | 
| 128 | 
         
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         
     | 
| 129 | 
         
            +
                        spaces_between_special_tokens=spaces_between_special_tokens,
         
     | 
| 130 | 
         
            +
                        **kwargs,
         
     | 
| 131 | 
         
            +
                    )
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                @property
         
     | 
| 134 | 
         
            +
                def unk_token_length(self):
         
     | 
| 135 | 
         
            +
                    return len(self.sp_model.encode(str(self.unk_token)))
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
         
     | 
| 138 | 
         
            +
                def get_spm_processor(self, from_slow=False):
         
     | 
| 139 | 
         
            +
                    tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
         
     | 
| 140 | 
         
            +
                    with open(self.vocab_file, "rb") as f:
         
     | 
| 141 | 
         
            +
                        sp_model = f.read()
         
     | 
| 142 | 
         
            +
                        model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
         
     | 
| 143 | 
         
            +
                        model = model_pb2.ModelProto.FromString(sp_model)
         
     | 
| 144 | 
         
            +
                        normalizer_spec = model_pb2.NormalizerSpec()
         
     | 
| 145 | 
         
            +
                        normalizer_spec.add_dummy_prefix = True
         
     | 
| 146 | 
         
            +
                        model.normalizer_spec.MergeFrom(normalizer_spec)
         
     | 
| 147 | 
         
            +
                        sp_model = model.SerializeToString()
         
     | 
| 148 | 
         
            +
                        tokenizer.LoadFromSerializedProto(sp_model)
         
     | 
| 149 | 
         
            +
                    return tokenizer
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                def __getstate__(self):
         
     | 
| 152 | 
         
            +
                    state = self.__dict__.copy()
         
     | 
| 153 | 
         
            +
                    state["sp_model"] = None
         
     | 
| 154 | 
         
            +
                    state["sp_model_proto"] = self.sp_model.serialized_model_proto()
         
     | 
| 155 | 
         
            +
                    return state
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def __setstate__(self, d):
         
     | 
| 158 | 
         
            +
                    self.__dict__ = d
         
     | 
| 159 | 
         
            +
                    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
         
     | 
| 160 | 
         
            +
                    self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                @property
         
     | 
| 163 | 
         
            +
                def vocab_size(self):
         
     | 
| 164 | 
         
            +
                    """Returns vocab size"""
         
     | 
| 165 | 
         
            +
                    return self.sp_model.get_piece_size()
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                def get_vocab(self):
         
     | 
| 168 | 
         
            +
                    """Returns vocab as a dict"""
         
     | 
| 169 | 
         
            +
                    vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
         
     | 
| 170 | 
         
            +
                    vocab.update(self.added_tokens_encoder)
         
     | 
| 171 | 
         
            +
                    return vocab
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                def tokenize(self, text: TextInput, **kwargs) -> List[str]:
         
     | 
| 174 | 
         
            +
                    """
         
     | 
| 175 | 
         
            +
                    Converts a string in a sequence of tokens, using the tokenizer.
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                    Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
         
     | 
| 178 | 
         
            +
                    (BPE/SentencePieces/WordPieces). Takes care of added tokens.
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    Args:
         
     | 
| 181 | 
         
            +
                        text (`str`):
         
     | 
| 182 | 
         
            +
                            The sequence to be encoded.
         
     | 
| 183 | 
         
            +
                        **kwargs (additional keyword arguments):
         
     | 
| 184 | 
         
            +
                            Passed along to the model-specific `prepare_for_tokenization` preprocessing method.
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                    Returns:
         
     | 
| 187 | 
         
            +
                        `List[str]`: The list of tokens.
         
     | 
| 188 | 
         
            +
                    """
         
     | 
| 189 | 
         
            +
                    split_special_tokens = kwargs.pop("split_special_tokens", self.split_special_tokens)
         
     | 
| 190 | 
         
            +
                    remove_dummy_prefix = kwargs.pop("remove_dummy_prefix", False)
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                    text, kwargs = self.prepare_for_tokenization(text, **kwargs)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    if kwargs:
         
     | 
| 195 | 
         
            +
                        logger.warning(f"Keyword arguments {kwargs} not recognized.")
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    if hasattr(self, "do_lower_case") and self.do_lower_case:
         
     | 
| 198 | 
         
            +
                        # convert non-special tokens to lowercase. Might be super slow as well?
         
     | 
| 199 | 
         
            +
                        escaped_special_toks = [re.escape(s_tok) for s_tok in (self.all_special_tokens)]
         
     | 
| 200 | 
         
            +
                        escaped_special_toks += [
         
     | 
| 201 | 
         
            +
                            re.escape(s_tok.content)
         
     | 
| 202 | 
         
            +
                            for s_tok in (self._added_tokens_decoder.values())
         
     | 
| 203 | 
         
            +
                            if not s_tok.special and s_tok.normalized
         
     | 
| 204 | 
         
            +
                        ]
         
     | 
| 205 | 
         
            +
                        pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
         
     | 
| 206 | 
         
            +
                        text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                    if split_special_tokens:
         
     | 
| 209 | 
         
            +
                        no_split_token = []
         
     | 
| 210 | 
         
            +
                        tokens = [text]
         
     | 
| 211 | 
         
            +
                    else:
         
     | 
| 212 | 
         
            +
                        no_split_token = self._added_tokens_encoder.keys()  # don't split on any of the added tokens
         
     | 
| 213 | 
         
            +
                        # "This is something<special_token_1>  else"
         
     | 
| 214 | 
         
            +
                        tokens = self.tokens_trie.split(text)
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    # ["This is something", "<special_token_1>", "  else"]
         
     | 
| 217 | 
         
            +
                    for i, token in enumerate(tokens):
         
     | 
| 218 | 
         
            +
                        if token in no_split_token:
         
     | 
| 219 | 
         
            +
                            tok_extended = self._added_tokens_decoder.get(self._added_tokens_encoder[token], None)
         
     | 
| 220 | 
         
            +
                            left = tokens[i - 1] if i > 0 else None
         
     | 
| 221 | 
         
            +
                            right = tokens[i + 1] if i < len(tokens) - 1 else None
         
     | 
| 222 | 
         
            +
                            if isinstance(tok_extended, AddedToken):
         
     | 
| 223 | 
         
            +
                                if tok_extended.rstrip and right:
         
     | 
| 224 | 
         
            +
                                    # A bit counter-intuitive but we strip the left of the string
         
     | 
| 225 | 
         
            +
                                    # since tok_extended.rstrip means the special token is eating all white spaces on its right
         
     | 
| 226 | 
         
            +
                                    tokens[i + 1] = right.lstrip()
         
     | 
| 227 | 
         
            +
                                # Strip white spaces on the left
         
     | 
| 228 | 
         
            +
                                if tok_extended.lstrip and left:
         
     | 
| 229 | 
         
            +
                                    tokens[i - 1] = left.rstrip()  # Opposite here
         
     | 
| 230 | 
         
            +
                                if tok_extended.single_word and left and left[-1] != " ":
         
     | 
| 231 | 
         
            +
                                    tokens[i - 1] += token
         
     | 
| 232 | 
         
            +
                                    tokens[i] = ""
         
     | 
| 233 | 
         
            +
                                elif tok_extended.single_word and right and right[0] != " ":
         
     | 
| 234 | 
         
            +
                                    tokens[i + 1] = token + tokens[i + 1]
         
     | 
| 235 | 
         
            +
                                    tokens[i] = ""
         
     | 
| 236 | 
         
            +
                            else:
         
     | 
| 237 | 
         
            +
                                raise ValueError(
         
     | 
| 238 | 
         
            +
                                    f"{tok_extended} cannot be tokenized because it was not properly added"
         
     | 
| 239 | 
         
            +
                                    f" to the tokenizer. This means that it is not an `AddedToken` but a {type(tok_extended)}"
         
     | 
| 240 | 
         
            +
                                )
         
     | 
| 241 | 
         
            +
                    # ["This is something", "<special_token_1>", "else"]
         
     | 
| 242 | 
         
            +
                    tokenized_text = []
         
     | 
| 243 | 
         
            +
                    for token in tokens:
         
     | 
| 244 | 
         
            +
                        # Need to skip eventual empty (fully stripped) tokens
         
     | 
| 245 | 
         
            +
                        if not token:
         
     | 
| 246 | 
         
            +
                            continue
         
     | 
| 247 | 
         
            +
                        if token in no_split_token:
         
     | 
| 248 | 
         
            +
                            tokenized_text.append(token)
         
     | 
| 249 | 
         
            +
                        else:
         
     | 
| 250 | 
         
            +
                            tokenized_text.extend(self._tokenize(token, remove_dummy_prefix=remove_dummy_prefix))
         
     | 
| 251 | 
         
            +
                    # ["This", " is", " something", "<special_token_1>", "else"]
         
     | 
| 252 | 
         
            +
                    return tokenized_text
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                def _tokenize(self, text, **kwargs):
         
     | 
| 255 | 
         
            +
                    """
         
     | 
| 256 | 
         
            +
                    Returns a tokenized string.
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    We add a option to remove dummpy prefix during tokenization instead of changing the default behaviour of the sentencepiece tokenizer.
         
     | 
| 259 | 
         
            +
                    This is useful when there're two tokenized sentences to be merged into one as the last one will have an extra dummy prefix which results in a
         
     | 
| 260 | 
         
            +
                    inconsistant pattern.
         
     | 
| 261 | 
         
            +
                    """
         
     | 
| 262 | 
         
            +
                    tokens = self.sp_model.encode(text, out_type=str)
         
     | 
| 263 | 
         
            +
                    if text.startswith((SPIECE_UNDERLINE, " ")):
         
     | 
| 264 | 
         
            +
                        return tokens
         
     | 
| 265 | 
         
            +
                    if len(tokens) > 0 and kwargs.get("remove_dummy_prefix") is True:
         
     | 
| 266 | 
         
            +
                        tokens[0] = tokens[0].replace(SPIECE_UNDERLINE, "", 1)
         
     | 
| 267 | 
         
            +
                    return tokens
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                def _convert_token_to_id(self, token):
         
     | 
| 270 | 
         
            +
                    """Converts a token (str) in an id using the vocab."""
         
     | 
| 271 | 
         
            +
                    return self.sp_model.piece_to_id(token)
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                def _convert_id_to_token(self, index):
         
     | 
| 274 | 
         
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         
     | 
| 275 | 
         
            +
                    token = self.sp_model.IdToPiece(index)
         
     | 
| 276 | 
         
            +
                    return token
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                def convert_tokens_to_string(self, tokens):
         
     | 
| 279 | 
         
            +
                    """Converts a sequence of tokens (string) in a single string."""
         
     | 
| 280 | 
         
            +
                    current_sub_tokens = []
         
     | 
| 281 | 
         
            +
                    out_string = ""
         
     | 
| 282 | 
         
            +
                    # prev_is_special = False
         
     | 
| 283 | 
         
            +
                    for i, token in enumerate(tokens):
         
     | 
| 284 | 
         
            +
                        # make sure that special tokens are not decoded using sentencepiece model
         
     | 
| 285 | 
         
            +
                        if token in self.all_special_tokens:
         
     | 
| 286 | 
         
            +
                            # if not prev_is_special and i != 0 and self.legacy:
         
     | 
| 287 | 
         
            +
                            #     out_string += " "
         
     | 
| 288 | 
         
            +
                            out_string += self.sp_model.decode(current_sub_tokens) + token
         
     | 
| 289 | 
         
            +
                            # prev_is_special = True
         
     | 
| 290 | 
         
            +
                            current_sub_tokens = []
         
     | 
| 291 | 
         
            +
                        else:
         
     | 
| 292 | 
         
            +
                            current_sub_tokens.append(token)
         
     | 
| 293 | 
         
            +
                            # prev_is_special = False
         
     | 
| 294 | 
         
            +
                    out_string += self.sp_model.decode(current_sub_tokens)
         
     | 
| 295 | 
         
            +
                    return out_string
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
         
     | 
| 298 | 
         
            +
                    """
         
     | 
| 299 | 
         
            +
                    Save the vocabulary and special tokens file to a directory.
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                    Args:
         
     | 
| 302 | 
         
            +
                        save_directory (`str`):
         
     | 
| 303 | 
         
            +
                            The directory in which to save the vocabulary.
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                    Returns:
         
     | 
| 306 | 
         
            +
                        `Tuple(str)`: Paths to the files saved.
         
     | 
| 307 | 
         
            +
                    """
         
     | 
| 308 | 
         
            +
                    if not os.path.isdir(save_directory):
         
     | 
| 309 | 
         
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         
     | 
| 310 | 
         
            +
                        return
         
     | 
| 311 | 
         
            +
                    out_vocab_file = os.path.join(
         
     | 
| 312 | 
         
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         
     | 
| 313 | 
         
            +
                    )
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
         
     | 
| 316 | 
         
            +
                        copyfile(self.vocab_file, out_vocab_file)
         
     | 
| 317 | 
         
            +
                    elif not os.path.isfile(self.vocab_file):
         
     | 
| 318 | 
         
            +
                        with open(out_vocab_file, "wb") as fi:
         
     | 
| 319 | 
         
            +
                            content_spiece_model = self.sp_model.serialized_model_proto()
         
     | 
| 320 | 
         
            +
                            fi.write(content_spiece_model)
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    return (out_vocab_file,)
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         
     | 
| 325 | 
         
            +
                    bos_token_id = [self.bos_token_id] if self.add_bos_token else []
         
     | 
| 326 | 
         
            +
                    eos_token_id = [self.eos_token_id] if self.add_eos_token else []
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                    output = bos_token_id + token_ids_0 + eos_token_id
         
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
                    if token_ids_1 is not None:
         
     | 
| 331 | 
         
            +
                        output = output + bos_token_id + token_ids_1 + eos_token_id
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                    return output
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                def get_special_tokens_mask(
         
     | 
| 336 | 
         
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
         
     | 
| 337 | 
         
            +
                ) -> List[int]:
         
     | 
| 338 | 
         
            +
                    """
         
     | 
| 339 | 
         
            +
                    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
         
     | 
| 340 | 
         
            +
                    special tokens using the tokenizer `prepare_for_model` method.
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                    Args:
         
     | 
| 343 | 
         
            +
                        token_ids_0 (`List[int]`):
         
     | 
| 344 | 
         
            +
                            List of IDs.
         
     | 
| 345 | 
         
            +
                        token_ids_1 (`List[int]`, *optional*):
         
     | 
| 346 | 
         
            +
                            Optional second list of IDs for sequence pairs.
         
     | 
| 347 | 
         
            +
                        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
         
     | 
| 348 | 
         
            +
                            Whether or not the token list is already formatted with special tokens for the model.
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    Returns:
         
     | 
| 351 | 
         
            +
                        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
         
     | 
| 352 | 
         
            +
                    """
         
     | 
| 353 | 
         
            +
                    if already_has_special_tokens:
         
     | 
| 354 | 
         
            +
                        return super().get_special_tokens_mask(
         
     | 
| 355 | 
         
            +
                            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
         
     | 
| 356 | 
         
            +
                        )
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    bos_token_id = [1] if self.add_bos_token else []
         
     | 
| 359 | 
         
            +
                    eos_token_id = [1] if self.add_eos_token else []
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    if token_ids_1 is None:
         
     | 
| 362 | 
         
            +
                        return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
         
     | 
| 363 | 
         
            +
                    return (
         
     | 
| 364 | 
         
            +
                        bos_token_id
         
     | 
| 365 | 
         
            +
                        + ([0] * len(token_ids_0))
         
     | 
| 366 | 
         
            +
                        + eos_token_id
         
     | 
| 367 | 
         
            +
                        + bos_token_id
         
     | 
| 368 | 
         
            +
                        + ([0] * len(token_ids_1))
         
     | 
| 369 | 
         
            +
                        + eos_token_id
         
     | 
| 370 | 
         
            +
                    )
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                def create_token_type_ids_from_sequences(
         
     | 
| 373 | 
         
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         
     | 
| 374 | 
         
            +
                ) -> List[int]:
         
     | 
| 375 | 
         
            +
                    """
         
     | 
| 376 | 
         
            +
                    Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
         
     | 
| 377 | 
         
            +
                    sequence pair mask has the following format:
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                    ```
         
     | 
| 380 | 
         
            +
                    0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
         
     | 
| 381 | 
         
            +
                    | first sequence    | second sequence |
         
     | 
| 382 | 
         
            +
                    ```
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    if token_ids_1 is None, only returns the first portion of the mask (0s).
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                    Args:
         
     | 
| 387 | 
         
            +
                        token_ids_0 (`List[int]`):
         
     | 
| 388 | 
         
            +
                            List of ids.
         
     | 
| 389 | 
         
            +
                        token_ids_1 (`List[int]`, *optional*):
         
     | 
| 390 | 
         
            +
                            Optional second list of IDs for sequence pairs.
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                    Returns:
         
     | 
| 393 | 
         
            +
                        `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
         
     | 
| 394 | 
         
            +
                    """
         
     | 
| 395 | 
         
            +
                    bos_token_id = [self.bos_token_id] if self.add_bos_token else []
         
     | 
| 396 | 
         
            +
                    eos_token_id = [self.eos_token_id] if self.add_eos_token else []
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    if token_ids_1 is not None:
         
     | 
| 401 | 
         
            +
                        output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                    return output
         
     |