Qwen2.5-14B-Emergedv2 / mergekit_config.yml
CultriX's picture
Upload folder using huggingface_hub
6d08d3a verified
raw
history blame
1.81 kB
models:
- model: VAGOsolutions/SauerkrautLM-v2-14b-DPO
parameters:
weight: 0.25 # Prioritize top IFEval
density: 0.6 # Keep a large portion for strong factual baseline
- model: allknowingroger/QwenSlerp6-14B
parameters:
weight: 0.25 # High weight for MATH and balanced reasoning
density: 0.6 # Retain robust reasoning capabilities
- model: CultriX/SeQwence-14B-EvolMerge
parameters:
weight: 0.20 # Important for best BBH and near-top MuSR
density: 0.5 # Moderate density to ensure these strengths blend well
- model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: 0.15 # Adds top GPQA performance
density: 0.5 # Sufficient to preserve QA strengths
- model: allknowingroger/QwenStock3-14B
parameters:
weight: 0.15 # For top MMLU-PRO, enhancing domain knowledge
density: 0.5 # Balanced integration of diverse subject expertise
base_model: CultriX/SeQwence-14Bv1
merge_method: dare_ties
parameters:
normalize: true # Ensures parameter scaling compatibility
int8_mask: true # Memory and computational efficiency
dtype: bfloat16
adaptive_merge_parameters:
task_weights:
IFEval: 1.2 # Emphasize instruction-following and formatting adherence
BBH: 1.2 # Maintain strong performance in challenging reasoning tasks
MATH_Lvl_5: 1.3 # Ensure domain expertise in competitive math problems
GPQA: 1.3 # Leverage graduate-level knowledge capabilities
MuSR: 1.1 # Enhance multistep reasoning on complex tasks
MMLU_PRO: 1.2 # Ensure robust multitask domain understanding
smoothing_factor: 0.2 # Moderate blending for stable integration
gradient_clipping: 1.0 # Prevent over-contribution from any single model