--- library_name: transformers language: - nan license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Hokkien-to-Tai Lo Whisper ver 1.2 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_17_0 config: nan-tw split: test args: 'config: hi, split: test' metrics: - type: wer value: 127.25846222819996 name: Wer --- # Hokkien-to-Tai Lo Whisper ver 1.2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6145 - Wer: 127.2585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9814 | 0.256 | 800 | 0.9274 | 132.0108 | | 0.8335 | 0.512 | 1600 | 0.8062 | 128.4465 | | 0.7856 | 0.768 | 2400 | 0.7318 | 131.0020 | | 0.6938 | 1.024 | 3200 | 0.6892 | 127.7740 | | 0.6089 | 1.28 | 4000 | 0.6609 | 125.5100 | | 0.6078 | 1.536 | 4800 | 0.6377 | 128.8276 | | 0.5756 | 1.792 | 5600 | 0.6244 | 126.0031 | | 0.5764 | 2.048 | 6400 | 0.6145 | 127.2585 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0