--- library_name: transformers language: - nan license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Hokkien-to-Tai Lo Whisper ver 3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_1 config: nan-tw split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 82.85779502396713 --- # Hokkien-to-Tai Lo Whisper ver 3 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5026 - Wer: 82.8578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 5.9959 | 0.2581 | 800 | 1.1302 | 99.9772 | | 0.8265 | 0.5161 | 1600 | 0.7367 | 92.8555 | | 0.6895 | 0.7742 | 2400 | 0.6409 | 87.4001 | | 0.5814 | 1.0323 | 3200 | 0.5745 | 85.9849 | | 0.4864 | 1.2903 | 4000 | 0.5512 | 85.4143 | | 0.4662 | 1.5484 | 4800 | 0.5334 | 85.8480 | | 0.4421 | 1.8065 | 5600 | 0.5154 | 83.6339 | | 0.449 | 2.0645 | 6400 | 0.5097 | 83.3600 | | 0.3807 | 2.3226 | 7200 | 0.5058 | 83.0861 | | 0.3783 | 2.5806 | 8000 | 0.5026 | 82.8578 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0