File size: 5,591 Bytes
3e5188f 0f3ff35 3e5188f 0f3ff35 743d22b 0f3ff35 743d22b 0f3ff35 0ac4ca5 0f3ff35 6c9c97f 0f3ff35 3e5188f 0f3ff35 150ce81 0f3ff35 150ce81 0f3ff35 150ce81 0f3ff35 150ce81 0f3ff35 743d22b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_moe
- rust
- code-generation
- instruction-tuning
- open-source
library_name: transformers
base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct
model_name: Daemontatox/HydraCoder
trained_with:
- Unsloth
- Hugging Face TRL
datasets:
- Tesslate/Rust_Dataset
- ysr/rust_instruction_dataset
- saurabh5/rlvr-code-data-Rust
---

Daemontatox/HydraCoder
HydraCoder is a state-of-the-art Rust-specialized coding model built on Qwen/Qwen3-Coder-30B-A3B-Instruct, designed for high-fidelity, idiomatic Rust code generation, completion, and repair.
This is the strongest pure Rust model to date, specifically fine-tuned on real-world projects, crates, compiler patterns, and Rust best practices.
🦀 Key Features
Focused on Rust: Trained on diverse idiomatic Rust repositories, including tokio, serde, actix, clap, and async ecosystems.
Instruction-tuned: Accepts natural instructions like "write a TCP server" or "convert this struct to JSON".
Zero-shot Capable: Performs well without examples, and adapts to many Rust-specific patterns like lifetimes, Result<T, E>, traits, ownership, and borrow checking.
---
# Training parameters
### Max Sequence length : 8192
### r = 32 , alpha = 64
### bias is none
### lora dropout = 0.01
### learning rate : 2e-4 / 2e-5 depinding on your dataset
### 2 epochs
### lr schedular = cosine
### weight decay is 0.05
### warmup ration = 0.02
### system prompt :
```
You are a reasoning-focused AI assistant with expertise in Rust and large language models (LLMs).
Your goal is to solve tasks by thinking step-by-step, applying principles of systems programming, memory safety, and performance-aware design.
Use logical deduction, structured thinking, and factual grounding rooted in the Rust ecosystem and machine learning best practices.
Ask for clarification if the input is ambiguous.
Keep your answers concise but well-justified, referencing relevant Rust constructs or ML paradigms when helpful.
Approach this like an intermediate-level Rust and LLM engineer.
Break down the problem into parts—such as data ownership, type safety, concurrency, or model architecture.
Identify assumptions, make inferences, and evaluate alternatives with a focus on correctness and efficiency.
Avoid overconfidence.
Explain your reasoning clearly, even if the final answer is simple.
prompt:
{}
Reasoning:
{}
response:
{}
```
🧠 Intended Use
HydraCoder is ideal for:
Rust code generation from natural instructions
Auto-completion and snippet insertion in editors
Static analysis assistant tools
Compiler plugin or LSP augmentation
Refactoring or code review suggestions
Code repair or bugfix generation
---
🔬 Model Details
Property Value
Base Model Qwen/Qwen3-Coder-30B-A3B-Instruct
Fine-tuned Model Daemontatox/HydraCoder
Model Type Mixture-of-Experts (2/8 active experts)
Parameters ~30B (with 2 active experts, ~7.5B per step)
Domain Specialization Idiomatic Rust Code
Training Tooling Unsloth + Hugging Face TRL
License Apache 2.0
---
✍️ Example Prompt
Prompt:
Write a simple multithreaded web server in Rust that serves "Hello, world!" to any GET request.
HydraCoder Output:
```rust
use std::net::{TcpListener, TcpStream};
use std::io::{Read, Write};
use std::thread;
fn handle_client(mut stream: TcpStream) {
let mut buffer = [0; 1024];
if let Ok(_) = stream.read(&mut buffer) {
let response = "HTTP/1.1 200 OK\r\nContent-Type: text/plain\r\n\r\nHello, world!";
let _ = stream.write(response.as_bytes());
}
}
fn main() -> std::io::Result<()> {
let listener = TcpListener::bind("127.0.0.1:7878")?;
println!("Server listening on port 7878...");
for stream in listener.incoming() {
match stream {
Ok(stream) => {
thread::spawn(|| {
handle_client(stream);
});
}
Err(e) => eprintln!("Connection failed: {}", e),
}
}
Ok(())
}
```
---
⚡ Inference Code
You can run inference using transformers and text-generation pipeline:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_id = "Daemontatox/HydraCoder"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompt = "Write a function in Rust that takes a list of integers and returns the sum of all even numbers."
output = pipe(prompt, max_new_tokens=200, do_sample=True, temperature=0.2)[0]["generated_text"]
print(output)
```
---
🧪 Benchmarks (Qualitative)
HydraCoder performs especially well on:
Code Rust (HumanEval / MBPP in Rust) – correctly compiling and idiomatic
Leetcode-style Rust tasks
Crate-specific patterns – understands macros, derive attributes, and lifetimes
Ownership-safe solutions
---
🔍 Limitations
Trained for Rust only – not suited for general-purpose multi-language tasks.
May hallucinate external crate names or imports if not in prompt.
Not guaranteed to pass Rust compiler unless prompt includes full context.
---
✅ License
Released under the Apache 2.0 License. Free for research and commercial use with attribution.
---
👨💻 Author
Model Developer: Daemontatox
Base Model Author: Qwen Team
Fine-tuned with: Unsloth + TRL
--- |