File size: 11,416 Bytes
dd7cdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from dataclasses import dataclass

import numpy as np
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from segmentation_models_pytorch.base import SegmentationHead
from segmentation_models_pytorch.decoders.unet.decoder import UnetDecoder
from timm.layers.create_act import create_act_layer
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import SemanticSegmenterOutput

from .convlstm import ConvLSTM


class ACTUConfig(PretrainedConfig):
    model_type = "actu"

    def __init__(
        self,
        # Base ACTU parameters
        in_channels: int = 3,
        kernel_size: tuple[int, int] = (3, 3),
        padding="same",
        stride=(1, 1),
        backbone="resnet34",
        bias=True,
        batch_first=True,
        bidirectional=False,
        original_resolution=(256, 256),
        act_layer="sigmoid",
        n_classes=1,
        # Variant control parameters
        use_dem_input: bool = False,
        use_climate_branch: bool = False,
        # Climate branch parameters
        climate_seq_len=5,
        climate_input_dim=6,
        lstm_hidden_dim=128,
        num_lstm_layers=1,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.in_channels = in_channels
        self.kernel_size = kernel_size
        self.padding = padding
        self.stride = stride
        self.backbone = backbone
        self.bias = bias
        self.batch_first = batch_first
        self.bidirectional = bidirectional
        self.original_resolution = original_resolution
        self.act_layer = act_layer
        self.n_classes = n_classes

        # Parameters to control variants
        self.use_dem_input = use_dem_input
        self.use_climate_branch = use_climate_branch
        self.climate_seq_len = climate_seq_len
        self.climate_input_dim = climate_input_dim
        self.lstm_hidden_dim = lstm_hidden_dim
        self.num_lstm_layers = num_lstm_layers

        # Adjust in_channels if DEM is used
        if self.use_dem_input:
            self.in_channels += 1


class ACTUForImageSegmentation(PreTrainedModel):
    config_class = ACTUConfig

    def __init__(self, config: ACTUConfig):
        super().__init__(config)
        self.config = config

        self.encoder: nn.Module = timm.create_model(
            config.backbone, features_only=True, in_chans=config.in_channels
        )

        with torch.no_grad():
            dummy_input_channels = config.in_channels
            dummy_input = torch.randn(
                1, dummy_input_channels, *config.original_resolution, device=self.device
            )
            embs = self.encoder(dummy_input)
            self.embs_shape = [e.shape for e in embs]
            self.encoder_channels = [e[1] for e in self.embs_shape]

        self.convlstm = nn.ModuleList(
            [
                ConvLSTM(
                    in_channels=shape[1],
                    hidden_channels=shape[1],
                    kernel_size=config.kernel_size,
                    padding=config.padding,
                    stride=config.stride,
                    bias=config.bias,
                    batch_first=config.batch_first,
                    bidirectional=config.bidirectional,
                )
                for shape in self.embs_shape
            ]
        )

        if self.config.use_climate_branch:
            self.climate_branch = ClimateBranchLSTM(
                output_shapes=[e[1:] for e in self.embs_shape],
                lstm_hidden_dim=config.lstm_hidden_dim,
                climate_seq_len=config.climate_seq_len,
                climate_input_dim=config.climate_input_dim,
                num_lstm_layers=config.num_lstm_layers,
            )
            self.fusers = nn.ModuleList(
                GatedFusion(enc, enc) for enc in self.encoder_channels
            )

        self.decoder = UnetDecoder(
            encoder_channels=[1] + self.encoder_channels,
            decoder_channels=self.encoder_channels[::-1],
            n_blocks=len(self.encoder_channels),
        )

        self.seg_head = nn.Sequential(
            SegmentationHead(
                in_channels=self.encoder_channels[0],
                out_channels=config.n_classes,
            ),
            create_act_layer(config.act_layer, inplace=True),
        )

    def forward(
        self,
        pixel_values: torch.Tensor,
        climate: torch.Tensor = None,
        dem: torch.Tensor = None,
        labels: torch.Tensor = None,
        **kwargs,
    ) -> SemanticSegmenterOutput:
        b, t = pixel_values.shape[:2]
        original_size = pixel_values.shape[-2:]

        # Handle DEM input
        if self.config.use_dem_input:
            if dem is None:
                raise ValueError(
                    "DEM tensor must be provided when use_dem_input is True."
                )
            dem_repeated = repeat(dem, "b c h w -> b t c h w", t=t)
            pixel_values = torch.cat([pixel_values, dem_repeated], dim=2)

        # 1. Encode images per time step
        encoded_sequence = self._encode_images(pixel_values)

        # 2. Handle Climate Branch Fusion
        if self.config.use_climate_branch:
            if climate is None:
                raise ValueError(
                    "Climate tensor must be provided when use_climate_branch is True."
                )

            climate_features = self.climate_branch(climate)

            # Reshape for fusion
            encoded_sequence_reshaped = [
                rearrange(f, "b t c h w -> (b t) c h w") for f in encoded_sequence
            ]
            climate_features_reshaped = [
                rearrange(f, "b t c h w -> (b t) c h w") for f in climate_features
            ]

            # Fuse features
            fused_features = [
                fuser(img, clim)
                for fuser, img, clim in zip(
                    self.fusers, encoded_sequence_reshaped, climate_features_reshaped
                )
            ]

            # Reshape back to sequence
            encoded_sequence = [
                rearrange(f, "(b t) c h w -> b t c h w", b=b) for f in fused_features
            ]

        # 3. Process sequence with ConvLSTM
        temporal_features = self._encode_timeseries(encoded_sequence)

        # 4. Decode to get the segmentation map
        logits = self._decode(temporal_features, size=original_size)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits, labels.float().unsqueeze(1))

        return SemanticSegmenterOutput(
            loss=loss,
            logits=logits,
        )

    def _encode_images(self, x: torch.Tensor) -> list[torch.Tensor]:
        B = x.size(0)
        encoded_frames = self.encoder(rearrange(x, "b t c h w -> (b t) c h w"))
        return [
            rearrange(frames, "(b t) c h w -> b t c h w", b=B)
            for frames in encoded_frames
        ]

    def _encode_timeseries(self, timeseries: torch.Tensor) -> list[torch.Tensor]:
        outs = []
        for convlstm, encoded in reversed(list(zip(self.convlstm, timeseries))):
            lstm_out, (_, _) = convlstm(encoded)
            outs.append(lstm_out[:, -1, :, :, :])
        return outs

    def _decode(self, x: torch.Tensor, size: tuple[int, int]) -> torch.Tensor:
        trend_map = self.decoder(*[None] + x[::-1])
        trend_map = self.seg_head(trend_map)
        trend_map = F.interpolate(
            trend_map, size=size, mode="bilinear", align_corners=False
        )
        return trend_map


class ClimateBranchLSTM(nn.Module):
    """
    Processes climate time series data using an LSTM.
    Input shape: (B, T, T_1, C_clim) -> e.g., (B, 5, 6, 5)
    Output shape: (B, T, output_dim) -> e.g., (B, 5, 128)
    """

    def __init__(
        self,
        output_shapes: list[tuple[int, int, int]],
        climate_input_dim=5,
        climate_seq_len=6,
        lstm_hidden_dim=64,
        num_lstm_layers=1,
    ):
        super().__init__()
        self.climate_seq_len = climate_seq_len
        self.climate_input_dim = climate_input_dim
        self.lstm_hidden_dim = lstm_hidden_dim
        self.num_lstm_layers = num_lstm_layers
        self.proj_dim = 128
        self.output_shapes = output_shapes

        self.lstm = nn.LSTM(
            input_size=climate_input_dim,
            hidden_size=lstm_hidden_dim,
            num_layers=num_lstm_layers,
            batch_first=True,  # Crucial: expects input shape (batch, seq_len, features)
            dropout=0.3 if num_lstm_layers > 1 else 0,
            bidirectional=False,
        )

        # Linear layer to project LSTM output to the desired final dimension
        self.fc = nn.Linear(lstm_hidden_dim, self.proj_dim)

        self.upsamples = nn.ModuleList(
            _build_upsampler(self.proj_dim, *shape[:2]) for shape in output_shapes
        )

    def forward(self, climate_data: torch.Tensor) -> list[torch.Tensor]:
        # climate_data shape: (B, T, T_1, C_clim), e.g., (B, 5, 6, 5)
        B_img, B_cli, T, C = climate_data.shape

        # Reshape for LSTM: Treat each sequence independently
        lstm_input = rearrange(climate_data, "Bi Bc T C -> (Bi Bc) T C")

        # Pass through LSTM
        _, (hidden, _) = self.lstm.forward(lstm_input)
        # Get the last layer's hidden state
        last_hidden = (
            hidden[[hidden.size(0) // 2, -1]] if self.lstm.bidirectional else hidden[-1]
        )
        if last_hidden.ndim == 3:
            last_hidden = hidden.mean(dim=0)

        # Pass the final hidden state through the fully connected layer(s) and upsample
        climate_features = self.fc(last_hidden)
        climate_features = rearrange(climate_features, "b c -> b c 1 1")
        climate_features = [
            rearrange(
                u(climate_features), "(Bi Bc) C H W -> Bi Bc C H W", Bi=B_img, Bc=B_cli
            )
            for u in self.upsamples
        ]

        return climate_features


class GatedFusion(nn.Module):
    def __init__(self, img_channels, clim_channels):
        super().__init__()
        self.gate = nn.Sequential(
            nn.Sequential(
                nn.Conv2d(
                    img_channels + clim_channels, img_channels, kernel_size=3, padding=1
                ),
                nn.ReLU(inplace=True),
                nn.Conv2d(img_channels, img_channels, kernel_size=1),
                nn.Sigmoid(),  # Gate values between 0 and 1
            )
        )

    def forward(self, img_feat, clim_feat):
        gate = self.gate(torch.cat([img_feat, clim_feat], dim=1))
        return gate * img_feat + (1 - gate) * clim_feat


def _build_upsampler(
    in_channels: int, target_channels: int, target_h: int
) -> nn.Sequential:
    layers = []
    current_h = 1

    # Expand to target channels early (e.g., 1x1 → 1x1 with target_channels)
    layers += [nn.Conv2d(in_channels, target_channels, kernel_size=1), nn.GELU()]

    # Upsample spatially to target_h
    while current_h < target_h:
        next_h = min(current_h * 2, target_h)
        layers += [
            nn.Upsample(scale_factor=2, mode="nearest"),
            nn.Conv2d(target_channels, target_channels, kernel_size=3, padding=1),
            nn.GELU(),
        ]
        current_h = next_h

    return nn.Sequential(*layers)