Translation
Transformers
Safetensors
Polish
German
marian
text2text-generation
DebasishDhal99 commited on
Commit
fee309c
·
verified ·
1 Parent(s): bc4fe51

Add inference code

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md CHANGED
@@ -16,6 +16,31 @@ pipeline_tag: translation
16
  Input = Polish toponym (say Stare Miasto, literally Old city)
17
  Output = Equivalent toponym (say Altstadt, meaning Old city)
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## Model Details
21
 
@@ -34,3 +59,6 @@ Output = Equivalent toponym (say Altstadt, meaning Old city)
34
 
35
  - Time = Approx. 30 minutes
36
  - Device = 1 × P100 (Available on Kaggle)
 
 
 
 
16
  Input = Polish toponym (say Stare Miasto, literally Old city)
17
  Output = Equivalent toponym (say Altstadt, meaning Old city)
18
 
19
+ # Inference Code
20
+
21
+ ```
22
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
23
+ import torch
24
+
25
+ model_path = "DebasishDhal99/polish-to-german-toponym-model-opus-mt-pl-de"
26
+
27
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
+
29
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
30
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
31
+
32
+ polish_name = "Stare miasteczko" #Change this to any polish place name
33
+
34
+ inputs = tokenizer(polish_name, return_tensors="pt", padding=True, truncation=True)
35
+ inputs = {k: v.to(device) for k, v in inputs.items()}
36
+
37
+ with torch.no_grad():
38
+ outputs = model.generate(**inputs, max_length=50)
39
+
40
+ german_name = tokenizer.decode(outputs[0], skip_special_tokens=True)
41
+ print(german_name)
42
+
43
+ ```
44
 
45
  ## Model Details
46
 
 
59
 
60
  - Time = Approx. 30 minutes
61
  - Device = 1 × P100 (Available on Kaggle)
62
+
63
+
64
+ - Further training is needed for better performance, I'll make one more such model with more epochs.