File size: 18,789 Bytes
6c7090b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1535
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v2-moe
widget:
- source_sentence: İhale Yönetmeliği Madde 19'a göre doğrudan temin için mal/hizmet/tarife/seyahat
    alımlarının bedel sınırı nedir?
  sentences:
  - 'Week9 (Nov 25): Condition Variables, Deadlocks / Project Phase II: Scheduler
    - @Nov 28, Preliminary Report Due: Dec 23, How to write Project Report, Phase
    1- DEMO'
  - ç) Üniversitenin tahmini bedeli bir önceki hesap dönemi toplam giderlerinin TÜFE
    oranına göre güncellenecek üçyüzsekizbinüçyüzyetmişdört TL’ye karşılık gelen tutardaki
    bedeli aşmayacak olan mal ve hizmet alımları, tarifeli alımlar ile seyahat alımları.
  - MADDE 9  (1) Yabancı uyruklu öğrenciler hakkında ilgili mevzuat hükümleri ile
    Senato tarafından belirlenen esaslar uygulanır.
- source_sentence: Madde 8'e göre Komisyon Başkanı kime karşı sorumludur?
  sentences:
  - Komisyon Başkanı, Rektöre karşı sorumludur.
  - Komisyon Başkanı, çalışma birimlerinin faaliyetlerini izler ve denetler.
  - Alınacak pedagojik formasyon dersleri öğrencinin dönemlik ders yükünün üzerinde
    olması halinde genel not ortalaması 3.00 ve üzeri olan öğrencilerden ücret alınmayacak...
- source_sentence: What is the grading breakdown for CSE 462?
  sentences:
  - 'Grading Breakdown: 30% Midterm

    45% Final

    25% Assignments'
  - Teklifler iadeli taahhütlü olarak da gönderilebilir.
  - Any form of cheating will be reported to the faculty's relevant administrative
    body for further action.
- source_sentence: Resmi Yazışma Yönergesi Madde 16'ya göre paragraflar nasıl başlar
    ve hizalanır?
  sentences:
  - (8)Yazışma birim kodu olmayan veya verilmeyen hiçbir birim yazışma yapamaz.
  - (3) Zorunlu hâllerde veya olağanüstü durumlarda hazırlanan olur yazılarında “OLUR”
    ibaresinden sonra tarih ve imza için uygun boş satır bırakılarak ilk satırda imzalayanın
    adı ve soyadına, ikinci satırda ise unvan bilgilerine yer verilir (Örnek 18).
  - (4) Paragrafa 1,25 cm içeriden başlanır ve metin iki yana hizalanır.
- source_sentence: CSE 447 (Ozkaya) sınavında kopya çekme girişimi nasıl değerlendirilir?
  sentences:
  - 'Week-10 AVL tree

    Week-11 IPR tree

    Week-12 B tree

    Week-13 B+ tree'
  - 'Alan Eğitimcisi : Doktorasını ve/veya doçentliğini, ilgili alan eğitiminde (fizik
    eğitimi, kimya eğitimi, biyoloji eğitimi, matematik eğitimi, tarih eğitimi, din
    eğitimi, Türkçe eğitimi vb.) almış öğretim üyesini,'
  - 'Exam Cheating Policy: Any attempt at cheating during the midterm and final exams
    will be treated seriously.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on nomic-ai/nomic-embed-text-v2-moe

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) <!-- at revision 1066b6599d099fbb93dfcb64f9c37a7c9e503e85 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Demircan12/nomic-embed-text-v2-moe-YeditepeFT")
# Run inference
sentences = [
    'CSE 447 (Ozkaya) sınavında kopya çekme girişimi nasıl değerlendirilir?',
    'Exam Cheating Policy: Any attempt at cheating during the midterm and final exams will be treated seriously.',
    'Week-10 AVL tree\nWeek-11 IPR tree\nWeek-12 B tree\nWeek-13 B+ tree',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 1,535 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 22.23 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 38.09 tokens</li><li>max: 247 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                    | positive                                                                                                                                                                                                              |
  |:--------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Are the Fall (Regular) and Spring (Irregular) programs in the Faculty of Law different according to MADDE 5?</code> | <code>Güz (Regular) ve Bahar (Irregular) programları başlangıç zamanı dışında her açıdan birbirine denktir.</code>                                                                                                    |
  | <code>According to MADDE 6, who can take the Postgraduate Proficiency Exam?</code>                                        | <code>(2) Yeterlik Sınavı’na, yeni kayıtlı öğrencilerle birlikte halen hazırlık programında öğrenimine devam eden öğrenciler de girebilirler.</code>                                                                  |
  | <code>What is the purpose of the Horizontal/Vertical Transfer Adaptation Principles (Madde 1)?</code>                     | <code>Madde 1- (1) Yatay/Dikey Geçiş İntibak Esaslarının amacı, Yeditepe Üniversitesine yatay geçiş veya dikey geçiş ile kabul edilen öğrencilerin intibak işlemlerine ilişkin esas ve usulleri belirlemektir.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### json

* Dataset: json
* Size: 220 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 220 samples:
  |         | anchor                                                                             | positive                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 12 tokens</li><li>mean: 21.82 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 36.3 tokens</li><li>max: 160 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                            | positive                                                                                                                                                                                                                                                                                                                                                                                                |
  |:----------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>CSE 439 dersinin notlandırma dağılımı nasıldır?</code>                                                                      | <code>Grading Breakdown: Midterm: 30%\nFinal: 35%\nHomeworks and Quizzes: 15%\nTerm Project: 20%</code>                                                                                                                                                                                                                                                                                                 |
  | <code>Hukuk Fakültesi Yönetmeliği Madde 13'e göre dersler öğrencilerin hangi yeteneklerini geliştirmeye yönelik yürütülür?</code> | <code>(3) Dersler öğrencilerin muhakeme ve sözlü-yazılı anlatım yeteneklerinin geliştirilmesine katkı sağlayacak şekilde yürütülür.</code>                                                                                                                                                                                                                                                              |
  | <code>Yönetmelik Madde 18'e göre hangi sınav Yönetmeliğine göre başarılı olanlar dil sınavından muaf tutulur?</code>              | <code>b) Öğretim dilinin anadil olarak konuşulduğu ülkelerde yabancıların yükseköğrenim görebilmeleri için aranan asgari yabancı dil seviyesinin tespiti amacına yönelik olarak yapılan sınavlarda ve 25/9/2013 tarihli ve 28776 sayılı Resmî Gazete’de yayımlanan Yeditepe Üniversitesi Yabancı Diller Hazırlık Programı Eğitim-Öğretim ve Sınav Yönetmeliği hükümlerine göre başarılı olanlar.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 1.0417 | 100  | 0.1199        | 0.0659          |
| 2.0833 | 200  | 0.0236        | 0.0524          |
| 3.125  | 300  | 0.0145        | 0.0578          |
| 4.1667 | 400  | 0.0102        | 0.0617          |


### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->