File size: 31,527 Bytes
e76659b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "89f2b537",
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "from typing import Dict, List, Optional\n",
    "from mathruler.grader import extract_boxed_content, grade_answer\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "8590ec56",
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "from pathlib import Path\n",
    "from typing import List, Dict, Union\n",
    "from typing import Dict, List, Any\n",
    "import re\n",
    "from typing import List\n",
    "\n",
    "def read_json(path: Union[str, Path]) -> List[Dict]:\n",
    "    \"\"\"\n",
    "    Read a JSON file and return its contents as a list of dicts.\n",
    "\n",
    "    Parameters\n",
    "    ----------\n",
    "    path : str or Path\n",
    "        Path to a JSON file whose root is a JSON array.\n",
    "\n",
    "    Returns\n",
    "    -------\n",
    "    List[Dict]\n",
    "        Each element of the top-level JSON array, parsed into a Python dict.\n",
    "\n",
    "    Raises\n",
    "    ------\n",
    "    ValueError\n",
    "        If the JSON root is not a list.\n",
    "    json.JSONDecodeError\n",
    "        If the file is not valid JSON.\n",
    "    \"\"\"\n",
    "    path = Path(path).expanduser()\n",
    "\n",
    "    with path.open(\"r\", encoding=\"utf-8\") as f:\n",
    "        data = json.load(f)\n",
    "\n",
    "    if not isinstance(data, list):\n",
    "        raise ValueError(f\"{path} does not contain a JSON array at the top level.\")\n",
    "\n",
    "    # (Optional) sanity-check that every item is a dict\n",
    "    if not all(isinstance(item, dict) for item in data):\n",
    "        raise ValueError(\"Not every element in the JSON array is an object.\")\n",
    "\n",
    "    return data\n",
    "\n",
    "\n",
    "def extract_description(predict: str) -> Optional[str]:\n",
    "    \"\"\"\n",
    "    Extracts the content of the <answer>…</answer> block from `predict`.\n",
    "    Returns the inner text (with leading/trailing whitespace stripped),\n",
    "    or None if no <answer> tag is found.\n",
    "    \"\"\"\n",
    "    match = re.search(r\"<description>([\\s\\S]*?)</description>\", predict, re.DOTALL)\n",
    "    if not match:\n",
    "        return None\n",
    "    return match.group(1).strip()\n",
    "\n",
    "\n",
    "def accuracy_reward(predict: str, ground_truth: str) -> float:\n",
    "    answer = extract_boxed_content(predict)\n",
    "    # answer = extract_answer(predict)\n",
    "    return 1.0 if grade_answer(answer, ground_truth) else 0.0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "9fb984e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_json_dir(root: str | Path, *, verbose: bool = True) -> Dict[str, List[Any]]:\n",
    "    \"\"\"\n",
    "    Traverse *root* recursively and return {file_stem: parsed_json_data}.\n",
    "\n",
    "    • Files that are empty or contain invalid JSON are skipped with a warning.\n",
    "      Set verbose=False to silence the warnings.\n",
    "    \"\"\"\n",
    "    root = Path(root).expanduser().resolve()\n",
    "    out: Dict[str, List[Any]] = {}\n",
    "\n",
    "    for path in root.rglob(\"*.json\"):\n",
    "        try:\n",
    "            with path.open(\"r\", encoding=\"utf-8\") as f:\n",
    "                data = json.load(f)\n",
    "            out[path.stem] = data\n",
    "        except json.JSONDecodeError as err:\n",
    "            if verbose:\n",
    "                print(f\"[skip] {path} – invalid JSON ({err})\")\n",
    "        except Exception as err:\n",
    "            if verbose:\n",
    "                print(f\"[skip] {path} – {err}\")\n",
    "\n",
    "    return out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c8e29fcb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# folder_dir = './gemini-flash'\n",
    "folder_dir = './gemini-pro'\n",
    "# folder_dir = './gemini-pro-pro'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "fad0547b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['realWorldQA', 'clevr_count_70k', 'mmmu-pro', 'mathvision', 'mmstar', 'mmmu-pro-vision', 'mm-vet', 'mmmu_pro_10options', 'mathvista', 'visnumbench'])"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "datas = load_json_dir(folder_dir)\n",
    "\n",
    "datas.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "e74dd8dd",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "realWorldQA: 0.6862745098039216\n",
      "clevr_count_70k: 0.7108571428571429\n",
      "mmmu-pro: 0.6105527638190955\n",
      "mathvision: 0.36875\n",
      "mmstar: 0.6633333333333333\n",
      "mmmu-pro-vision: 0.5256410256410257\n",
      "mm-vet: 0.3302752293577982\n",
      "mmmu_pro_10options: 0.49243379571248425\n",
      "mathvista: 0.554\n",
      "visnumbench: 0.28835978835978837\n"
     ]
    }
   ],
   "source": [
    "indices = {}\n",
    "\n",
    "for file, answers in datas.items():\n",
    "    indices[file]=[]\n",
    "    acc = 0\n",
    "    for index, ele in enumerate(answers):\n",
    "        solution = ele['solution']\n",
    "        prediction = ele['predictions'][0]\n",
    "        accuracy = accuracy_reward(prediction, solution)\n",
    "        acc += accuracy\n",
    "        \n",
    "        if accuracy == 1:\n",
    "            indices[file].append(index)\n",
    "        \n",
    "    print(f'{file}: {acc/len(answers)}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "99761358",
   "metadata": {},
   "outputs": [
    {
     "ename": "KeyError",
     "evalue": "'MLLM_rlvr_train'",
     "output_type": "error",
     "traceback": [
      "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
      "\u001b[31mKeyError\u001b[39m                                  Traceback (most recent call last)",
      "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[7]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[43mdatas\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m'\u001b[39;49m\u001b[33;43mMLLM_rlvr_train\u001b[39;49m\u001b[33;43m'\u001b[39;49m\u001b[43m]\u001b[49m)\n",
      "\u001b[31mKeyError\u001b[39m: 'MLLM_rlvr_train'"
     ]
    }
   ],
   "source": [
    "len(datas['MLLM_rlvr_train'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "cb380a0c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['realWorldQA', 'MLLM_hotpot_train', 'mmmu-pro', 'mmstar', 'mm-vet', 'mathvista'])"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "indices.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9367bc67",
   "metadata": {},
   "outputs": [],
   "source": [
    "realWorldQA: 0.6972477064220184\n",
    "mmmu-pro: 0.5646606914212549\n",
    "mmstar: 0.6061433447098976\n",
    "mm-vet: 0.6018518518518519\n",
    "mathvista: 0.5822401614530777"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08286602",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d033bd06",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8f7a73e5",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "84f260ed",
   "metadata": {},
   "source": [
    "# Construct indices to merge datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "6c771d63",
   "metadata": {},
   "outputs": [],
   "source": [
    "description_folder_dir = './gpt_o1_outputs'\n",
    "description_outputs = load_json_dir(description_folder_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d8e03bf5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "891\n",
      "2694\n"
     ]
    }
   ],
   "source": [
    "file = 'mathvision'\n",
    "print(len(description_outputs[file]))\n",
    "print(len(datas[file]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "6a814cba",
   "metadata": {},
   "outputs": [],
   "source": [
    "# idx = 1200\n",
    "# print(description_outputs[file][idx])\n",
    "# print('-'*10)\n",
    "# print(datas[file][idx])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "7c08cff1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'index': 0,\n",
       " 'problem': 'Are there any states with a number of reporters between 376-385? Options:\\nA. No\\nB. Yes',\n",
       " 'solution': 'B',\n",
       " 'predictions': ['<think> The task is to determine if there are any states with a number of reporters between 376-385. The map shows states in two different colors corresponding to two ranges of reporters: 373-375 and 376-385. I need to identify states in the color representing the range 376-385.\\n\\nThe legend indicates two colors:\\n- A lighter color for the range 373-375.\\n- A darker color for the range 376-385.\\n\\nI will look at the map to identify states shaded with the darker color. The states shaded in the darker color are:\\n- California\\n- North Dakota\\n- South Dakota\\n- Iowa\\n- Missouri\\n- Illinois\\n- Kentucky\\n- West Virginia\\n- New Jersey\\n- Massachusetts\\n\\nThese states are not in the lighter color range, hence they must have a number of reporters between 376-385. Therefore, there are indeed states with a number of reporters in the range 376-385.\\n\\nThe correct option is B. Yes, because there are several states shaded in the darker color that indicates the range 376-385. </think> \\\\boxed{B}']}"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "datas['MLLM_hotpot_train'][0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "c3e8619a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "MLLM_hotpot_train: 0.2949054259284827; dataset len: 14486\n",
      "mathverse: 0.18071065989847715; dataset len: 3940\n"
     ]
    }
   ],
   "source": [
    "indices = {}\n",
    "\n",
    "for file, answers in datas.items():\n",
    "    # try:\n",
    "        indices[file]=[]\n",
    "        # description_data = description_outputs[file]\n",
    "        acc = 0\n",
    "        for i, ele in enumerate(answers):\n",
    "            solution = ele['solution']\n",
    "            prediction = ele['predictions'][0]\n",
    "            datas_index = ele['index']\n",
    "            \n",
    "            # print(description)\n",
    "            # break\n",
    "            accuracy = accuracy_reward(prediction, solution)\n",
    "            # acc += accuracy\n",
    "            \n",
    "            if accuracy == 1:\n",
    "                # if description is not None:\n",
    "                indices[file].append(datas_index)\n",
    "                acc += accuracy\n",
    "            \n",
    "        print(f'{file}: {acc/len(answers)}; dataset len: {len(answers)}')\n",
    "    # except Exception as e:\n",
    "    #     print(f\"Exception caught: {e} for file: {file}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "ca869a96",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Exception caught: name 'description_outputs' is not defined for file: MLLM_hotpot_train\n",
      "Exception caught: name 'description_outputs' is not defined for file: mathverse\n"
     ]
    }
   ],
   "source": [
    "indices = {}\n",
    "texts = {}\n",
    "for file, answers in datas.items():\n",
    "    try:\n",
    "        indices[file]=[]\n",
    "        texts[file] = []\n",
    "        description_data = description_outputs[file]\n",
    "        # ---------- 1) make a hash‑map: index  ->  description item ----------\n",
    "        desc_by_idx = {item[\"index\"]: item for item in description_data}\n",
    "        \n",
    "        acc = 0\n",
    "        for i, ele in enumerate(answers):\n",
    "            solution = ele['solution']\n",
    "            prediction = ele['predictions'][0]\n",
    "            data_idx   = ele[\"index\"]          # the index in the answers item\n",
    "            \n",
    "            try:\n",
    "                desc_item  = desc_by_idx.get(data_idx)\n",
    "                extracted_description = extract_description(desc_item['predictions'][0])\n",
    "            except:\n",
    "                extracted_description = None\n",
    "\n",
    "            # print(description)\n",
    "            # break\n",
    "            accuracy = accuracy_reward(prediction, solution)\n",
    "            # acc += accuracy       \n",
    "   \n",
    "            # print('data: ', description_data)\n",
    "            # print('-'*10)\n",
    "            # print('data1: ', ele)\n",
    "            # break\n",
    "            \n",
    "            \n",
    "            if accuracy == 1:\n",
    "                if extracted_description is not None:\n",
    "                    indices[file].append(data_idx)\n",
    "                    curr_text = '<description>\\n' + extracted_description + '/n</description>' + prediction\n",
    "                    texts[file].append(curr_text)    \n",
    "                \n",
    "                acc += accuracy\n",
    "            \n",
    "        print(f'{file}: {acc/len(answers)}; dataset len: {len(answers)}')\n",
    "    except Exception as e:\n",
    "        print(f\"Exception caught: {e} for file: {file}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "2d3594e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "indices_by_dataset = indices"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "4b0a1872",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "K: realWorldQA; V len: 514\n",
      "K: MLLM_hotpot_train; V len: 0\n",
      "K: mmmu-pro; V len: 389\n",
      "K: mathvision; V len: 328\n",
      "K: mmstar; V len: 512\n",
      "K: mm-vet; V len: 65\n",
      "K: mathvista; V len: 457\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "2265"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "total = 0\n",
    "for k, v in indices_by_dataset.items():\n",
    "    print(f'K: {k}; V len: {len(v)}')\n",
    "    total += len(v)\n",
    "    \n",
    "total"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4dba6e3c",
   "metadata": {},
   "source": [
    "### Add it for MLLM hotpot train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "5d453890",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[skip] /apdcephfs_cq11/share_1603164/user/zongxia/workspace/C-gemini-answers/gemini-flash/clevr_count_70k.json – invalid JSON (Expecting value: line 1 column 1 (char 0))\n",
      "14486\n",
      "MLLM_hotpot_train: 0.2949054259284827; dataset len: 14486\n",
      "3940\n",
      "mathverse: 0.18071065989847715; dataset len: 3940\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "4272"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "indices = {}\n",
    "\n",
    "hotpot_description_folder_dir = './gemini-flash'\n",
    "hotpot_description_outs = load_json_dir(hotpot_description_folder_dir)\n",
    "\n",
    "for file, answers in hotpot_description_outs.items():\n",
    "        try:\n",
    "            print(len(answers))\n",
    "            indices[file]=[]\n",
    "            texts[file] = []\n",
    "            acc = 0\n",
    "            for i, ele in enumerate(answers):\n",
    "                solution = ele['solution']\n",
    "                prediction = ele['predictions'][0]\n",
    "                datas_index = ele['index']\n",
    "                \n",
    "                # print(description)\n",
    "                # break\n",
    "                accuracy = accuracy_reward(prediction, solution)\n",
    "                # acc += accuracy\n",
    "                \n",
    "                if accuracy == 1:\n",
    "                    indices[file].append(datas_index)\n",
    "                    texts[file].append(prediction)\n",
    "                    acc += accuracy\n",
    "                \n",
    "            print(f'{file}: {acc/len(answers)}; dataset len: {len(answers)}')\n",
    "        except Exception as e:\n",
    "            print(f\"Exception caught: {e} for file: {file}\")\n",
    "\n",
    "len(indices['MLLM_hotpot_train'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "8f4fe74e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "len(idxs) = 14486  min = 0  max = 14485\n",
      "missing count : 0\n",
      "first 20 gaps : []\n"
     ]
    }
   ],
   "source": [
    "idxs = [ele['index'] for ele in hotpot_description_outs['MLLM_hotpot_train']]\n",
    "\n",
    "\n",
    "print(\"len(idxs) =\", len(idxs), \" min =\", min(idxs), \" max =\", max(idxs))\n",
    "# → len(idxs) == 6105, min == 0 (maybe), max == 6463\n",
    "\n",
    "# 2) find every number that *should* be there but isn’t\n",
    "expected = set(range(min(idxs), max(idxs) + 1))   # full consecutive range\n",
    "missing  = sorted(expected - set(idxs))\n",
    "\n",
    "print(\"missing count :\", len(missing))\n",
    "print(\"first 20 gaps :\", missing[:20])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "411dcfc7",
   "metadata": {},
   "outputs": [],
   "source": [
    "indices_by_dataset = indices"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "ce4cea20",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dict_keys(['MLLM_hotpot_train', 'mathverse'])\n",
      "dict_keys(['MLLM_hotpot_train', 'mathverse'])\n"
     ]
    }
   ],
   "source": [
    "print(indices_by_dataset.keys())\n",
    "print(texts.keys())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "2a3ea275",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4272"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(indices_by_dataset['MLLM_hotpot_train'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "08197397",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[14471, 14473, 14474, 14476, 14477, 14478, 14480, 14481, 14484, 14485]"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "indices_by_dataset['MLLM_hotpot_train'][-10:]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "bd2b91ff",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "filename: zli12321/MLLM_hotpot_train\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Flattening the indices: 100%|██████████| 4272/4272 [00:03<00:00, 1282.44 examples/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "filename: zli12321/mathverse\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Generating test split: 3940 examples [00:00, 13229.68 examples/s]\n",
      "Flattening the indices: 100%|██████████| 712/712 [00:00<00:00, 48814.82 examples/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset({\n",
      "    features: ['problem', 'answer', 'images', 'outputs'],\n",
      "    num_rows: 4984\n",
      "})\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset, concatenate_datasets\n",
    "\n",
    "BASE_REPO   = \"zli12321/\"          # prefix for every dataset id\n",
    "kept_splits = []\n",
    "\n",
    "for short_name, keep in indices_by_dataset.items():\n",
    "    try:\n",
    "        if not keep:                              # nothing to keep → skip\n",
    "            continue\n",
    "\n",
    "        # -----------------------------------------------------------------\n",
    "        # 1) ensure `keep` and its matching texts are sorted *together*\n",
    "        # -----------------------------------------------------------------\n",
    "        idxs   = keep\n",
    "        outs   = texts[short_name]\n",
    "\n",
    "        # idxs and outs were built in parallel, so they are aligned.\n",
    "        # If you want the rows in ascending order, sort both lists together:\n",
    "        order  = sorted(range(len(idxs)), key=idxs.__getitem__)\n",
    "        idxs   = [idxs[i]  for i in order]        # sorted indices\n",
    "        outs   = [outs[i]  for i in order]        # matching outputs\n",
    "\n",
    "        # -----------------------------------------------------------------\n",
    "        # 2) load, slice, and keep only the three original columns\n",
    "        # -----------------------------------------------------------------\n",
    "        full_name = f\"{BASE_REPO}{short_name}\"\n",
    "        \n",
    "        print(f'filename: {full_name}')\n",
    "        split     = \"train\" if \"MLLM_hotpot_train\" in short_name else \"test\"\n",
    "\n",
    "        ds = load_dataset(full_name, split=split, trust_remote_code=True)\n",
    "        ds = ds.select(idxs)                      # keep only those rows\n",
    "        \n",
    "        # print(f'filename: {full_name}; len: {len(ds)}')\n",
    "\n",
    "        cols_to_keep = {\"problem\", \"images\", \"answer\"}\n",
    "        ds = ds.remove_columns([c for c in ds.column_names if c not in cols_to_keep])\n",
    "\n",
    "        # -----------------------------------------------------------------\n",
    "        # 3) add the new column\n",
    "        # -----------------------------------------------------------------\n",
    "        ds = ds.add_column(\"outputs\", outs)       # len(outs) == len(ds)\n",
    "\n",
    "        kept_splits.append(ds)\n",
    "    except Exception as e:\n",
    "        print(f\"dataset len: {len(ds)}\")\n",
    "        print(f'{short_name} Failed: {e}')\n",
    "\n",
    "# ---------------------------------------------------------------------\n",
    "# 4) concatenate everything into one big dataset\n",
    "# ---------------------------------------------------------------------\n",
    "combined = concatenate_datasets(kept_splits)\n",
    "\n",
    "print(combined)                # verify\n",
    "# combined.save_to_disk(\"combined.arrow\")     # or .to_parquet(...)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "cb8bfe20",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Creating parquet from Arrow format: 100%|██████████| 39/39 [00:17<00:00,  2.18ba/s]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "909006342"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "combined.to_parquet(\"./hf_upload_train/train.parquet\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "5b7aed77",
   "metadata": {},
   "outputs": [],
   "source": [
    "def save_any_image(img_obj, out_base: Path) -> Path:\n",
    "    \"\"\"\n",
    "    Save *img_obj* (str | dict | PIL.Image) to disk.\n",
    "    Returns the *Path* actually written (possibly .png if alpha).\n",
    "    \"\"\"\n",
    "    import io, shutil\n",
    "    from PIL import Image\n",
    "\n",
    "    # 1) resolve a PIL.Image ---------------------------------------------------\n",
    "    if isinstance(img_obj, str):                 # already a path\n",
    "        pil = Image.open(img_obj)\n",
    "\n",
    "    elif isinstance(img_obj, dict):              # HF Image feature\n",
    "        if img_obj.get(\"path\"):\n",
    "            pil = Image.open(img_obj[\"path\"])\n",
    "        else:\n",
    "            pil = Image.open(io.BytesIO(img_obj[\"bytes\"]))\n",
    "\n",
    "    else:                                        # PIL.Image.Image\n",
    "        pil = img_obj\n",
    "\n",
    "    # 2) choose format & filename ---------------------------------------------\n",
    "    suffix   = \".jpg\"\n",
    "    img_mode = pil.mode\n",
    "\n",
    "    if img_mode in (\"RGBA\", \"LA\", \"P\"):\n",
    "        # keep alpha by switching to PNG (or call .convert(\"RGB\") to stay JPEG)\n",
    "        suffix = \".png\"\n",
    "\n",
    "    out_path = out_base.with_suffix(suffix)\n",
    "\n",
    "    # 3) convert if you insist on JPG without alpha\n",
    "    if suffix == \".jpg\" and img_mode != \"RGB\":\n",
    "        pil = pil.convert(\"RGB\")\n",
    "\n",
    "    # 4) write -----------------------------------------------------------------\n",
    "    pil.save(out_path)\n",
    "    return out_path\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "358edaa6",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "writing images: 100%|██████████| 4984/4984 [14:38<00:00,  5.67it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✅  Done: 4984 items saved.\n"
     ]
    }
   ],
   "source": [
    "import os, io, json, shutil\n",
    "from pathlib import Path\n",
    "from PIL import Image\n",
    "from tqdm import tqdm          # optional progress bar\n",
    "\n",
    "# ------------------------------------------------------------------ #\n",
    "# directory setup\n",
    "# ------------------------------------------------------------------ #\n",
    "OUT_DIR = Path(\"sft_description\")\n",
    "OUT_DIR.mkdir(exist_ok=True)   # creates folder if missing\n",
    "\n",
    "json_records = []\n",
    "\n",
    "# ------------------------------------------------------------------ #\n",
    "# main loop\n",
    "# ------------------------------------------------------------------ #\n",
    "for idx, row in enumerate(tqdm(combined, desc=\"writing images\")):\n",
    "    img_path = save_any_image(row[\"images\"], OUT_DIR / str(idx))\n",
    "    json_records.append({\n",
    "        \"messages\": [\n",
    "            {\"content\": row[\"problem\"],  \"role\": \"user\"},\n",
    "            {\"content\": row[\"outputs\"],  \"role\": \"assistant\"}\n",
    "        ],\n",
    "        \"images\": [str(img_path)]\n",
    "    })\n",
    "\n",
    "# ------------------------------------------------------------------ #\n",
    "# write the JSONL / JSON\n",
    "# ------------------------------------------------------------------ #\n",
    "with open(\"sft_description.json\", \"w\", encoding=\"utf-8\") as f:\n",
    "    json.dump(json_records, f, ensure_ascii=False, indent=2)\n",
    "\n",
    "print(f\"✅  Done: {len(json_records)} items saved.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d4e56b70",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "adc502bc",
   "metadata": {},
   "source": [
    "### Now process the data for Hotpot Train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e84f2aa2",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "54356d4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from openai import OpenAI\n",
    "from concurrent.futures import ThreadPoolExecutor, as_completed\n",
    "from time import sleep\n",
    "from typing import List, Dict, Any, Optional\n",
    "from openai import OpenAI\n",
    "from __future__ import annotations\n",
    "import json\n",
    "from pathlib import Path\n",
    "from typing import Any, Dict, Iterable, List, Union"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "5caaaa06",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'index': 0,\n",
       " 'problem': 'Are there any states with a number of reporters between 376-385? Options:\\nA. No\\nB. Yes',\n",
       " 'solution': 'B',\n",
       " 'predictions': ['<description>The image is a map of the United States, with each state colored according to the number of reporters in that state. The title of the map is \"The Number of reporters in the USA\". There is a legend in the bottom right corner. States colored in a light beige color have between 373-375 reporters. States colored in a dark purple color have between 376-385 reporters. Several states are colored dark purple, including Washington, Montana, North Dakota, South Dakota, Iowa, Missouri, Louisiana, Utah, Nevada, California, Virginia, Maryland, and New Hampshire. Alaska and Hawaii are also shown. </description>\\n<think>The question asks if there are any states with a number of reporters between 376-385. The legend indicates that states with 376-385 reporters are colored dark purple. The map shows several states colored dark purple. Therefore, the answer is yes. </think>\\n\\\\boxed{Yes}']}"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[0]"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}