File size: 12,231 Bytes
e76659b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import json, os
from pathlib import Path
from typing import List
from datasets import load_dataset
from PIL import Image
from tqdm import tqdm
import concurrent.futures as cf
import os
from openai import AzureOpenAI
from typing import Set, List, Dict, Any
import time
import pandas as pd
from tqdm import tqdm
import io
import base64
import imghdr
from io import BytesIO
from mimetypes import guess_type
import base64
import time
from datasets import load_dataset, Features, Sequence, Value, Image as HFImage, ClassLabel
from PIL import Image
# from azure.core.exceptions import AzureError
import concurrent.futures as cf
import os
from typing import List
import os
from io import BytesIO
import vertexai
from vertexai import generative_models
from vertexai.generative_models import GenerativeModel, Part
from datasets import load_dataset
from PIL import Image as PILImage
# 0) Point at your service account
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = './gemini_key.json'
# 1) Your generation & safety configs (unchanged)
generation_config = {
"max_output_tokens": 2048,
"temperature": 0.4,
"top_p": 0.4,
"top_k": 32,
}
safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
TIMEOUT_CODES = {408, 504, 524}
DATASETS = [
# "zli12321/realWorldQA",
# "zli12321/mmmu-pro",
# "zli12321/mathvista",
# "zli12321/mm-vet",
# "zli12321/mmstar",
# "zli12321/mathvision",
# "zli12321/MLLM_hotpot_train",
"zli12321/MLLM_test"
# "BUAADreamer/clevr_count_70k",
# "zli12321/mathverse"
# "zli12321/MLLM_rlvr_train"
# "zli12321/mmmu-pro-vision",
# "zli12321/visnumbench",
# "zli12321/mmmu_pro_10options"
]
# ---------------------------------------------------------------------
# 1) CONFIG – adjust as you like
# ---------------------------------------------------------------------
# DATA_OUT = "./gpt_outputs/realworldQA.json"
N_GEN = 1 # ⇐ how many completions per prompt
retry_delay = 10
# QUESTION_TEMPLATE = (
# "You are tasked with analyzing an image to generate a detailed description to help you answer the question. First analyze the image and produce a self-contained description—detailed enough that can lead to the correct answer. Wrap the entire description in <description> </description> tags.\n Next, engage in an internal dialogue and include self-reflection or verification in your reasoning process. Provide your detailed, step-by-step reasoning based on the image description information and image, and enclose this part within <think> </think> tags.\n Finally, provide a single word or phrase answer to the question in \\boxed{}.\nThe output format should be: <description> image description here </description> <think> reasoning process here </think> \\boxed{FINAL ANSWER here}. Please only include the single letter choice as your answer for multiple choice questions."
# "Question: {Question}\n"
# )
QUESTION_TEMPLATE = (
"You are tasked with analyzing an image and answer a question. First engage in an internal dialogue and include self-reflection or verification in your reasoning process. Provide your detailed, step-by-step reasoning based on the image description information and image, and enclose this part within <think> </think> tags.\n Finally, provide a single word or phrase answer to the question in \\boxed{}.\nThe output format should be: <think> reasoning process here </think> \\boxed{FINAL ANSWER here}."
"Question: {Question}\n"
)
# QUESTION_TEMPLATE = (
# "You are tasked with analyzing an image to generate a detailed description to help you answer the question. Analyze the image and produce a self-contained description—detailed enough that can lead to the correct answer. Wrap the entire description in <description> </description> tags. Then provide a single word or phrase answer to the question in \\boxed{}. The output format should be: <description> image description here </description> \\boxed{FINAL ANSWER here}."
# "Question: {Question}\n"
# )
def is_timeout(err):
"""Return True if the error (or its cause) is a network timeout."""
return isinstance(err, TimeoutError) or isinstance(
getattr(err, "__cause__", None), TimeoutError
)
vertexai.init(project="tencent-gemini-omd01", location="us-central1")
'''Below is for rlvr'''
# model = GenerativeModel("gemini-2.0-flash")
'''Below is for counting'''
# model = GenerativeModel("gemini-2.0-flash-lite")
'''Below is for Gemini pro pro Accuracy'''
model = GenerativeModel("gemini-2.5-pro")
# 3) Load CLEVR‑count 70k and pull the first example’s images list
def generate(pil_img, query):
# 1) Ensure RGB & re‑encode as PNG in‑memory
buf = BytesIO()
pil_img.convert("RGB").save(buf, format="PNG")
png_bytes = buf.getvalue()
# 2) Wrap in a Part
image_part = Part.from_data(
data=png_bytes,
mime_type="image/png"
)
for i in range(2):
# 3) Generate
try:
responses = model.generate_content(
contents=[image_part, query],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
# 4) Collect and return
full = ""
for chunk in responses:
full += chunk.text
except Exception as e:
full = "No Text"
print(f'Failed generating: {e}')
time.sleep(5)
return full
# ---------------------------------------------------------------------
# 2) YOUR MODEL / API CALL – plug in here
# ---------------------------------------------------------------------
def generate_answer(image, messages) -> str:
"""
Replace the body of this function with whatever you use to talk to
your model (e.g. OpenAI, Ollama, local HF pipeline, etc.).
Must return a *single* string completion.
"""
# raise NotImplementedError(
# "Implement generate_answer(img, prompt_text) to call your model."
# )
# return azure_gpt4(messages)
return generate(image, messages)
# ---------------------------------------------------------------------
# 3) DATASET & UTILS
# ---------------------------------------------------------------------
def build_prompt(item) -> str:
"""Fill QUESTION_TEMPLATE with the current question."""
return QUESTION_TEMPLATE.replace("{Question}", item["problem"])
def to_rgb(img: Image.Image) -> Image.Image:
return img if img.mode == "RGB" else img.convert("RGB")
def _load_partial(out_path: Path) -> List[Dict[str, Any]]:
if not out_path.exists():
return []
try:
with out_path.open("r", encoding="utf-8") as f:
return json.load(f)
except Exception as err:
print(f"[warn] {out_path} could not be read ({err}) – ignoring.")
return []
def run_dataset(dataset_id: str, n_gen: int = 1) -> None:
"""Run the generation loop for one dataset, resuming if output exists."""
print(f"\n=== Processing {dataset_id} ===")
# ---- prepare output path ----------------------------------------
slug = dataset_id.split("/")[-1]
# DATA_OUT = Path(f"./gemini-flash/{slug}.json")
# DATA_OUT = Path(f"./gemini-pro/{slug}.json")
# DATA_OUT = Path(f"./gemini-pro-pro/{slug}.json")
DATA_OUT = Path(f"./gemini-cot/{slug}.json")
DATA_OUT.parent.mkdir(parents=True, exist_ok=True)
# ---- load existing results (if any) -----------------------------
results: List[Dict[str, Any]] = _load_partial(DATA_OUT)
done_idx: Set[int] = {rec["index"] for rec in results}
print(f"[{slug}] found {len(done_idx)} previously processed items")
# ---- load split -------------------------------------------------
# if 'count' in dataset_id or 'hotpot' in dataset_id:
# ds = load_dataset(dataset_id, split="train", trust_remote_code=True)
# else:
# ds = load_dataset(dataset_id, split="test", trust_remote_code=True)
if 'count' in dataset_id or 'hotpot' in dataset_id:
ds = load_dataset(dataset_id, split="train")
else:
try:
ds = load_dataset(dataset_id, split="train")
except:
ds = load_dataset(dataset_id, split="test", trust_remote_code=True)
# ---- decode images once ----------------------------------------
df = ds.to_pandas()
try:
df["pil_images"] = df["images"].apply(
lambda lst: [Image.open(io.BytesIO(d["bytes"])).convert("RGB") for d in lst]
)
images = [imgs[0] for imgs in df["pil_images"]]
except Exception:
df["pil_images"] = df["images"].apply(
lambda d: Image.open(io.BytesIO(d["bytes"])).convert("RGB")
)
images = list(df["pil_images"])
# ---- main generation loop --------------------------------------
with cf.ThreadPoolExecutor(max_workers=n_gen) as pool: # <-- here
for idx, item in enumerate(
tqdm(ds, desc=f"generating · {slug}",
initial=len(done_idx), total=len(ds))
):
if idx in done_idx:
continue
prompt_txt = build_prompt(item)
# image_url = pil_image_to_data_url(images[idx])
# messages = [{"instruction": prompt_txt, "image": image_url}]
# launch `n_gen` concurrent calls
futures = [pool.submit(generate_answer, images[idx], prompt_txt)
for _ in range(n_gen)] # <-- here
answers = [f.result() for f in futures if f.result()]
if answers:
results.append(
dict(
index = idx,
problem = item["problem"],
solution = item["answer"],
predictions = answers,
)
)
DATA_OUT.write_text(json.dumps(results, indent=2, ensure_ascii=False))
print(f"✅ {slug}: finished {len(results)} samples → {DATA_OUT}")
# --------------------------- 2. run_all -------------------------------
def run_all(
datasets: list, # list[str] *or* list[tuple[str,int]]
default_n_gen: int = 1,
max_workers: int | None = None,
) -> None:
"""
Launch `run_dataset` for every entry in *datasets*.
`datasets` may contain:
• "foo/bar" -> uses default_n_gen
• ("foo/bar", 8) -> uses 8 for that file
"""
if max_workers is None:
max_workers = min(len(datasets), 32)
print(f"\nLaunching {len(datasets)} dataset jobs "
f"({max_workers} workers)…\n")
with cf.ThreadPoolExecutor(max_workers=max_workers) as pool:
fut_to_name = {}
for entry in datasets:
if isinstance(entry, tuple):
ds_id, n_gen = entry
else:
ds_id, n_gen = entry, default_n_gen
fut = pool.submit(run_dataset, ds_id, n_gen)
fut_to_name[fut] = ds_id
for fut in cf.as_completed(fut_to_name):
name = fut_to_name[fut]
try:
fut.result()
except Exception as exc:
print(f"❌ {name} failed: {exc!r}")
else:
print(f"✅ {name} done")
# ---------------------------------------------------------------------
# ENTRY-POINT
# ---------------------------------------------------------------------
if __name__ == "__main__":
run_all(DATASETS, max_workers=min(len(DATASETS), os.cpu_count() * 2))
'''Below is code for gemini inference'''
|