import json, os from pathlib import Path from typing import List from datasets import load_dataset from PIL import Image from tqdm import tqdm import concurrent.futures as cf import os from openai import AzureOpenAI from typing import Set, List, Dict, Any import time import pandas as pd from tqdm import tqdm import io import base64 import imghdr from io import BytesIO from mimetypes import guess_type import base64 import time from datasets import load_dataset, Features, Sequence, Value, Image as HFImage, ClassLabel from PIL import Image # from azure.core.exceptions import AzureError import concurrent.futures as cf import os from typing import List import os from io import BytesIO import vertexai from vertexai import generative_models from vertexai.generative_models import GenerativeModel, Part from datasets import load_dataset from PIL import Image as PILImage # 0) Point at your service account os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = './gemini_key.json' # 1) Your generation & safety configs (unchanged) generation_config = { "max_output_tokens": 2048, "temperature": 0.4, "top_p": 0.4, "top_k": 32, } safety_settings = { generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, } TIMEOUT_CODES = {408, 504, 524} DATASETS = [ # "zli12321/realWorldQA", # "zli12321/mmmu-pro", # "zli12321/mathvista", # "zli12321/mm-vet", # "zli12321/mmstar", # "zli12321/mathvision", # "zli12321/MLLM_hotpot_train", "zli12321/MLLM_test" # "BUAADreamer/clevr_count_70k", # "zli12321/mathverse" # "zli12321/MLLM_rlvr_train" # "zli12321/mmmu-pro-vision", # "zli12321/visnumbench", # "zli12321/mmmu_pro_10options" ] # --------------------------------------------------------------------- # 1) CONFIG – adjust as you like # --------------------------------------------------------------------- # DATA_OUT = "./gpt_outputs/realworldQA.json" N_GEN = 1 # ⇐ how many completions per prompt retry_delay = 10 # QUESTION_TEMPLATE = ( # "You are tasked with analyzing an image to generate a detailed description to help you answer the question. First analyze the image and produce a self-contained description—detailed enough that can lead to the correct answer. Wrap the entire description in tags.\n Next, engage in an internal dialogue and include self-reflection or verification in your reasoning process. Provide your detailed, step-by-step reasoning based on the image description information and image, and enclose this part within tags.\n Finally, provide a single word or phrase answer to the question in \\boxed{}.\nThe output format should be: image description here reasoning process here \\boxed{FINAL ANSWER here}. Please only include the single letter choice as your answer for multiple choice questions." # "Question: {Question}\n" # ) QUESTION_TEMPLATE = ( "You are tasked with analyzing an image and answer a question. First engage in an internal dialogue and include self-reflection or verification in your reasoning process. Provide your detailed, step-by-step reasoning based on the image description information and image, and enclose this part within tags.\n Finally, provide a single word or phrase answer to the question in \\boxed{}.\nThe output format should be: reasoning process here \\boxed{FINAL ANSWER here}." "Question: {Question}\n" ) # QUESTION_TEMPLATE = ( # "You are tasked with analyzing an image to generate a detailed description to help you answer the question. Analyze the image and produce a self-contained description—detailed enough that can lead to the correct answer. Wrap the entire description in tags. Then provide a single word or phrase answer to the question in \\boxed{}. The output format should be: image description here \\boxed{FINAL ANSWER here}." # "Question: {Question}\n" # ) def is_timeout(err): """Return True if the error (or its cause) is a network timeout.""" return isinstance(err, TimeoutError) or isinstance( getattr(err, "__cause__", None), TimeoutError ) vertexai.init(project="tencent-gemini-omd01", location="us-central1") '''Below is for rlvr''' # model = GenerativeModel("gemini-2.0-flash") '''Below is for counting''' # model = GenerativeModel("gemini-2.0-flash-lite") '''Below is for Gemini pro pro Accuracy''' model = GenerativeModel("gemini-2.5-pro") # 3) Load CLEVR‑count 70k and pull the first example’s images list def generate(pil_img, query): # 1) Ensure RGB & re‑encode as PNG in‑memory buf = BytesIO() pil_img.convert("RGB").save(buf, format="PNG") png_bytes = buf.getvalue() # 2) Wrap in a Part image_part = Part.from_data( data=png_bytes, mime_type="image/png" ) for i in range(2): # 3) Generate try: responses = model.generate_content( contents=[image_part, query], generation_config=generation_config, safety_settings=safety_settings, stream=True, ) # 4) Collect and return full = "" for chunk in responses: full += chunk.text except Exception as e: full = "No Text" print(f'Failed generating: {e}') time.sleep(5) return full # --------------------------------------------------------------------- # 2) YOUR MODEL / API CALL – plug in here # --------------------------------------------------------------------- def generate_answer(image, messages) -> str: """ Replace the body of this function with whatever you use to talk to your model (e.g. OpenAI, Ollama, local HF pipeline, etc.). Must return a *single* string completion. """ # raise NotImplementedError( # "Implement generate_answer(img, prompt_text) to call your model." # ) # return azure_gpt4(messages) return generate(image, messages) # --------------------------------------------------------------------- # 3) DATASET & UTILS # --------------------------------------------------------------------- def build_prompt(item) -> str: """Fill QUESTION_TEMPLATE with the current question.""" return QUESTION_TEMPLATE.replace("{Question}", item["problem"]) def to_rgb(img: Image.Image) -> Image.Image: return img if img.mode == "RGB" else img.convert("RGB") def _load_partial(out_path: Path) -> List[Dict[str, Any]]: if not out_path.exists(): return [] try: with out_path.open("r", encoding="utf-8") as f: return json.load(f) except Exception as err: print(f"[warn] {out_path} could not be read ({err}) – ignoring.") return [] def run_dataset(dataset_id: str, n_gen: int = 1) -> None: """Run the generation loop for one dataset, resuming if output exists.""" print(f"\n=== Processing {dataset_id} ===") # ---- prepare output path ---------------------------------------- slug = dataset_id.split("/")[-1] # DATA_OUT = Path(f"./gemini-flash/{slug}.json") # DATA_OUT = Path(f"./gemini-pro/{slug}.json") # DATA_OUT = Path(f"./gemini-pro-pro/{slug}.json") DATA_OUT = Path(f"./gemini-cot/{slug}.json") DATA_OUT.parent.mkdir(parents=True, exist_ok=True) # ---- load existing results (if any) ----------------------------- results: List[Dict[str, Any]] = _load_partial(DATA_OUT) done_idx: Set[int] = {rec["index"] for rec in results} print(f"[{slug}] found {len(done_idx)} previously processed items") # ---- load split ------------------------------------------------- # if 'count' in dataset_id or 'hotpot' in dataset_id: # ds = load_dataset(dataset_id, split="train", trust_remote_code=True) # else: # ds = load_dataset(dataset_id, split="test", trust_remote_code=True) if 'count' in dataset_id or 'hotpot' in dataset_id: ds = load_dataset(dataset_id, split="train") else: try: ds = load_dataset(dataset_id, split="train") except: ds = load_dataset(dataset_id, split="test", trust_remote_code=True) # ---- decode images once ---------------------------------------- df = ds.to_pandas() try: df["pil_images"] = df["images"].apply( lambda lst: [Image.open(io.BytesIO(d["bytes"])).convert("RGB") for d in lst] ) images = [imgs[0] for imgs in df["pil_images"]] except Exception: df["pil_images"] = df["images"].apply( lambda d: Image.open(io.BytesIO(d["bytes"])).convert("RGB") ) images = list(df["pil_images"]) # ---- main generation loop -------------------------------------- with cf.ThreadPoolExecutor(max_workers=n_gen) as pool: # <-- here for idx, item in enumerate( tqdm(ds, desc=f"generating · {slug}", initial=len(done_idx), total=len(ds)) ): if idx in done_idx: continue prompt_txt = build_prompt(item) # image_url = pil_image_to_data_url(images[idx]) # messages = [{"instruction": prompt_txt, "image": image_url}] # launch `n_gen` concurrent calls futures = [pool.submit(generate_answer, images[idx], prompt_txt) for _ in range(n_gen)] # <-- here answers = [f.result() for f in futures if f.result()] if answers: results.append( dict( index = idx, problem = item["problem"], solution = item["answer"], predictions = answers, ) ) DATA_OUT.write_text(json.dumps(results, indent=2, ensure_ascii=False)) print(f"✅ {slug}: finished {len(results)} samples → {DATA_OUT}") # --------------------------- 2. run_all ------------------------------- def run_all( datasets: list, # list[str] *or* list[tuple[str,int]] default_n_gen: int = 1, max_workers: int | None = None, ) -> None: """ Launch `run_dataset` for every entry in *datasets*. `datasets` may contain: • "foo/bar" -> uses default_n_gen • ("foo/bar", 8) -> uses 8 for that file """ if max_workers is None: max_workers = min(len(datasets), 32) print(f"\nLaunching {len(datasets)} dataset jobs " f"({max_workers} workers)…\n") with cf.ThreadPoolExecutor(max_workers=max_workers) as pool: fut_to_name = {} for entry in datasets: if isinstance(entry, tuple): ds_id, n_gen = entry else: ds_id, n_gen = entry, default_n_gen fut = pool.submit(run_dataset, ds_id, n_gen) fut_to_name[fut] = ds_id for fut in cf.as_completed(fut_to_name): name = fut_to_name[fut] try: fut.result() except Exception as exc: print(f"❌ {name} failed: {exc!r}") else: print(f"✅ {name} done") # --------------------------------------------------------------------- # ENTRY-POINT # --------------------------------------------------------------------- if __name__ == "__main__": run_all(DATASETS, max_workers=min(len(DATASETS), os.cpu_count() * 2)) '''Below is code for gemini inference'''