from __future__ import annotations import pandas as pd from openai import OpenAI from concurrent.futures import ThreadPoolExecutor, as_completed from time import sleep from typing import List, Dict, Any, Optional from openai import OpenAI import json from pathlib import Path from typing import Any, Dict, Iterable, List, Union import re import datetime from typing import Dict, List, Optional from mathruler.grader import extract_boxed_content, grade_answer import math from tqdm.auto import tqdm def extract_description(predict: str) -> Optional[str]: """ Extracts the content of the block from `predict`. Returns the inner text (with leading/trailing whitespace stripped), or None if no tag is found. """ match = re.search(r"([\s\S]*?)", predict, re.DOTALL) if not match: return predict return match.group(1).strip() # curl http://29.81.228.243:8081 /v1/models client = OpenAI( base_url="http://29.81.244.54:8081/v1", # your vLLM server api_key="ANYKEY", # if you set --api-key when launching ) def chat_once(messages): resp = client.chat.completions.create( model="Qwen2.5-VL-72B-Instruct", messages=messages ) return resp.choices[0].message.content def chat_batch( client, all_message_batches: List[List[Dict[str, str]]], *, model: str = "Qwen2.5-VL-72B-Instruct", max_workers: int = 8, retries: int = 2, backoff: float = 0.5, timeout: Optional[float] = None, ) -> List[str]: """ Send many chat requests in parallel and return replies as a list of strings, preserving the order of `all_message_batches`. """ def _chat_once_with_retry(messages: List[Dict[str, str]]) -> str: last_err: Optional[BaseException] = None for attempt in range(retries + 1): try: resp = client.chat.completions.create( model=model, messages=messages, timeout=timeout, ) # Different SDKs expose content slightly differently; handle common cases. choice = resp.choices[0] if hasattr(choice, "message") and getattr(choice.message, "content", None) is not None: return choice.message.content if hasattr(choice, "text") and choice.text is not None: return choice.text # Fallback to stringifying the choice if structure is unexpected. return str(choice) except Exception as e: last_err = e if attempt < retries: sleep(backoff * (2 ** attempt)) return f"Error: {last_err!r}" results: List[Optional[str]] = [None] * len(all_message_batches) with ThreadPoolExecutor(max_workers=max_workers) as executor: future_to_idx = { executor.submit(_chat_once_with_retry, batch): i for i, batch in enumerate(all_message_batches) } for fut in as_completed(future_to_idx): i = future_to_idx[fut] results[i] = fut.result() # mypy-friendly cast: no Nones remain at this point return [r if r is not None else "Error: Unknown failure" for r in results] def load_json_list(path: Union[str, Path], encoding: str = "utf-8") -> List[Dict[str, Any]]: """ Load a JSON file whose top-level structure is a list of dicts. Raises: FileNotFoundError, json.JSONDecodeError, TypeError """ p = Path(path) with p.open("r", encoding=encoding) as f: data = json.load(f) if not isinstance(data, list): raise TypeError(f"Expected top-level JSON to be a list, got {type(data).__name__}") for i, item in enumerate(data): if not isinstance(item, dict): raise TypeError(f"Item at index {i} is {type(item).__name__}, expected dict") return data # Prepare a list of different message‐lists you want to send: all_message_batches = [ [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello, how are you?"} ], [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me a joke."} ], [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me a joke."} ], [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me a joke."} ], # …more batches… ] res = chat_batch(client, all_message_batches) prompt_template = '''Text description: {Description}\nQuestion: {Question}\nYou are provided a text description of a problem and a question. Determine the answer to the question based on the text description. First provide an internal step-by-step reasoning within tags, then provide a single word or phrase answer in \\boxed{}.''' MODEL = "Qwen2.5-VL-72B-Instruct" BATCH_SIZE = 16 filename = "MLLM_rlvr_train" out_file = f'./caption_out/{filename}.json' data = load_json_list(f'./gemini-flash/{filename}.json') def to_messages(example: Dict[str, Any]) -> List[Dict[str, str]]: """Use the single string inside `predictions` as the user input.""" preds = example.get("predictions") question = example.get("problem") if isinstance(preds, list) and preds: first = preds[0] text = first if isinstance(first, str) else json.dumps(first, ensure_ascii=False) description = extract_description(text) input_question = prompt_template.replace('{Description}', description).replace('{Question}', question) else: input_question = 'None' return [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": input_question}, ] # Ensure output dir exists and start fresh Path(out_file).parent.mkdir(parents=True, exist_ok=True) with open(out_file, "w", encoding="utf-8"): pass total = len(data) num_batches = math.ceil(total / BATCH_SIZE) for start in tqdm(range(0, total, BATCH_SIZE), total=num_batches, desc="Batches", unit="batch"): chunk = data[start : start + BATCH_SIZE] batch_messages = [to_messages(ex) for ex in chunk] replies = chat_batch(client, batch_messages, model=MODEL, max_workers=8, retries=2, backoff=0.5, timeout=None) print(replies[0]) with open(out_file, "a", encoding="utf-8") as f: for ex, reply in zip(chunk, replies): record = {**ex, "model": MODEL, "model_caption_response": reply} f.write(json.dumps(record, ensure_ascii=False) + "\n") f.flush()