from __future__ import annotations
import pandas as pd
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep
from typing import List, Dict, Any, Optional
from openai import OpenAI
import json
from pathlib import Path
from typing import Any, Dict, Iterable, List, Union
import re
import datetime
from typing import Dict, List, Optional
from mathruler.grader import extract_boxed_content, grade_answer
import math
from tqdm.auto import tqdm
def extract_description(predict: str) -> Optional[str]:
"""
Extracts the content of the … block from `predict`.
Returns the inner text (with leading/trailing whitespace stripped),
or None if no tag is found.
"""
match = re.search(r"([\s\S]*?)", predict, re.DOTALL)
if not match:
return predict
return match.group(1).strip()
# curl http://29.81.228.243:8081 /v1/models
client = OpenAI(
base_url="http://29.81.244.54:8081/v1", # your vLLM server
api_key="ANYKEY", # if you set --api-key when launching
)
def chat_once(messages):
resp = client.chat.completions.create(
model="Qwen2.5-VL-72B-Instruct",
messages=messages
)
return resp.choices[0].message.content
def chat_batch(
client,
all_message_batches: List[List[Dict[str, str]]],
*,
model: str = "Qwen2.5-VL-72B-Instruct",
max_workers: int = 8,
retries: int = 2,
backoff: float = 0.5,
timeout: Optional[float] = None,
) -> List[str]:
"""
Send many chat requests in parallel and return replies as a list of strings,
preserving the order of `all_message_batches`.
"""
def _chat_once_with_retry(messages: List[Dict[str, str]]) -> str:
last_err: Optional[BaseException] = None
for attempt in range(retries + 1):
try:
resp = client.chat.completions.create(
model=model,
messages=messages,
timeout=timeout,
)
# Different SDKs expose content slightly differently; handle common cases.
choice = resp.choices[0]
if hasattr(choice, "message") and getattr(choice.message, "content", None) is not None:
return choice.message.content
if hasattr(choice, "text") and choice.text is not None:
return choice.text
# Fallback to stringifying the choice if structure is unexpected.
return str(choice)
except Exception as e:
last_err = e
if attempt < retries:
sleep(backoff * (2 ** attempt))
return f"Error: {last_err!r}"
results: List[Optional[str]] = [None] * len(all_message_batches)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_idx = {
executor.submit(_chat_once_with_retry, batch): i
for i, batch in enumerate(all_message_batches)
}
for fut in as_completed(future_to_idx):
i = future_to_idx[fut]
results[i] = fut.result()
# mypy-friendly cast: no Nones remain at this point
return [r if r is not None else "Error: Unknown failure" for r in results]
def load_json_list(path: Union[str, Path], encoding: str = "utf-8") -> List[Dict[str, Any]]:
"""
Load a JSON file whose top-level structure is a list of dicts.
Raises:
FileNotFoundError, json.JSONDecodeError, TypeError
"""
p = Path(path)
with p.open("r", encoding=encoding) as f:
data = json.load(f)
if not isinstance(data, list):
raise TypeError(f"Expected top-level JSON to be a list, got {type(data).__name__}")
for i, item in enumerate(data):
if not isinstance(item, dict):
raise TypeError(f"Item at index {i} is {type(item).__name__}, expected dict")
return data
# Prepare a list of different message‐lists you want to send:
all_message_batches = [
[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"}
],
[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke."}
],
[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke."}
],
[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke."}
],
# …more batches…
]
res = chat_batch(client, all_message_batches)
prompt_template = '''Text description: {Description}\nQuestion: {Question}\nYou are provided a text description of a problem and a question. Determine the answer to the question based on the text description. First provide an internal step-by-step reasoning within tags, then provide a single word or phrase answer in \\boxed{}.'''
MODEL = "Qwen2.5-VL-72B-Instruct"
BATCH_SIZE = 16
filename = "MLLM_rlvr_train"
out_file = f'./caption_out/{filename}.json'
data = load_json_list(f'./gemini-flash/{filename}.json')
def to_messages(example: Dict[str, Any]) -> List[Dict[str, str]]:
"""Use the single string inside `predictions` as the user input."""
preds = example.get("predictions")
question = example.get("problem")
if isinstance(preds, list) and preds:
first = preds[0]
text = first if isinstance(first, str) else json.dumps(first, ensure_ascii=False)
description = extract_description(text)
input_question = prompt_template.replace('{Description}', description).replace('{Question}', question)
else:
input_question = 'None'
return [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": input_question},
]
# Ensure output dir exists and start fresh
Path(out_file).parent.mkdir(parents=True, exist_ok=True)
with open(out_file, "w", encoding="utf-8"):
pass
total = len(data)
num_batches = math.ceil(total / BATCH_SIZE)
for start in tqdm(range(0, total, BATCH_SIZE),
total=num_batches, desc="Batches", unit="batch"):
chunk = data[start : start + BATCH_SIZE]
batch_messages = [to_messages(ex) for ex in chunk]
replies = chat_batch(client, batch_messages, model=MODEL,
max_workers=8, retries=2, backoff=0.5, timeout=None)
print(replies[0])
with open(out_file, "a", encoding="utf-8") as f:
for ex, reply in zip(chunk, replies):
record = {**ex, "model": MODEL, "model_caption_response": reply}
f.write(json.dumps(record, ensure_ascii=False) + "\n")
f.flush()