File size: 26,676 Bytes
a5dd439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df33303
 
 
 
 
 
 
 
 
 
 
 
a5dd439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1746
- loss:CosineSimilarityLoss
base_model: sentence-transformers/distilbert-base-nli-mean-tokens
datasets: []
widget:
- source_sentence: Cheeseburger Potato Soup ["6 baking potatoes", "1 lb. of extra
    lean ground beef", "2/3 c. butter or margarine", "6 c. milk", "3/4 tsp. salt",
    "1/2 tsp. pepper", "1 1/2 c (6 oz.) shredded Cheddar cheese, divided", "12 sliced
    bacon, cooked, crumbled and divided", "4 green onion, chopped and divided", "1
    (8 oz.) carton sour cream (optional)"] ["Wash potatoes; prick several times with
    a fork.", "Microwave them with a wet paper towel covering the potatoes on high
    for 6-8 minutes.", "The potatoes should be soft, ready to eat.", "Let them cool
    enough to handle.", "Cut in half lengthwise; scoop out pulp and reserve.", "Discard
    shells.", "Brown ground beef until done.", "Drain any grease from the meat.",
    "Set aside when done.", "Meat will be added later.", "Melt butter in a large kettle
    over low heat; add flour, stirring until smooth.", "Cook 1 minute, stirring constantly.
    Gradually add milk; cook over medium heat, stirring constantly, until thickened
    and bubbly.", "Stir in potato, ground beef, salt, pepper, 1 cup of cheese, 2 tablespoons
    of green onion and 1/2 cup of bacon.", "Cook until heated (do not boil).", "Stir
    in sour cream if desired; cook until heated (do not boil).", "Sprinkle with remaining
    cheese, bacon and green onions."]
  sentences:
  - Nolan'S Pepper Steak ["1 1/2 lb. round steak (1-inch thick), cut into strips",
    "1 can drained tomatoes, cut up (save liquid)", "1 3/4 c. water", "1/2 c. onions",
    "1 1/2 Tbsp. Worcestershire sauce", "2 green peppers, diced", "1/4 c. oil"] ["Roll
    steak strips in flour.", "Brown in skillet.", "Salt and pepper.", "Combine tomato
    liquid, water, onions and browned steak. Cover and simmer for one and a quarter
    hours.", "Uncover and stir in Worcestershire sauce.", "Add tomatoes, green peppers
    and simmer for 5 minutes.", "Serve over hot cooked rice."]
  - Fresh Strawberry Pie ["1 baked pie shell", "1 qt. cleaned strawberries", "1 1/2
    c. water", "4 Tbsp. cornstarch", "1 c. sugar", "1/8 tsp. salt", "4 Tbsp. strawberry
    jello"] ["Mix water, cornstarch, sugar and salt in saucepan.", "Stir constantly
    and boil until thick and clear.", "Remove from heat and stir in jello.", "Set
    aside to cool.", "But don't allow it to set. Layer strawberries in baked crust.",
    "Pour cooled glaze over. Continue layering berries and glaze.", "Refrigerate.",
    "Serve with whipped cream."]
  - Vegetable-Burger Soup ["1/2 lb. ground beef", "2 c. water", "1 tsp. sugar", "1
    pkg. Cup-a-Soup onion soup mix (dry)", "1 lb. can stewed tomatoes", "1 (8 oz.)
    can tomato sauce", "1 (10 oz.) pkg. frozen mixed vegetables"] ["Lightly brown
    beef in soup pot.", "Drain off excess fat.", "Stir in tomatoes, tomato sauce,
    water, frozen vegetables, soup mix and sugar.", "Bring to a boil.", "Reduce heat
    and simmer for 20 minutes. Serve."]
- source_sentence: Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick
    Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti
    per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight
    in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers,
    tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]
  sentences:
  - Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato juice", "3/4 c.
    oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4 tsp. pepper",
    "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4 1/2 x 2 1/2-inch
    loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\u00b0 for 1 hour.",
    "Let stand 5 minutes before slicing.", "Makes 8 servings."]
  - Cuddy Farms Marinated Turkey ["2 c. 7-Up or Sprite", "1 c. vegetable oil", "1
    c. Kikkoman soy sauce", "garlic salt"] ["Buy whole turkey breast; remove all skin
    and bones. Cut into pieces about the size of your hand. Pour marinade over turkey
    and refrigerate for at least 8 hours (up to 48 hours). The longer it marinates,
    the less cooking time it takes."]
  - Pear-Lime Salad ["1 (16 oz.) can pear halves, undrained", "1 (3 oz.) pkg. lime
    gelatin", "1 (8 oz.) pkg. cream cheese, softened", "1 (8 oz.) carton lemon yogurt"]
    ["Drain pears, reserving juice.", "Bring juice to a boil, stirring constantly.",
    "Remove from heat.", "Add gelatin, stirring until dissolved.", "Let cool slightly.",
    "Coarsely chop pear halves. Combine cream cheese and yogurt; beat at medium speed
    of electric mixer until smooth.", "Add gelatin and beat well.", "Stir in pears.",
    "Pour into an oiled 4-cup mold or Pyrex dish.", "Chill."]
- source_sentence: Millionaire Pie ["1 large container Cool Whip", "1 large can crushed
    pineapple", "1 can condensed milk", "3 lemons", "1 c. pecans", "2 graham cracker
    crusts"] ["Empty Cool Whip into a bowl.", "Drain juice from pineapple.", "Mix
    Cool Whip and pineapple.", "Add condensed milk.", "Squeeze lemons, remove seeds
    and add to Cool Whip and pineapple.", "Chop nuts into small pieces and add to
    mixture.", "Stir all ingredients together and mix well.", "Pour into a graham
    cracker crust.", "Use top from crust to cover top of pie.", "Chill overnight.",
    "Makes 2 pies."]
  sentences:
  - Jewell Ball'S Chicken ["1 small jar chipped beef, cut up", "4 boned chicken breasts",
    "1 can cream of mushroom soup", "1 carton sour cream"] ["Place chipped beef on
    bottom of baking dish.", "Place chicken on top of beef.", "Mix soup and cream
    together; pour over chicken. Bake, uncovered, at 275\u00b0 for 3 hours."]
  - Quick Peppermint Puffs ["8 marshmallows", "2 Tbsp. margarine, melted", "1/4 c.
    crushed peppermint candy", "1 can crescent rolls"] ["Dip marshmallows in melted
    margarine; roll in candy. Wrap a crescent triangle around each marshmallow, completely
    covering the marshmallow and square edges of dough tightly to seal.", "Dip in
    margarine and place in a greased muffin tin.", "Bake at 375\u00b0 for 10 to 15
    minutes; remove from pan."]
  - Double Cherry Delight ["1 (17 oz.) can dark sweet pitted cherries", "1/2 c. ginger
    ale", "1 (6 oz.) pkg. Jell-O cherry flavor gelatin", "2 c. boiling water", "1/8
    tsp. almond extract", "1 c. miniature marshmallows"] ["Drain cherries, measuring
    syrup.", "Cut cherries in half.", "Add ginger ale and enough water to syrup to
    make 1 1/2 cups.", "Dissolve gelatin in boiling water.", "Add measured liquid
    and almond extract. Chill until very thick.", "Fold in marshmallows and the cherries.
    Spoon into 6-cup mold.", "Chill until firm, at least 4 hours or overnight.", "Unmold.",
    "Makes about 5 1/3 cups."]
- source_sentence: Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato
    juice", "3/4 c. oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4
    tsp. pepper", "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4
    1/2 x 2 1/2-inch loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\u00b0
    for 1 hour.", "Let stand 5 minutes before slicing.", "Makes 8 servings."]
  sentences:
  - Beer Bread ["3 c. self rising flour", "1 - 12 oz. can beer", "1 Tbsp. sugar"]
    ["Stir the ingredients together and put in a greased and floured loaf pan.", "Bake
    at 425 degrees for 50 minutes.", "Drizzle melted butter on top."]
  - Artichoke Dip ["2 cans or jars artichoke hearts", "1 c. mayonnaise", "1 c. Parmesan
    cheese"] ["Drain artichokes and chop.", "Mix with mayonnaise and Parmesan cheese.",
    "After well mixed, bake, uncovered, for 20 to 30 minutes at 350\u00b0.", "Serve
    with crackers."]
  - 'One Hour Rolls ["1 c. milk", "2 Tbsp. sugar", "1 pkg. dry yeast", "1 Tbsp. salt",
    "3 Tbsp. Crisco oil", "2 c. plain flour"] ["Put flour into a large mixing bowl.",
    "Combine sugar, milk, salt and oil in a saucepan and heat to boiling; remove from
    heat and let cool to lukewarm.", "Add yeast and mix well.", "Pour into flour and
    stir.", "Batter will be sticky.", "Roll out batter on a floured board and cut
    with biscuit cutter.", "Lightly brush tops with melted oleo and fold over.", "Place
    rolls on a cookie sheet, put in a warm place and let rise for 1 hour.", "Bake
    at 350\u00b0 for about 20 minutes. Yield: 2 1/2 dozen."]'
- source_sentence: Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar",
    "2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim
    off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until
    tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil
    of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In
    the morning, drain off syrup.", "Heat and put over rind.", "The third morning,
    heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of
    cinnamon and clove keeps rind clear and transparent.)"]
  sentences:
  - Summer Chicken ["1 pkg. chicken cutlets", "1/2 c. oil", "1/3 c. red vinegar",
    "2 Tbsp. oregano", "2 Tbsp. garlic salt"] ["Double recipe for more chicken."]
  - Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme
    (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.",
    "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme
    and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green
    peppers, mushrooms, olives or whatever your taste may want."]
  - Chicken Funny ["1 large whole chicken", "2 (10 1/2 oz.) cans chicken gravy", "1
    (10 1/2 oz.) can cream of mushroom soup", "1 (6 oz.) box Stove Top stuffing",
    "4 oz. shredded cheese"] ["Boil and debone chicken.", "Put bite size pieces in
    average size square casserole dish.", "Pour gravy and cream of mushroom soup over
    chicken; level.", "Make stuffing according to instructions on box (do not make
    too moist).", "Put stuffing on top of chicken and gravy; level.", "Sprinkle shredded
    cheese on top and bake at 350\u00b0 for approximately 20 minutes or until golden
    and bubbly."]
pipeline_tag: sentence-similarity
---

# SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens) <!-- at revision 2781c006adbf3726b509caa8649fc8077ff0724d -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("DivyaMereddy007/RecipeBert_v5original_epoc50Copy_of_TrainSetenceTransforme-Finetuning_v5_DistilledBert")
# Run inference
sentences = [
    'Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar", "2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In the morning, drain off syrup.", "Heat and put over rind.", "The third morning, heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of cinnamon and clove keeps rind clear and transparent.)"]',
    'Summer Chicken ["1 pkg. chicken cutlets", "1/2 c. oil", "1/3 c. red vinegar", "2 Tbsp. oregano", "2 Tbsp. garlic salt"] ["Double recipe for more chicken."]',
    'Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,746 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                           | sentence_1                                                                           | label                                                          |
  |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                               | string                                                                               | float                                                          |
  | details | <ul><li>min: 63 tokens</li><li>mean: 118.82 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 118.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.19</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                                                                                                                             | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | label             |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Tuna Macaroni Casserole ["1 box macaroni and cheese", "1 can tuna, drained", "1 small jar pimentos", "1 medium onion, chopped"] ["Prepare macaroni and cheese as directed.", "Add drained tuna, pimento and onion.", "Mix.", "Serve hot or cold."]</code>                                                                                                                                                        | <code>Easy Fudge ["1 (14 oz.) can sweetened condensed milk", "1 (12 oz.) pkg. semi-sweet chocolate chips", "1 (1 oz.) sq. unsweetened chocolate (if desired)", "1 1/2 c. chopped nuts (if desired)", "1 tsp. vanilla"] ["Butter a square pan, 8 x 8 x 2-inches.", "Heat milk, chocolate chips and unsweetened chocolate over low heat, stirring constantly, until chocolate is melted and mixture is smooth. Remove from heat.", "Stir in nuts and vanilla.", "Spread in pan."]</code> | <code>0.05</code> |
  | <code>Scalloped Corn ["1 can cream-style corn", "1 can whole kernel corn", "1/2 pkg. (approximately 20) saltine crackers, crushed", "1 egg, beaten", "6 tsp. butter, divided", "pepper to taste"] ["Mix together both cans of corn, crackers, egg, 2 teaspoons of melted butter and pepper and place in a buttered baking dish.", "Dot with remaining 4 teaspoons of butter.", "Bake at 350\u00b0 for 1 hour."]</code> | <code>Quick Peppermint Puffs ["8 marshmallows", "2 Tbsp. margarine, melted", "1/4 c. crushed peppermint candy", "1 can crescent rolls"] ["Dip marshmallows in melted margarine; roll in candy. Wrap a crescent triangle around each marshmallow, completely covering the marshmallow and square edges of dough tightly to seal.", "Dip in margarine and place in a greased muffin tin.", "Bake at 375\u00b0 for 10 to 15 minutes; remove from pan."]</code>                            | <code>0.1</code>  |
  | <code>Beer Bread ["3 c. self rising flour", "1 - 12 oz. can beer", "1 Tbsp. sugar"] ["Stir the ingredients together and put in a greased and floured loaf pan.", "Bake at 425 degrees for 50 minutes.", "Drizzle melted butter on top."]</code>                                                                                                                                                                        | <code>Rhubarb Coffee Cake ["1 1/2 c. sugar", "1/2 c. butter", "1 egg", "1 c. buttermilk", "2 c. flour", "1/2 tsp. salt", "1 tsp. soda", "1 c. buttermilk", "2 c. rhubarb, finely cut", "1 tsp. vanilla"] ["Cream sugar and butter.", "Add egg and beat well.", "To creamed butter, sugar and egg, add alternately buttermilk with mixture of flour, salt and soda.", "Mix well.", "Add rhubarb and vanilla.", "Pour into greased 9 x 13-inch pan and add Topping."]</code>             | <code>0.4</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 50
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch   | Step | Training Loss |
|:-------:|:----:|:-------------:|
| 4.5455  | 500  | 0.0092        |
| 9.0909  | 1000 | 0.0091        |
| 13.6364 | 1500 | 0.0081        |
| 18.1818 | 2000 | 0.0074        |
| 22.7273 | 2500 | 0.0071        |
| 27.2727 | 3000 | 0.0069        |
| 31.8182 | 3500 | 0.0066        |
| 36.3636 | 4000 | 0.0065        |
| 40.9091 | 4500 | 0.0061        |
| 45.4545 | 5000 | 0.006         |
| 50.0    | 5500 | 0.0056        |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@INPROCEEDINGS{10973364,
  author={Mereddy, Divya and Beedareddy, Jeevan Sai Reddy},
  booktitle={2024 IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)}, 
  title={Enabling Next-Generation Smart Homes Through Bert Personalized Food Recommendations - RecipeBERT}, 
  year={2024},
  volume={},
  number={},
  pages={796-803},
  keywords={Adaptation models;Analytical models;Reviews;Semantics;Smart homes;Manuals;Transformers;Recommender systems;Next generation networking;Testing;Personalized food recommendations;BERT;SBERT;RecipeBERT},
  doi={10.1109/WI-IAT62293.2024.00130}}

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->