--- license: apache-2.0 tags: - unsloth - trl - sft --- # DogeGPT Meme Coin πŸ•πŸ€– The Meme Coin will be launched Soon Join our socials to find out more (and invest earlyπŸ•) All other DogeGPTs are all fake, only check the following socials for update Share them and mention us on X(twitter)

Follow on Twitter Subscribe on YouTube Visit Our Website

# DogeGPT1-1B πŸ•πŸ€– ![DogeGPT Logo](DogeGPT.jpg "DogeGPT Logo") DogeGPT1-1B is an open-sourced **1.24B-parameter Large Language Model (LLM)** designed to bring the fun of meme coins and the power of AI together! Built on the **LLaMA architecture**, DogeGPT is tailored for conversational AI applications with a playful twist. Whether you're a meme coin enthusiast, developer, or AI explorer, DogeGPT is here to spark your creativity. **3B and 8B -parameter LLMs will be annonced soon** --- ## Model Overview πŸš€ - **Model Name**: DogeGPT1-1B - **Architecture**: LLaMA - **Model Size**: 1.24B parameters - **Quantization Formats**: GGUF (2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 8-bit) - **License**: Apache 2.0 - **Tags**: `PyTorch`, `LLaMA`, `TRL`, `GGUF`, `conversational` - **Downloads Last Month**: 115 --- ## Features 🌟 - **Conversational AI**: Perfect for building chatbots, virtual assistants, or meme-themed conversational models. - **Quantization Support**: Includes efficient formats for deployment in resource-constrained environments. - **Open Source**: Fully available under the permissive Apache 2.0 license. --- ## Getting Started πŸ› οΈ ### Installation Clone the model and install the necessary dependencies: ```bash pip install transformers huggingface_hub ``` ### Usage Example Here’s how to load DogeGPT1-1B using transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained("Doge-GPT/DogeGPT1-1B") tokenizer = AutoTokenizer.from_pretrained("Doge-GPT/DogeGPT1-1B") # Generate text input_text = "What is DogeGPT?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```