Upload 11 files
Browse files- config.json +5 -3
- configuration_baichuan.py +4 -2
- generation_config.json +2 -2
- generation_utils.py +1 -0
- modeling_baichuan.py +417 -162
- pytorch_model.bin.index.json +15 -15
- quantizer.py +206 -118
- tokenization_baichuan.py +36 -10
- tokenizer.model +2 -2
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
-
"_name_or_path": "
|
4 |
"architectures": [
|
5 |
"BaichuanForCausalLM"
|
6 |
],
|
@@ -21,8 +21,10 @@
|
|
21 |
"pad_token_id": 0,
|
22 |
"rms_norm_eps": 1e-06,
|
23 |
"tie_word_embeddings": false,
|
|
|
24 |
"torch_dtype": "float16",
|
25 |
-
"transformers_version": "4.
|
26 |
"use_cache": true,
|
27 |
-
"vocab_size":
|
|
|
28 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
+
"_name_or_path": "Baichuan2-13B-Chat",
|
4 |
"architectures": [
|
5 |
"BaichuanForCausalLM"
|
6 |
],
|
|
|
21 |
"pad_token_id": 0,
|
22 |
"rms_norm_eps": 1e-06,
|
23 |
"tie_word_embeddings": false,
|
24 |
+
"tokenizer_class": "BaichuanTokenizer",
|
25 |
"torch_dtype": "float16",
|
26 |
+
"transformers_version": "4.33.1",
|
27 |
"use_cache": true,
|
28 |
+
"vocab_size": 125696,
|
29 |
+
"z_loss_weight": 0
|
30 |
}
|
configuration_baichuan.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
|
3 |
from transformers.configuration_utils import PretrainedConfig
|
4 |
|
|
|
5 |
class BaichuanConfig(PretrainedConfig):
|
6 |
model_type = "baichuan"
|
7 |
keys_to_ignore_at_inference = ["past_key_values"]
|
@@ -23,6 +24,7 @@ class BaichuanConfig(PretrainedConfig):
|
|
23 |
eos_token_id=2,
|
24 |
tie_word_embeddings=False,
|
25 |
gradient_checkpointing=False,
|
|
|
26 |
**kwargs,
|
27 |
):
|
28 |
self.vocab_size = vocab_size
|
@@ -35,7 +37,8 @@ class BaichuanConfig(PretrainedConfig):
|
|
35 |
self.initializer_range = initializer_range
|
36 |
self.rms_norm_eps = rms_norm_eps
|
37 |
self.use_cache = use_cache
|
38 |
-
self.
|
|
|
39 |
super().__init__(
|
40 |
pad_token_id=pad_token_id,
|
41 |
bos_token_id=bos_token_id,
|
@@ -43,4 +46,3 @@ class BaichuanConfig(PretrainedConfig):
|
|
43 |
tie_word_embeddings=tie_word_embeddings,
|
44 |
**kwargs,
|
45 |
)
|
46 |
-
|
|
|
2 |
|
3 |
from transformers.configuration_utils import PretrainedConfig
|
4 |
|
5 |
+
|
6 |
class BaichuanConfig(PretrainedConfig):
|
7 |
model_type = "baichuan"
|
8 |
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
24 |
eos_token_id=2,
|
25 |
tie_word_embeddings=False,
|
26 |
gradient_checkpointing=False,
|
27 |
+
z_loss_weight=0,
|
28 |
**kwargs,
|
29 |
):
|
30 |
self.vocab_size = vocab_size
|
|
|
37 |
self.initializer_range = initializer_range
|
38 |
self.rms_norm_eps = rms_norm_eps
|
39 |
self.use_cache = use_cache
|
40 |
+
self.z_loss_weight = z_loss_weight
|
41 |
+
self.gradient_checkpointing = (gradient_checkpointing,)
|
42 |
super().__init__(
|
43 |
pad_token_id=pad_token_id,
|
44 |
bos_token_id=bos_token_id,
|
|
|
46 |
tie_word_embeddings=tie_word_embeddings,
|
47 |
**kwargs,
|
48 |
)
|
|
generation_config.json
CHANGED
@@ -5,10 +5,10 @@
|
|
5 |
"eos_token_id": 2,
|
6 |
"max_new_tokens": 2048,
|
7 |
"pad_token_id": 0,
|
8 |
-
"repetition_penalty": 1.
|
9 |
"temperature": 0.3,
|
10 |
"top_k": 5,
|
11 |
"top_p": 0.85,
|
12 |
-
"transformers_version": "4.
|
13 |
"user_token_id": 195
|
14 |
}
|
|
|
5 |
"eos_token_id": 2,
|
6 |
"max_new_tokens": 2048,
|
7 |
"pad_token_id": 0,
|
8 |
+
"repetition_penalty": 1.05,
|
9 |
"temperature": 0.3,
|
10 |
"top_k": 5,
|
11 |
"top_p": 0.85,
|
12 |
+
"transformers_version": "4.33.1",
|
13 |
"user_token_id": 195
|
14 |
}
|
generation_utils.py
CHANGED
@@ -80,3 +80,4 @@ class TextIterStreamer:
|
|
80 |
raise StopIteration()
|
81 |
else:
|
82 |
return value
|
|
|
|
80 |
raise StopIteration()
|
81 |
else:
|
82 |
return value
|
83 |
+
|
modeling_baichuan.py
CHANGED
@@ -1,63 +1,77 @@
|
|
1 |
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
|
|
|
|
|
|
|
3 |
import math
|
4 |
from threading import Thread
|
5 |
from typing import List, Optional, Tuple, Union
|
6 |
|
7 |
import torch
|
8 |
-
import
|
9 |
from torch.nn import CrossEntropyLoss
|
10 |
-
from
|
|
|
11 |
from transformers.activations import ACT2FN
|
12 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
-
from transformers.utils import logging
|
14 |
from transformers.generation.utils import GenerationConfig
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
from
|
|
|
18 |
|
19 |
logger = logging.get_logger(__name__)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def _get_interleave(n):
|
23 |
def _get_interleave_power_of_2(n):
|
24 |
-
start =
|
25 |
ratio = start
|
26 |
-
return [start * ratio
|
27 |
|
28 |
if math.log2(n).is_integer():
|
29 |
return _get_interleave_power_of_2(n)
|
30 |
else:
|
31 |
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
32 |
-
return
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
def _fill_with_neg_inf(t):
|
36 |
"""FP16-compatible function that fills a tensor with -inf."""
|
37 |
return t.float().fill_(float("-inf")).type_as(t)
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
slopes = torch.Tensor(_get_interleave(n_head))
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
alibi = alibi.view(n_head, 1, max_pos)
|
45 |
-
alibi_mask = torch.triu(
|
46 |
-
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
|
47 |
-
)
|
48 |
alibi_mask = alibi_mask.unsqueeze(0) + alibi
|
49 |
return alibi_mask
|
50 |
|
51 |
-
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
|
52 |
-
"""used in training only"""
|
53 |
-
dim = tensor.size(1)
|
54 |
-
_future_mask = torch.triu(
|
55 |
-
_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
|
56 |
-
)
|
57 |
-
_future_mask = _future_mask.unsqueeze(0) + alibi
|
58 |
-
_future_mask = _future_mask.to(tensor)
|
59 |
-
return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]
|
60 |
-
|
61 |
|
62 |
class RMSNorm(torch.nn.Module):
|
63 |
def __init__(self, hidden_size, epsilon=1e-6):
|
@@ -78,10 +92,10 @@ class RMSNorm(torch.nn.Module):
|
|
78 |
|
79 |
class MLP(torch.nn.Module):
|
80 |
def __init__(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
):
|
86 |
super().__init__()
|
87 |
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
@@ -106,28 +120,46 @@ class BaichuanAttention(torch.nn.Module):
|
|
106 |
raise ValueError(
|
107 |
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
|
108 |
)
|
109 |
-
self.W_pack = torch.nn.Linear(
|
110 |
-
|
|
|
|
|
|
|
|
|
111 |
|
112 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
113 |
-
return
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def forward(
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
123 |
-
|
124 |
bsz, q_len, _ = hidden_states.size()
|
125 |
|
126 |
proj = self.W_pack(hidden_states)
|
127 |
-
proj =
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
kv_seq_len = key_states.shape[-2]
|
133 |
if past_key_value is not None:
|
@@ -139,23 +171,37 @@ class BaichuanAttention(torch.nn.Module):
|
|
139 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
140 |
|
141 |
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
if attention_mask is not None:
|
146 |
-
if q_len == 1: # inference with cache
|
147 |
-
if len(attention_mask.size()) == 4:
|
148 |
-
attention_mask = attention_mask[:, :, -1:, :]
|
149 |
-
else:
|
150 |
-
attention_mask = attention_mask[:, -1:, :]
|
151 |
-
attn_weights = attn_weights + attention_mask
|
152 |
-
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
153 |
-
|
154 |
-
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
155 |
-
|
156 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
157 |
|
158 |
-
|
159 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
160 |
attn_output = self.o_proj(attn_output)
|
161 |
|
@@ -176,17 +222,20 @@ class BaichuanLayer(torch.nn.Module):
|
|
176 |
hidden_act=config.hidden_act,
|
177 |
)
|
178 |
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
179 |
-
self.post_attention_layernorm = RMSNorm(
|
|
|
|
|
180 |
|
181 |
def forward(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
) -> Tuple[
|
189 |
-
|
|
|
190 |
residual = hidden_states
|
191 |
|
192 |
hidden_states = self.input_layernorm(hidden_states)
|
@@ -244,8 +293,12 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
244 |
self.padding_idx = config.pad_token_id
|
245 |
self.vocab_size = config.vocab_size
|
246 |
self.n_head = config.num_attention_heads
|
247 |
-
self.embed_tokens = torch.nn.Embedding(
|
248 |
-
|
|
|
|
|
|
|
|
|
249 |
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
250 |
|
251 |
self.gradient_checkpointing = config.gradient_checkpointing
|
@@ -263,35 +316,61 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
263 |
def get_alibi_mask(self, tensor, seq_length_with_past):
|
264 |
if self.training:
|
265 |
slopes = torch.Tensor(_get_interleave(self.n_head))
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
else:
|
272 |
if self.first_run:
|
273 |
self.first_run = False
|
274 |
-
self.register_buffer(
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
if seq_length_with_past > self.max_cache_pos:
|
276 |
self.max_cache_pos = seq_length_with_past
|
277 |
-
self.register_buffer(
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
return mask
|
280 |
|
281 |
def forward(
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
292 |
-
|
293 |
if input_ids is not None and inputs_embeds is not None:
|
294 |
-
raise ValueError(
|
|
|
|
|
295 |
elif input_ids is not None:
|
296 |
batch_size, seq_length = input_ids.shape
|
297 |
elif inputs_embeds is not None:
|
@@ -299,7 +378,9 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
299 |
else:
|
300 |
raise ValueError("You need to provide input_ids or inputs_embeds")
|
301 |
|
302 |
-
return_dict =
|
|
|
|
|
303 |
|
304 |
seq_length_with_past = seq_length
|
305 |
|
@@ -311,8 +392,13 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
311 |
inputs_embeds = self.embed_tokens(input_ids)
|
312 |
|
313 |
if self.training:
|
314 |
-
if
|
315 |
-
self.alibi_mask
|
|
|
|
|
|
|
|
|
|
|
316 |
alibi_mask = self.alibi_mask
|
317 |
else:
|
318 |
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
@@ -320,15 +406,22 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
320 |
if attention_mask is not None:
|
321 |
if len(attention_mask.shape) == 2:
|
322 |
expanded_mask = attention_mask.to(alibi_mask.dtype)
|
323 |
-
expanded_mask = torch.tril(
|
324 |
-
|
|
|
325 |
else:
|
326 |
-
expanded_mask = attention_mask
|
327 |
bsz = inputs_embeds.size(0)
|
328 |
src_len, tgt_len = alibi_mask.size()[-2:]
|
329 |
-
expanded_mask =
|
|
|
|
|
|
|
|
|
330 |
inverted_mask = 1.0 - expanded_mask
|
331 |
-
inverted_mask = inverted_mask.masked_fill(
|
|
|
|
|
332 |
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
|
333 |
else:
|
334 |
attention_mask = alibi_mask
|
@@ -351,7 +444,9 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
351 |
if output_hidden_states:
|
352 |
all_hidden_states += (hidden_states,)
|
353 |
|
354 |
-
past_key_value =
|
|
|
|
|
355 |
|
356 |
if self.gradient_checkpointing and self.training:
|
357 |
|
@@ -393,7 +488,11 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
393 |
|
394 |
next_cache = next_decoder_cache if use_cache else None
|
395 |
if not return_dict:
|
396 |
-
return tuple(
|
|
|
|
|
|
|
|
|
397 |
return BaseModelOutputWithPast(
|
398 |
last_hidden_state=hidden_states,
|
399 |
past_key_values=next_cache,
|
@@ -402,12 +501,50 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
402 |
)
|
403 |
|
404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
406 |
-
def __init__(self, config):
|
407 |
-
super().__init__(config)
|
408 |
self.model = BaichuanModel(config)
|
409 |
-
self.lm_head =
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
# Initialize weights and apply final processing
|
412 |
self.post_init()
|
413 |
|
@@ -428,23 +565,130 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
428 |
|
429 |
def get_decoder(self):
|
430 |
return self.model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
def forward(
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
|
|
|
445 |
|
446 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
447 |
-
|
448 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
449 |
outputs = self.model(
|
450 |
input_ids=input_ids,
|
@@ -459,7 +703,6 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
459 |
|
460 |
hidden_states = outputs[0]
|
461 |
logits = self.lm_head(hidden_states)
|
462 |
-
|
463 |
loss = None
|
464 |
if labels is not None:
|
465 |
# Shift so that tokens < n predict n
|
@@ -469,9 +712,11 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
469 |
loss_fct = CrossEntropyLoss()
|
470 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
471 |
shift_labels = shift_labels.view(-1)
|
|
|
|
|
472 |
# Enable model parallelism
|
473 |
shift_labels = shift_labels.to(shift_logits.device)
|
474 |
-
loss = loss_fct(shift_logits, shift_labels)
|
475 |
|
476 |
if not return_dict:
|
477 |
output = (logits,) + outputs[1:]
|
@@ -485,13 +730,20 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
485 |
attentions=outputs.attentions,
|
486 |
)
|
487 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
def prepare_inputs_for_generation(
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
):
|
496 |
if past_key_values:
|
497 |
input_ids = input_ids[:, -1:]
|
@@ -506,7 +758,7 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
506 |
{
|
507 |
"past_key_values": past_key_values,
|
508 |
"use_cache": kwargs.get("use_cache"),
|
509 |
-
"attention_mask": attention_mask
|
510 |
}
|
511 |
)
|
512 |
return model_inputs
|
@@ -518,43 +770,46 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
518 |
for layer_past in past_key_values
|
519 |
)
|
520 |
|
521 |
-
def
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
|
|
|
|
|
|
|
|
556 |
|
557 |
-
@torch.no_grad()
|
558 |
def chat(self, tokenizer, messages: List[dict], stream=False,
|
559 |
generation_config: Optional[GenerationConfig]=None):
|
560 |
generation_config = generation_config or self.generation_config
|
|
|
1 |
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
|
3 |
+
from .configuration_baichuan import BaichuanConfig
|
4 |
+
from .generation_utils import build_chat_input, TextIterStreamer
|
5 |
+
|
6 |
import math
|
7 |
from threading import Thread
|
8 |
from typing import List, Optional, Tuple, Union
|
9 |
|
10 |
import torch
|
11 |
+
from torch import nn
|
12 |
from torch.nn import CrossEntropyLoss
|
13 |
+
from torch.nn import functional as F
|
14 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
15 |
from transformers.activations import ACT2FN
|
|
|
|
|
16 |
from transformers.generation.utils import GenerationConfig
|
17 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
18 |
+
from transformers.utils import logging, ContextManagers
|
19 |
|
20 |
+
import os
|
21 |
+
from contextlib import contextmanager
|
22 |
+
from accelerate import init_empty_weights
|
23 |
|
24 |
logger = logging.get_logger(__name__)
|
25 |
|
26 |
+
try:
|
27 |
+
from xformers import ops as xops
|
28 |
+
except ImportError:
|
29 |
+
xops = None
|
30 |
+
logger.warning(
|
31 |
+
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
|
32 |
+
)
|
33 |
+
|
34 |
|
35 |
def _get_interleave(n):
|
36 |
def _get_interleave_power_of_2(n):
|
37 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
38 |
ratio = start
|
39 |
+
return [start * ratio**i for i in range(n)]
|
40 |
|
41 |
if math.log2(n).is_integer():
|
42 |
return _get_interleave_power_of_2(n)
|
43 |
else:
|
44 |
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
45 |
+
return (
|
46 |
+
_get_interleave_power_of_2(closest_power_of_2)
|
47 |
+
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
48 |
+
)
|
49 |
+
|
50 |
|
51 |
def _fill_with_neg_inf(t):
|
52 |
"""FP16-compatible function that fills a tensor with -inf."""
|
53 |
return t.float().fill_(float("-inf")).type_as(t)
|
54 |
|
55 |
+
|
56 |
+
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
|
57 |
+
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
|
58 |
+
_future_mask = _future_mask.unsqueeze(0) + alibi
|
59 |
+
new_future_mask = _future_mask.to(tensor)
|
60 |
+
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
|
61 |
+
|
62 |
+
|
63 |
+
def _gen_alibi_mask(tensor, n_head, max_pos):
|
64 |
slopes = torch.Tensor(_get_interleave(n_head))
|
65 |
+
position_point = torch.arange(max_pos) - max_pos + 1
|
66 |
+
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
|
67 |
+
diag = torch.diag(position_point[0])
|
68 |
+
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
|
69 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
|
70 |
alibi = alibi.view(n_head, 1, max_pos)
|
71 |
+
alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1)
|
|
|
|
|
72 |
alibi_mask = alibi_mask.unsqueeze(0) + alibi
|
73 |
return alibi_mask
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
class RMSNorm(torch.nn.Module):
|
77 |
def __init__(self, hidden_size, epsilon=1e-6):
|
|
|
92 |
|
93 |
class MLP(torch.nn.Module):
|
94 |
def __init__(
|
95 |
+
self,
|
96 |
+
hidden_size: int,
|
97 |
+
intermediate_size: int,
|
98 |
+
hidden_act: str,
|
99 |
):
|
100 |
super().__init__()
|
101 |
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
|
|
120 |
raise ValueError(
|
121 |
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
|
122 |
)
|
123 |
+
self.W_pack = torch.nn.Linear(
|
124 |
+
self.hidden_size, 3 * self.hidden_size, bias=False
|
125 |
+
)
|
126 |
+
self.o_proj = torch.nn.Linear(
|
127 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
128 |
+
)
|
129 |
|
130 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
131 |
+
return (
|
132 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
133 |
+
.transpose(1, 2)
|
134 |
+
.contiguous()
|
135 |
+
)
|
136 |
|
137 |
def forward(
|
138 |
+
self,
|
139 |
+
hidden_states: torch.Tensor,
|
140 |
+
attention_mask: Optional[torch.Tensor] = None,
|
141 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
142 |
+
output_attentions: bool = False,
|
143 |
+
use_cache: bool = False,
|
144 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
145 |
bsz, q_len, _ = hidden_states.size()
|
146 |
|
147 |
proj = self.W_pack(hidden_states)
|
148 |
+
proj = (
|
149 |
+
proj.unflatten(-1, (3, self.hidden_size))
|
150 |
+
.unsqueeze(0)
|
151 |
+
.transpose(0, -2)
|
152 |
+
.squeeze(-2)
|
153 |
+
)
|
154 |
+
query_states = (
|
155 |
+
proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
156 |
+
)
|
157 |
+
key_states = (
|
158 |
+
proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
159 |
+
)
|
160 |
+
value_states = (
|
161 |
+
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
162 |
+
)
|
163 |
|
164 |
kv_seq_len = key_states.shape[-2]
|
165 |
if past_key_value is not None:
|
|
|
171 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
172 |
|
173 |
past_key_value = (key_states, value_states) if use_cache else None
|
174 |
+
if xops is not None and self.training:
|
175 |
+
attn_weights = None
|
176 |
+
# query_states = query_states.transpose(1, 2)
|
177 |
+
# key_states = key_states.transpose(1, 2)
|
178 |
+
# value_states = value_states.transpose(1, 2)
|
179 |
+
# attn_output = xops.memory_efficient_attention(
|
180 |
+
# query_states, key_states, value_states, attn_bias=attention_mask
|
181 |
+
# )
|
182 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
183 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
|
184 |
+
attn_output = attn_output.transpose(1, 2)
|
185 |
+
else:
|
186 |
+
attn_weights = torch.matmul(
|
187 |
+
query_states, key_states.transpose(2, 3)
|
188 |
+
) / math.sqrt(self.head_dim)
|
189 |
+
|
190 |
+
if attention_mask is not None:
|
191 |
+
if q_len == 1: # inference with cache
|
192 |
+
if len(attention_mask.size()) == 4:
|
193 |
+
attention_mask = attention_mask[:, :, -1:, :]
|
194 |
+
else:
|
195 |
+
attention_mask = attention_mask[:, -1:, :]
|
196 |
+
attn_weights = attn_weights + attention_mask
|
197 |
+
attn_weights = torch.max(
|
198 |
+
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
199 |
+
)
|
200 |
|
201 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
202 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
attn_output = attn_output.transpose(1, 2)
|
205 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
206 |
attn_output = self.o_proj(attn_output)
|
207 |
|
|
|
222 |
hidden_act=config.hidden_act,
|
223 |
)
|
224 |
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
225 |
+
self.post_attention_layernorm = RMSNorm(
|
226 |
+
config.hidden_size, epsilon=config.rms_norm_eps
|
227 |
+
)
|
228 |
|
229 |
def forward(
|
230 |
+
self,
|
231 |
+
hidden_states: torch.Tensor,
|
232 |
+
attention_mask: Optional[torch.Tensor] = None,
|
233 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
234 |
+
output_attentions: Optional[bool] = False,
|
235 |
+
use_cache: Optional[bool] = False,
|
236 |
+
) -> Tuple[
|
237 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
238 |
+
]:
|
239 |
residual = hidden_states
|
240 |
|
241 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
293 |
self.padding_idx = config.pad_token_id
|
294 |
self.vocab_size = config.vocab_size
|
295 |
self.n_head = config.num_attention_heads
|
296 |
+
self.embed_tokens = torch.nn.Embedding(
|
297 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
298 |
+
)
|
299 |
+
self.layers = torch.nn.ModuleList(
|
300 |
+
[BaichuanLayer(config) for _ in range(config.num_hidden_layers)]
|
301 |
+
)
|
302 |
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
303 |
|
304 |
self.gradient_checkpointing = config.gradient_checkpointing
|
|
|
316 |
def get_alibi_mask(self, tensor, seq_length_with_past):
|
317 |
if self.training:
|
318 |
slopes = torch.Tensor(_get_interleave(self.n_head))
|
319 |
+
position_point = (
|
320 |
+
torch.arange(seq_length_with_past) - seq_length_with_past + 1
|
321 |
+
)
|
322 |
+
position_point = (
|
323 |
+
position_point.unsqueeze(0)
|
324 |
+
.unsqueeze(0)
|
325 |
+
.expand(self.n_head, seq_length_with_past, -1)
|
326 |
+
)
|
327 |
+
diag = torch.diag(position_point[0])
|
328 |
+
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
|
329 |
+
-1, -2
|
330 |
+
)
|
331 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
|
332 |
+
mask = _buffered_future_mask(
|
333 |
+
tensor, seq_length_with_past, alibi, self.n_head
|
334 |
+
)
|
335 |
else:
|
336 |
if self.first_run:
|
337 |
self.first_run = False
|
338 |
+
self.register_buffer(
|
339 |
+
"future_mask",
|
340 |
+
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
|
341 |
+
tensor
|
342 |
+
),
|
343 |
+
persistent=False,
|
344 |
+
)
|
345 |
if seq_length_with_past > self.max_cache_pos:
|
346 |
self.max_cache_pos = seq_length_with_past
|
347 |
+
self.register_buffer(
|
348 |
+
"future_mask",
|
349 |
+
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
|
350 |
+
tensor
|
351 |
+
),
|
352 |
+
persistent=False,
|
353 |
+
)
|
354 |
+
mask = self.future_mask[
|
355 |
+
: self.n_head, :seq_length_with_past, :seq_length_with_past
|
356 |
+
]
|
357 |
return mask
|
358 |
|
359 |
def forward(
|
360 |
+
self,
|
361 |
+
input_ids: torch.LongTensor = None,
|
362 |
+
attention_mask: Optional[torch.Tensor] = None,
|
363 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
364 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
365 |
+
use_cache: Optional[bool] = False,
|
366 |
+
output_attentions: Optional[bool] = False,
|
367 |
+
output_hidden_states: Optional[bool] = False,
|
368 |
+
return_dict: Optional[bool] = True,
|
369 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
370 |
if input_ids is not None and inputs_embeds is not None:
|
371 |
+
raise ValueError(
|
372 |
+
"You cannot provide both input_ids and inputs_embeds simultaneously"
|
373 |
+
)
|
374 |
elif input_ids is not None:
|
375 |
batch_size, seq_length = input_ids.shape
|
376 |
elif inputs_embeds is not None:
|
|
|
378 |
else:
|
379 |
raise ValueError("You need to provide input_ids or inputs_embeds")
|
380 |
|
381 |
+
return_dict = (
|
382 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
383 |
+
)
|
384 |
|
385 |
seq_length_with_past = seq_length
|
386 |
|
|
|
392 |
inputs_embeds = self.embed_tokens(input_ids)
|
393 |
|
394 |
if self.training:
|
395 |
+
if (
|
396 |
+
self.alibi_mask is None
|
397 |
+
or self.alibi_mask.shape[-1] != seq_length_with_past
|
398 |
+
):
|
399 |
+
self.alibi_mask = self.get_alibi_mask(
|
400 |
+
inputs_embeds, seq_length_with_past
|
401 |
+
)
|
402 |
alibi_mask = self.alibi_mask
|
403 |
else:
|
404 |
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
|
|
406 |
if attention_mask is not None:
|
407 |
if len(attention_mask.shape) == 2:
|
408 |
expanded_mask = attention_mask.to(alibi_mask.dtype)
|
409 |
+
expanded_mask = torch.tril(
|
410 |
+
torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
|
411 |
+
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
|
412 |
else:
|
413 |
+
expanded_mask = attention_mask
|
414 |
bsz = inputs_embeds.size(0)
|
415 |
src_len, tgt_len = alibi_mask.size()[-2:]
|
416 |
+
expanded_mask = (
|
417 |
+
expanded_mask.unsqueeze(1)
|
418 |
+
.expand(bsz, 1, src_len, tgt_len)
|
419 |
+
.to(alibi_mask.dtype)
|
420 |
+
)
|
421 |
inverted_mask = 1.0 - expanded_mask
|
422 |
+
inverted_mask = inverted_mask.masked_fill(
|
423 |
+
inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min
|
424 |
+
)
|
425 |
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
|
426 |
else:
|
427 |
attention_mask = alibi_mask
|
|
|
444 |
if output_hidden_states:
|
445 |
all_hidden_states += (hidden_states,)
|
446 |
|
447 |
+
past_key_value = (
|
448 |
+
past_key_values[idx] if past_key_values is not None else None
|
449 |
+
)
|
450 |
|
451 |
if self.gradient_checkpointing and self.training:
|
452 |
|
|
|
488 |
|
489 |
next_cache = next_decoder_cache if use_cache else None
|
490 |
if not return_dict:
|
491 |
+
return tuple(
|
492 |
+
v
|
493 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
494 |
+
if v is not None
|
495 |
+
)
|
496 |
return BaseModelOutputWithPast(
|
497 |
last_hidden_state=hidden_states,
|
498 |
past_key_values=next_cache,
|
|
|
501 |
)
|
502 |
|
503 |
|
504 |
+
class NormHead(nn.Module):
|
505 |
+
def __init__(self, hidden_size, vocab_size, bias=False):
|
506 |
+
super().__init__()
|
507 |
+
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
|
508 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
509 |
+
self.first_flag = True
|
510 |
+
|
511 |
+
def forward(self, hidden_states):
|
512 |
+
if self.training:
|
513 |
+
norm_weight = nn.functional.normalize(self.weight)
|
514 |
+
self.first_flag = True
|
515 |
+
elif self.first_flag:
|
516 |
+
self.first_flag = False
|
517 |
+
self.weight.data = nn.functional.normalize(self.weight)
|
518 |
+
norm_weight = self.weight
|
519 |
+
else:
|
520 |
+
norm_weight = self.weight
|
521 |
+
return nn.functional.linear(hidden_states, norm_weight)
|
522 |
+
|
523 |
+
_init_weights = True
|
524 |
+
@contextmanager
|
525 |
+
def no_init_weights(_enable=True):
|
526 |
+
global _init_weights
|
527 |
+
old_init_weights = _init_weights
|
528 |
+
if _enable:
|
529 |
+
_init_weights = False
|
530 |
+
try:
|
531 |
+
yield
|
532 |
+
finally:
|
533 |
+
_init_weights = old_init_weights
|
534 |
+
|
535 |
+
|
536 |
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
537 |
+
def __init__(self, config, *model_args, **model_kwargs):
|
538 |
+
super().__init__(config, *model_args, **model_kwargs)
|
539 |
self.model = BaichuanModel(config)
|
540 |
+
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
|
541 |
+
#if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
|
542 |
+
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
|
543 |
+
try:
|
544 |
+
from .quantizer import quantize_offline, init_model_weight_int4
|
545 |
+
except ImportError:
|
546 |
+
raise ImportError(f"Needs quantize_offline to run quantize.")
|
547 |
+
quantize_offline(self, 4)
|
548 |
# Initialize weights and apply final processing
|
549 |
self.post_init()
|
550 |
|
|
|
565 |
|
566 |
def get_decoder(self):
|
567 |
return self.model
|
568 |
+
|
569 |
+
@classmethod
|
570 |
+
def from_pretrained(
|
571 |
+
cls,
|
572 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
573 |
+
*model_args,
|
574 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
575 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
576 |
+
ignore_mismatched_sizes: bool = False,
|
577 |
+
force_download: bool = False,
|
578 |
+
local_files_only: bool = False,
|
579 |
+
token: Optional[Union[str, bool]] = None,
|
580 |
+
revision: str = "main",
|
581 |
+
use_safetensors: bool = None,
|
582 |
+
**kwargs,
|
583 |
+
):
|
584 |
+
|
585 |
+
# Load config if we don't provide a configuration
|
586 |
+
if not isinstance(config, PretrainedConfig):
|
587 |
+
config_path = config if config is not None else pretrained_model_name_or_path
|
588 |
+
config, model_kwargs = cls.config_class.from_pretrained(
|
589 |
+
config_path,
|
590 |
+
cache_dir=cache_dir,
|
591 |
+
return_unused_kwargs=True,
|
592 |
+
force_download=force_download,
|
593 |
+
resume_download=False,
|
594 |
+
proxies=None,
|
595 |
+
local_files_only=local_files_only,
|
596 |
+
token=token,
|
597 |
+
revision=revision,
|
598 |
+
subfolder="",
|
599 |
+
_from_auto=False,
|
600 |
+
_from_pipeline=None,
|
601 |
+
**kwargs,
|
602 |
+
)
|
603 |
+
else:
|
604 |
+
model_kwargs = kwargs
|
605 |
+
|
606 |
+
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
|
607 |
+
try:
|
608 |
+
from .quantizer import init_model_weight_int4
|
609 |
+
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
|
610 |
+
from accelerate.utils import CustomDtype
|
611 |
+
from accelerate.utils import get_balanced_memory
|
612 |
+
except ImportError:
|
613 |
+
raise ImportError(f"Needs import model weight init func to run quantize.")
|
614 |
+
# Instantiate model.
|
615 |
+
init_contexts = [no_init_weights(_enable=True)]
|
616 |
+
init_contexts.append(init_empty_weights())
|
617 |
+
with ContextManagers(init_contexts):
|
618 |
+
model = cls(config)
|
619 |
+
|
620 |
+
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
|
621 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
622 |
+
model.is_quantized = True
|
623 |
+
|
624 |
+
device_map = kwargs.pop("device_map", None)
|
625 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
626 |
+
if device_map is not None:
|
627 |
+
kwargs = {"no_split_module_classes": model._no_split_modules}
|
628 |
+
target_dtype = CustomDtype.INT4
|
629 |
+
max_memory = get_balanced_memory(
|
630 |
+
model,
|
631 |
+
dtype=target_dtype,
|
632 |
+
low_zero=(device_map == "balanced_low_0"),
|
633 |
+
max_memory=None,
|
634 |
+
**kwargs,
|
635 |
+
)
|
636 |
+
kwargs["max_memory"] = max_memory
|
637 |
+
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
|
638 |
+
model = init_model_weight_int4(config, model, state_dict)
|
639 |
+
|
640 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
641 |
+
model.eval()
|
642 |
+
# If it is a model with generation capabilities, attempt to load the generation config
|
643 |
+
if model.can_generate():
|
644 |
+
try:
|
645 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
646 |
+
pretrained_model_name_or_path,
|
647 |
+
cache_dir=cache_dir,
|
648 |
+
force_download=force_download,
|
649 |
+
resume_download=False,
|
650 |
+
proxies=None,
|
651 |
+
local_files_only=local_files_only,
|
652 |
+
token=token,
|
653 |
+
revision=revision,
|
654 |
+
subfolder="",
|
655 |
+
_from_auto=False,
|
656 |
+
_from_pipeline=None,
|
657 |
+
**kwargs,
|
658 |
+
)
|
659 |
+
except (OSError, TypeError):
|
660 |
+
logger.info(
|
661 |
+
"Generation config file not found, using a generation config created from the model config."
|
662 |
+
)
|
663 |
+
pass
|
664 |
+
|
665 |
+
if device_map is not None:
|
666 |
+
dispatch_model(model, device_map=device_map)
|
667 |
+
|
668 |
+
return model
|
669 |
+
|
670 |
+
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
|
671 |
+
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
|
672 |
+
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
|
673 |
+
use_safetensors=use_safetensors, **kwargs)
|
674 |
|
675 |
def forward(
|
676 |
+
self,
|
677 |
+
input_ids: torch.LongTensor = None,
|
678 |
+
attention_mask: Optional[torch.Tensor] = None,
|
679 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
680 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
681 |
+
labels: Optional[torch.LongTensor] = None,
|
682 |
+
use_cache: Optional[bool] = None,
|
683 |
+
output_attentions: Optional[bool] = False,
|
684 |
+
output_hidden_states: Optional[bool] = False,
|
685 |
+
return_dict: Optional[bool] = True,
|
686 |
+
**kwargs,
|
687 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
688 |
+
return_dict = (
|
689 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
690 |
+
)
|
691 |
|
|
|
|
|
692 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
693 |
outputs = self.model(
|
694 |
input_ids=input_ids,
|
|
|
703 |
|
704 |
hidden_states = outputs[0]
|
705 |
logits = self.lm_head(hidden_states)
|
|
|
706 |
loss = None
|
707 |
if labels is not None:
|
708 |
# Shift so that tokens < n predict n
|
|
|
712 |
loss_fct = CrossEntropyLoss()
|
713 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
714 |
shift_labels = shift_labels.view(-1)
|
715 |
+
softmax_normalizer = shift_logits.max(-1).values ** 2
|
716 |
+
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
|
717 |
# Enable model parallelism
|
718 |
shift_labels = shift_labels.to(shift_logits.device)
|
719 |
+
loss = loss_fct(shift_logits, shift_labels) + z_loss
|
720 |
|
721 |
if not return_dict:
|
722 |
output = (logits,) + outputs[1:]
|
|
|
730 |
attentions=outputs.attentions,
|
731 |
)
|
732 |
|
733 |
+
def quantize(self, bits: int):
|
734 |
+
try:
|
735 |
+
from .quantizer import quantize_online
|
736 |
+
except ImportError:
|
737 |
+
raise ImportError(f"Needs QLinear to run quantize.")
|
738 |
+
return quantize_online(self, bits)
|
739 |
+
|
740 |
def prepare_inputs_for_generation(
|
741 |
+
self,
|
742 |
+
input_ids: torch.LongTensor,
|
743 |
+
past_key_values: Optional[torch.Tensor] = None,
|
744 |
+
attention_mask: Optional[torch.Tensor] = None,
|
745 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
746 |
+
**kwargs,
|
747 |
):
|
748 |
if past_key_values:
|
749 |
input_ids = input_ids[:, -1:]
|
|
|
758 |
{
|
759 |
"past_key_values": past_key_values,
|
760 |
"use_cache": kwargs.get("use_cache"),
|
761 |
+
"attention_mask": attention_mask,
|
762 |
}
|
763 |
)
|
764 |
return model_inputs
|
|
|
770 |
for layer_past in past_key_values
|
771 |
)
|
772 |
|
773 |
+
def _build_chat_input(
|
774 |
+
self, tokenizer, messages: List[dict], max_new_tokens: int = 0
|
775 |
+
):
|
776 |
+
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
|
777 |
+
max_input_tokens = self.config.model_max_length - max_new_tokens
|
778 |
+
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
|
779 |
+
total_input, round_input = [], []
|
780 |
+
for i, message in enumerate(messages[::-1]):
|
781 |
+
content_tokens = tokenizer.encode(message["content"])
|
782 |
+
if message["role"] == "user":
|
783 |
+
round_input = (
|
784 |
+
[self.generation_config.user_token_id]
|
785 |
+
+ content_tokens
|
786 |
+
+ round_input
|
787 |
+
)
|
788 |
+
if (
|
789 |
+
total_input
|
790 |
+
and len(total_input) + len(round_input) > max_input_tokens
|
791 |
+
):
|
792 |
+
break
|
793 |
+
else:
|
794 |
+
total_input = round_input + total_input
|
795 |
+
if len(total_input) >= max_input_tokens:
|
796 |
+
break
|
797 |
+
else:
|
798 |
+
round_input = []
|
799 |
+
elif message["role"] == "assistant":
|
800 |
+
round_input = (
|
801 |
+
[self.generation_config.assistant_token_id]
|
802 |
+
+ content_tokens
|
803 |
+
+ [self.generation_config.eos_token_id]
|
804 |
+
+ round_input
|
805 |
+
)
|
806 |
+
else:
|
807 |
+
raise ValueError(f"message role not supported yet: {message['role']}")
|
808 |
+
total_input = total_input[-max_input_tokens:] # truncate left
|
809 |
+
total_input.append(self.generation_config.assistant_token_id)
|
810 |
+
total_input = torch.LongTensor([total_input]).to(self.device)
|
811 |
+
return total_input
|
812 |
|
|
|
813 |
def chat(self, tokenizer, messages: List[dict], stream=False,
|
814 |
generation_config: Optional[GenerationConfig]=None):
|
815 |
generation_config = generation_config or self.generation_config
|
pytorch_model.bin.index.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
-
"total_size":
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
@@ -40,20 +40,20 @@
|
|
40 |
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
"model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-
|
44 |
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
-
"model.layers.13.mlp.up_proj.weight": "pytorch_model-
|
47 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-
|
48 |
"model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
-
"model.layers.14.mlp.down_proj.weight": "pytorch_model-
|
52 |
-
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-
|
53 |
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
-
"model.layers.14.self_attn.W_pack.weight": "pytorch_model-
|
56 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-
|
57 |
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
@@ -159,11 +159,11 @@
|
|
159 |
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
"model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-
|
163 |
-
"model.layers.29.mlp.down_proj.weight": "pytorch_model-
|
164 |
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
-
"model.layers.29.mlp.up_proj.weight": "pytorch_model-
|
166 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-
|
167 |
"model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
@@ -175,11 +175,11 @@
|
|
175 |
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
176 |
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
177 |
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
178 |
-
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-
|
179 |
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
-
"model.layers.30.self_attn.W_pack.weight": "pytorch_model-
|
182 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-
|
183 |
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
+
"total_size": 27793336320
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
|
|
40 |
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
"model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
44 |
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
47 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
48 |
"model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.14.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
57 |
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
|
|
159 |
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
"model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
163 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
164 |
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
166 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
167 |
"model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
|
|
175 |
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
176 |
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
177 |
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
178 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
179 |
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.30.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
182 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
183 |
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
quantizer.py
CHANGED
@@ -1,123 +1,211 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
setattr(self, name, KernelFunction(self._cmodule, name))
|
22 |
-
quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
|
23 |
-
kernels = Kernel(
|
24 |
-
bz2.decompress(base64.b64decode(quantization_code)),
|
25 |
-
[
|
26 |
-
"int4_to_fp16",
|
27 |
-
"fp16_to_int4",
|
28 |
-
"int8_to_fp16",
|
29 |
-
"fp16_to_int8",
|
30 |
-
"int4_to_bf16",
|
31 |
-
"bf16_to_int4",
|
32 |
-
"int8_to_bf16",
|
33 |
-
"bf16_to_int8",
|
34 |
-
],
|
35 |
-
)
|
36 |
-
except Exception as exception:
|
37 |
-
kernels = None
|
38 |
-
logger.warning("Failed to load kernels:" + str(exception))
|
39 |
-
|
40 |
-
def quant4(weight: torch.Tensor, scale: torch.Tensor):
|
41 |
-
stream = torch.cuda.current_stream()
|
42 |
-
num_row = weight.size(0)
|
43 |
-
num_chan_fp16 = weight.size(1)
|
44 |
-
# 4bit
|
45 |
-
num_chan_int = num_chan_fp16 // 8
|
46 |
-
qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
|
47 |
-
intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
|
48 |
-
intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
|
49 |
-
|
50 |
-
for j in range(num_chan_int):
|
51 |
-
qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
|
52 |
-
| ((intweight[:, j*8+6] & 0x0f) << 24) \
|
53 |
-
| ((intweight[:, j*8+5] & 0x0f) << 20) \
|
54 |
-
| ((intweight[:, j*8+4] & 0x0f) << 16) \
|
55 |
-
| ((intweight[:, j*8+3] & 0x0f) << 12) \
|
56 |
-
| ((intweight[:, j*8+2] & 0x0f) << 8) \
|
57 |
-
| ((intweight[:, j*8+1] & 0x0f) << 4) \
|
58 |
-
| ((intweight[:, j*8] & 0x0f))
|
59 |
-
return qweight
|
60 |
-
|
61 |
-
def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
|
62 |
-
stream = torch.cuda.current_stream()
|
63 |
-
num_row = qweight.size(0)
|
64 |
-
num_chan_int = qweight.size(1)
|
65 |
-
# 4bit
|
66 |
-
num_chan_fp16 = num_chan_int * 8
|
67 |
-
|
68 |
-
out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
|
69 |
-
|
70 |
-
blockDim = (128, 1, 1)
|
71 |
-
gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
|
72 |
-
if input.dtype == torch.bfloat16:
|
73 |
-
kernels.int4_to_bf16(
|
74 |
-
gridDim,
|
75 |
-
blockDim,
|
76 |
-
0,
|
77 |
-
stream,
|
78 |
-
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
79 |
-
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
80 |
)
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
-
return out
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
super().__init__()
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
self.
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bitsandbytes as bnb
|
2 |
+
from accelerate import init_empty_weights
|
3 |
+
from bitsandbytes.nn.modules import Params4bit, Int8Params
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def Params4bitCuda(self, device):
|
7 |
+
self.data = self.data.cuda(device)
|
8 |
+
self.quant_state[0] = self.quant_state[0].cuda(device)
|
9 |
+
self.quant_state[4][0] = self.quant_state[4][0].cuda(device)
|
10 |
+
self.quant_state[4][1][0] = self.quant_state[4][1][0].cuda(device)
|
11 |
+
self.quant_state[4][1][1] = self.quant_state[4][1][1].cuda(device)
|
12 |
+
|
13 |
+
self.quant_state[6] = self.quant_state[6].cuda(device)
|
14 |
+
return self
|
15 |
+
|
16 |
+
class Linear4bitOnline(torch.nn.Module):
|
17 |
+
def __init__(self, weight, bias, quant_type):
|
18 |
+
super().__init__()
|
19 |
+
self.weight = Params4bit(
|
20 |
+
weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
+
self.compute_dtype = None
|
23 |
+
#self.weight.cuda(weight.device)
|
24 |
+
self.bias = bias
|
25 |
+
|
26 |
+
def forward(self, x: torch.Tensor):
|
27 |
+
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
28 |
+
if self.bias is not None and self.bias.dtype != x.dtype:
|
29 |
+
self.bias.data = self.bias.data.to(x.dtype)
|
30 |
+
|
31 |
+
if getattr(self.weight, "quant_state", None) is None:
|
32 |
+
print(
|
33 |
+
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
|
34 |
+
)
|
35 |
+
inp_dtype = x.dtype
|
36 |
+
if self.compute_dtype is not None:
|
37 |
+
x = x.to(self.compute_dtype)
|
38 |
+
|
39 |
+
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
|
40 |
+
out = bnb.matmul_4bit(
|
41 |
+
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
|
42 |
)
|
|
|
43 |
|
44 |
+
out = out.to(inp_dtype)
|
45 |
+
|
46 |
+
return out
|
47 |
+
|
48 |
+
class Linear8bitLtOnline(torch.nn.Module):
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
weight,
|
52 |
+
bias,
|
53 |
+
has_fp16_weights=True,
|
54 |
+
memory_efficient_backward=False,
|
55 |
+
threshold=0.0,
|
56 |
+
index=None,
|
57 |
+
):
|
58 |
super().__init__()
|
59 |
+
assert (
|
60 |
+
not memory_efficient_backward
|
61 |
+
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
62 |
+
self.state = bnb.MatmulLtState()
|
63 |
+
self.index = index
|
64 |
+
|
65 |
+
# Necessary for stacked layers
|
66 |
+
self.state.threshold = threshold
|
67 |
+
self.state.has_fp16_weights = has_fp16_weights
|
68 |
+
self.state.memory_efficient_backward = memory_efficient_backward
|
69 |
+
if threshold > 0.0 and not has_fp16_weights:
|
70 |
+
self.state.use_pool = True
|
71 |
+
|
72 |
+
self.weight = Int8Params(
|
73 |
+
weight.data,
|
74 |
+
has_fp16_weights=has_fp16_weights,
|
75 |
+
requires_grad=has_fp16_weights,
|
76 |
+
)
|
77 |
+
self.bias = bias
|
78 |
+
|
79 |
+
def init_8bit_state(self):
|
80 |
+
self.state.CB = self.weight.CB
|
81 |
+
self.state.SCB = self.weight.SCB
|
82 |
+
self.weight.CB = None
|
83 |
+
self.weight.SCB = None
|
84 |
+
|
85 |
+
def forward(self, x: torch.Tensor):
|
86 |
+
self.state.is_training = self.training
|
87 |
+
if self.weight.CB is not None:
|
88 |
+
self.init_8bit_state()
|
89 |
+
|
90 |
+
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
91 |
+
if self.bias is not None and self.bias.dtype != x.dtype:
|
92 |
+
self.bias.data = self.bias.data.to(x.dtype)
|
93 |
|
94 |
+
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
95 |
+
|
96 |
+
if not self.state.has_fp16_weights:
|
97 |
+
if self.state.CB is not None and self.state.CxB is not None:
|
98 |
+
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
99 |
+
# we no longer need the row-major weight
|
100 |
+
del self.state.CB
|
101 |
+
self.weight.data = self.state.CxB
|
102 |
+
return out
|
103 |
+
|
104 |
+
def quantize_offline(model, bits: int):
|
105 |
+
assert (bits == 4), f'bits: {bits} is not supported'
|
106 |
+
|
107 |
+
for i, layer in enumerate(model.model.layers):
|
108 |
+
layer.self_attn.W_pack = bnb.nn.Linear4bit(
|
109 |
+
layer.self_attn.W_pack.weight.shape[1],
|
110 |
+
layer.self_attn.W_pack.weight.shape[0],
|
111 |
+
False,
|
112 |
+
torch.float16,
|
113 |
+
compress_statistics=True,
|
114 |
+
quant_type="nf4",
|
115 |
+
)
|
116 |
+
layer.self_attn.o_proj = bnb.nn.Linear4bit(
|
117 |
+
layer.self_attn.o_proj.weight.shape[1],
|
118 |
+
layer.self_attn.o_proj.weight.shape[0],
|
119 |
+
False,
|
120 |
+
torch.float16,
|
121 |
+
compress_statistics=True,
|
122 |
+
quant_type="nf4",
|
123 |
+
)
|
124 |
+
|
125 |
+
layer.mlp.gate_proj = bnb.nn.Linear4bit(
|
126 |
+
layer.mlp.gate_proj.weight.shape[1],
|
127 |
+
layer.mlp.gate_proj.weight.shape[0],
|
128 |
+
False,
|
129 |
+
torch.float16,
|
130 |
+
compress_statistics=True,
|
131 |
+
quant_type="nf4",
|
132 |
+
)
|
133 |
+
layer.mlp.down_proj = bnb.nn.Linear4bit(
|
134 |
+
layer.mlp.down_proj.weight.shape[1],
|
135 |
+
layer.mlp.down_proj.weight.shape[0],
|
136 |
+
False,
|
137 |
+
torch.float16,
|
138 |
+
compress_statistics=True,
|
139 |
+
quant_type="nf4",
|
140 |
+
)
|
141 |
+
layer.mlp.up_proj = bnb.nn.Linear4bit(
|
142 |
+
layer.mlp.up_proj.weight.shape[1],
|
143 |
+
layer.mlp.up_proj.weight.shape[0],
|
144 |
+
False,
|
145 |
+
torch.float16,
|
146 |
+
compress_statistics=True,
|
147 |
+
quant_type="nf4",
|
148 |
+
)
|
149 |
+
return model
|
150 |
+
|
151 |
+
def quantize_online(model, bits: int):
|
152 |
+
def quant(weight, bias=None):
|
153 |
+
if bits == 8:
|
154 |
+
linear = Linear8bitLtOnline(
|
155 |
+
weight,
|
156 |
+
bias,
|
157 |
+
has_fp16_weights=False,
|
158 |
+
threshold=6.0,
|
159 |
+
)
|
160 |
+
if bias is not None:
|
161 |
+
linear.bias = torch.nn.Parameter(bias)
|
162 |
+
elif bits == 4:
|
163 |
+
linear = Linear4bitOnline(
|
164 |
+
weight,
|
165 |
+
bias,
|
166 |
+
quant_type="nf4", #fp4/nf4
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
raise ValueError("quantize only support 4/8 bit")
|
170 |
+
return linear
|
171 |
+
|
172 |
+
for i, layer in enumerate(model.model.layers):
|
173 |
+
layer.self_attn.W_pack = quant(layer.self_attn.W_pack.weight)
|
174 |
+
layer.self_attn.o_proj = quant(layer.self_attn.o_proj.weight)
|
175 |
+
layer.mlp.gate_proj = quant(layer.mlp.gate_proj.weight)
|
176 |
+
layer.mlp.down_proj = quant(layer.mlp.down_proj.weight)
|
177 |
+
layer.mlp.up_proj = quant(layer.mlp.up_proj.weight)
|
178 |
+
return model
|
179 |
+
|
180 |
+
def init_model_weight_int4(config, model, state_dict):
|
181 |
+
#replace Params4bit.cuda with Params4bitCuda
|
182 |
+
Params4bit.cuda = Params4bitCuda
|
183 |
+
|
184 |
+
for i in range(config.num_hidden_layers):
|
185 |
+
weight_data = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.data']
|
186 |
+
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.quant_state']
|
187 |
+
model.model.layers[i].self_attn.W_pack.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
188 |
+
|
189 |
+
weight_data = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.data']
|
190 |
+
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.quant_state']
|
191 |
+
model.model.layers[i].self_attn.o_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
192 |
+
|
193 |
+
weight_data = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.data']
|
194 |
+
weight_quant_state = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.quant_state']
|
195 |
+
model.model.layers[i].mlp.gate_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
196 |
+
|
197 |
+
weight_data = state_dict[f'model.layers.{i}.mlp.up_proj.weight.data']
|
198 |
+
weight_quant_state = state_dict[f'model.layers.{i}.mlp.up_proj.weight.quant_state']
|
199 |
+
model.model.layers[i].mlp.up_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
200 |
+
|
201 |
+
weight_data = state_dict[f'model.layers.{i}.mlp.down_proj.weight.data']
|
202 |
+
weight_quant_state = state_dict[f'model.layers.{i}.mlp.down_proj.weight.quant_state']
|
203 |
+
model.model.layers[i].mlp.down_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
204 |
+
|
205 |
+
model.model.layers[i].input_layernorm.weight = state_dict[f'model.layers.{i}.input_layernorm.weight']
|
206 |
+
model.model.layers[i].post_attention_layernorm.weight = state_dict[f'model.layers.{i}.post_attention_layernorm.weight']
|
207 |
+
|
208 |
+
model.model.embed_tokens.weight = state_dict['model.embed_tokens.weight']
|
209 |
+
model.model.norm.weight = state_dict['model.norm.weight']
|
210 |
+
model.lm_head.weight = state_dict['lm_head.weight']
|
211 |
+
return model
|
tokenization_baichuan.py
CHANGED
@@ -48,10 +48,26 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
48 |
**kwargs,
|
49 |
):
|
50 |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
-
bos_token =
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
super().__init__(
|
56 |
bos_token=bos_token,
|
57 |
eos_token=eos_token,
|
@@ -122,7 +138,9 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
122 |
out_string += self.sp_model.decode(current_sub_tokens)
|
123 |
return out_string
|
124 |
|
125 |
-
def save_vocabulary(
|
|
|
|
|
126 |
"""
|
127 |
Save the vocabulary and special tokens file to a directory.
|
128 |
|
@@ -137,10 +155,14 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
137 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
138 |
return
|
139 |
out_vocab_file = os.path.join(
|
140 |
-
save_directory,
|
|
|
|
|
141 |
)
|
142 |
|
143 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
|
|
|
|
144 |
copyfile(self.vocab_file, out_vocab_file)
|
145 |
elif not os.path.isfile(self.vocab_file):
|
146 |
with open(out_vocab_file, "wb") as fi:
|
@@ -161,7 +183,10 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
161 |
return output
|
162 |
|
163 |
def get_special_tokens_mask(
|
164 |
-
self,
|
|
|
|
|
|
|
165 |
) -> List[int]:
|
166 |
"""
|
167 |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
@@ -180,7 +205,9 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
180 |
"""
|
181 |
if already_has_special_tokens:
|
182 |
return super().get_special_tokens_mask(
|
183 |
-
token_ids_0=token_ids_0,
|
|
|
|
|
184 |
)
|
185 |
|
186 |
bos_token_id = [1] if self.add_bos_token else []
|
@@ -229,4 +256,3 @@ class BaichuanTokenizer(PreTrainedTokenizer):
|
|
229 |
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
230 |
|
231 |
return output
|
232 |
-
|
|
|
48 |
**kwargs,
|
49 |
):
|
50 |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = (
|
52 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
53 |
+
if isinstance(bos_token, str)
|
54 |
+
else bos_token
|
55 |
+
)
|
56 |
+
eos_token = (
|
57 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
58 |
+
if isinstance(eos_token, str)
|
59 |
+
else eos_token
|
60 |
+
)
|
61 |
+
unk_token = (
|
62 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
63 |
+
if isinstance(unk_token, str)
|
64 |
+
else unk_token
|
65 |
+
)
|
66 |
+
pad_token = (
|
67 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
68 |
+
if isinstance(pad_token, str)
|
69 |
+
else pad_token
|
70 |
+
)
|
71 |
super().__init__(
|
72 |
bos_token=bos_token,
|
73 |
eos_token=eos_token,
|
|
|
138 |
out_string += self.sp_model.decode(current_sub_tokens)
|
139 |
return out_string
|
140 |
|
141 |
+
def save_vocabulary(
|
142 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
143 |
+
) -> Tuple[str]:
|
144 |
"""
|
145 |
Save the vocabulary and special tokens file to a directory.
|
146 |
|
|
|
155 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
156 |
return
|
157 |
out_vocab_file = os.path.join(
|
158 |
+
save_directory,
|
159 |
+
(filename_prefix + "-" if filename_prefix else "")
|
160 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
161 |
)
|
162 |
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
164 |
+
out_vocab_file
|
165 |
+
) and os.path.isfile(self.vocab_file):
|
166 |
copyfile(self.vocab_file, out_vocab_file)
|
167 |
elif not os.path.isfile(self.vocab_file):
|
168 |
with open(out_vocab_file, "wb") as fi:
|
|
|
183 |
return output
|
184 |
|
185 |
def get_special_tokens_mask(
|
186 |
+
self,
|
187 |
+
token_ids_0: List[int],
|
188 |
+
token_ids_1: Optional[List[int]] = None,
|
189 |
+
already_has_special_tokens: bool = False,
|
190 |
) -> List[int]:
|
191 |
"""
|
192 |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
|
205 |
"""
|
206 |
if already_has_special_tokens:
|
207 |
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0,
|
209 |
+
token_ids_1=token_ids_1,
|
210 |
+
already_has_special_tokens=True,
|
211 |
)
|
212 |
|
213 |
bos_token_id = [1] if self.add_bos_token else []
|
|
|
256 |
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
257 |
|
258 |
return output
|
|
tokenizer.model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|