--- license: apache-2.0 library_name: peft tags: - pytorch - llama-2 pipeline_tag: text-generation base_model: meta-llama/Llama-2-7b-chat-hf --- This model is fine-tuned on [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) using [MedQuAD](https://github.com/abachaa/MedQuAD) (Medical Question Answering Dataset). If you are interested how to fine-tune Llama-2 or other LLM models, the [repo](https://github.com/yhyu/fine-tune-llm) will tell you. ## Usage ```python base_model = "meta-llama/Llama-2-7b-chat-hf" adapter = 'EdwardYu/llama-2-7b-MedQuAD' tokenizer = AutoTokenizer.from_pretrained(adapter) model = AutoModelForCausalLM.from_pretrained( base_model, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) model = PeftModel.from_pretrained(model, adapter) question = 'What are the side effects or risks of Glucagon?' inputs = tokenizer(question, return_tensors="pt").to("cuda") outputs = model.generate(inputs=inputs.input_ids, max_length=1024) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` To run model inference faster, you can load in 16-bits without 4-bit quantization. ```python model = AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.bfloat16, device_map="auto", ) model = PeftModel.from_pretrained(model, adapter) ```