|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel |
|
|
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": "identity"} |
|
|
|
|
|
class SimpleResBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.pre_norm = nn.LayerNorm(channels) |
|
|
|
self.proj = nn.Sequential(nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)) |
|
|
|
def forward(self, x): |
|
x = self.pre_norm(x) |
|
return x + self.proj(x) |
|
|
|
|
|
class DownSampleBlock(nn.Module): |
|
def forward(self, x): |
|
vit_embeds = x |
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = self.flat_square(vit_embeds) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
return vit_embeds |
|
|
|
def flat_square(self, x): |
|
n, w, h, c = x.size() |
|
if w % 2 == 1: |
|
x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous() |
|
n, w, h, c = x.size() |
|
if h % 2 == 1: |
|
x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous() |
|
n, w, h, c = x.size() |
|
x = x.contiguous() |
|
x = x.view(n, w, int(h / 2), int(c * 2)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
x = x.view(n, int(h / 2), int(w / 2), int(c * 4)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
|
|
class DownSample2x2BlockFix(nn.Module): |
|
def forward(self, x): |
|
vit_embeds = x |
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = flat_square_2x2(vit_embeds) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
return vit_embeds |
|
|
|
|
|
def flat_square_2x2(x): |
|
n, w, h, c = x.size() |
|
if w % 2 == 1: |
|
x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous() |
|
n, w, h, c = x.size() |
|
x = x.contiguous() |
|
if h % 2 == 1: |
|
x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous() |
|
n, w, h, c = x.size() |
|
x = x.view(n, w, int(h / 2), int(c * 2)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
x = x.view(n, int(h / 2), int(w / 2), int(c * 4)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
|
|
class DownSample3x3BlockFix(nn.Module): |
|
def forward(self, x): |
|
vit_embeds = x |
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = flat_square_3x3(vit_embeds) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
return vit_embeds |
|
|
|
|
|
def flat_square_3x3(x): |
|
n, w, h, c = x.size() |
|
if w % 3 != 0: |
|
x = torch.concat([x, torch.zeros((n, 3 - (w % 3), h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous() |
|
n, w, h, c = x.size() |
|
x = x.contiguous() |
|
if h % 3 != 0: |
|
x = torch.concat([x, torch.zeros((n, w, 3 - (h % 3), c), dtype=x.dtype).to(x.device)], dim=2).contiguous() |
|
n, w, h, c = x.size() |
|
x = x.view(n, w, int(h / 3), int(c * 3)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
x = x.view(n, int(h / 3), int(w / 3), int(c * 9)) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
|
|
class MultimodalProjectorConfig(PretrainedConfig): |
|
model_type = "v2l_projector" |
|
|
|
def __init__(self, mm_projector_type: str = None, **kwargs): |
|
super().__init__() |
|
self.mm_projector_type = mm_projector_type |
|
|
|
|
|
class MultimodalProjector(PreTrainedModel): |
|
config_class = MultimodalProjectorConfig |
|
|
|
def __init__(self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig): |
|
super().__init__(mm_projector_cfg) |
|
mm_projector_type = mm_projector_cfg.mm_projector_type |
|
self.downsample_rate = 1 |
|
if mm_projector_type == "identity": |
|
self.layers = IdentityMap() |
|
elif mm_projector_type == "linear": |
|
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
elif mm_projector_type == "mlp_downsample": |
|
self.layers = nn.Sequential( |
|
DownSampleBlock(), |
|
nn.LayerNorm(config.mm_hidden_size * 4), |
|
nn.Linear(config.mm_hidden_size * 4, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
) |
|
self.downsample_rate = 2 |
|
elif mm_projector_type == "mlp_downsample_2x2_fix": |
|
self.layers = nn.Sequential( |
|
DownSample2x2BlockFix(), |
|
nn.LayerNorm(config.mm_hidden_size * 4), |
|
nn.Linear(config.mm_hidden_size * 4, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
) |
|
self.downsample_rate = 2 |
|
elif mm_projector_type == "mlp_downsample_3x3_fix": |
|
self.layers = nn.Sequential( |
|
DownSample3x3BlockFix(), |
|
nn.LayerNorm(config.mm_hidden_size * 9), |
|
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size * 3), |
|
nn.Linear(config.mm_hidden_size * 3, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
) |
|
self.downsample_rate = 3 |
|
elif mm_projector_type == "mlp_downsample_3x3_s2": |
|
self.layers = nn.Sequential( |
|
DownSample3x3BlockFix(), |
|
nn.LayerNorm(config.mm_hidden_size * 9), |
|
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size * 3), |
|
nn.Linear(config.mm_hidden_size * 3, config.mm_hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size), |
|
nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size // 3), |
|
nn.Linear(config.mm_hidden_size // 3, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
) |
|
elif mm_projector_type == "mlp_downsample_3x3_s2_new": |
|
self.layers = nn.Sequential( |
|
DownSample3x3BlockFix(), |
|
nn.LayerNorm(config.mm_hidden_size * 9), |
|
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 4), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size * 4), |
|
nn.Linear(config.mm_hidden_size * 4, config.mm_hidden_size * 2), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size * 2), |
|
nn.Linear(config.mm_hidden_size * 2, config.mm_hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size), |
|
nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3), |
|
nn.GELU(), |
|
nn.LayerNorm(config.mm_hidden_size // 3), |
|
nn.Linear(config.mm_hidden_size // 3, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
) |
|
else: |
|
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
self.layers = nn.Sequential(*modules) |
|
else: |
|
raise ValueError(f"Unknown projector type: {mm_projector_type}") |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return self.layers(x) |
|
|
|
|
|
|
|
|
|
|