NVILA-Lite-8B-hf-preview / base_projector.py
Ligeng-Zhu's picture
Upload files with `vila-upload`.
d8c0285 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import re
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": "identity"}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels))
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
class DownSampleBlock(nn.Module):
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.flat_square(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square(self, x):
n, w, h, c = x.size()
if w % 2 == 1:
x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
n, w, h, c = x.size()
if h % 2 == 1:
x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
n, w, h, c = x.size()
x = x.contiguous()
x = x.view(n, w, int(h / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
x = x.permute(0, 2, 1, 3).contiguous()
return x
class DownSample2x2BlockFix(nn.Module):
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = flat_square_2x2(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square_2x2(x):
n, w, h, c = x.size()
if w % 2 == 1:
x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
n, w, h, c = x.size()
x = x.contiguous()
if h % 2 == 1:
x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
n, w, h, c = x.size()
x = x.view(n, w, int(h / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
x = x.permute(0, 2, 1, 3).contiguous()
return x
class DownSample3x3BlockFix(nn.Module):
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = flat_square_3x3(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square_3x3(x):
n, w, h, c = x.size()
if w % 3 != 0:
x = torch.concat([x, torch.zeros((n, 3 - (w % 3), h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
n, w, h, c = x.size()
x = x.contiguous()
if h % 3 != 0:
x = torch.concat([x, torch.zeros((n, w, 3 - (h % 3), c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
n, w, h, c = x.size()
x = x.view(n, w, int(h / 3), int(c * 3))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 3), int(w / 3), int(c * 9))
x = x.permute(0, 2, 1, 3).contiguous()
return x
class MultimodalProjectorConfig(PretrainedConfig):
model_type = "v2l_projector"
def __init__(self, mm_projector_type: str = None, **kwargs):
super().__init__()
self.mm_projector_type = mm_projector_type
class MultimodalProjector(PreTrainedModel):
config_class = MultimodalProjectorConfig
def __init__(self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig):
super().__init__(mm_projector_cfg)
mm_projector_type = mm_projector_cfg.mm_projector_type
self.downsample_rate = 1
if mm_projector_type == "identity":
self.layers = IdentityMap()
elif mm_projector_type == "linear":
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
elif mm_projector_type == "mlp_downsample":
self.layers = nn.Sequential(
DownSampleBlock(),
nn.LayerNorm(config.mm_hidden_size * 4),
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
self.downsample_rate = 2
elif mm_projector_type == "mlp_downsample_2x2_fix":
self.layers = nn.Sequential(
DownSample2x2BlockFix(),
nn.LayerNorm(config.mm_hidden_size * 4),
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
self.downsample_rate = 2
elif mm_projector_type == "mlp_downsample_3x3_fix":
self.layers = nn.Sequential(
DownSample3x3BlockFix(),
nn.LayerNorm(config.mm_hidden_size * 9),
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size * 3),
nn.Linear(config.mm_hidden_size * 3, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
self.downsample_rate = 3
elif mm_projector_type == "mlp_downsample_3x3_s2":
self.layers = nn.Sequential(
DownSample3x3BlockFix(),
nn.LayerNorm(config.mm_hidden_size * 9),
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size * 3),
nn.Linear(config.mm_hidden_size * 3, config.mm_hidden_size),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size),
nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size // 3),
nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
elif mm_projector_type == "mlp_downsample_3x3_s2_new":
self.layers = nn.Sequential(
DownSample3x3BlockFix(),
nn.LayerNorm(config.mm_hidden_size * 9),
nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 4),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size * 4),
nn.Linear(config.mm_hidden_size * 4, config.mm_hidden_size * 2),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size * 2),
nn.Linear(config.mm_hidden_size * 2, config.mm_hidden_size),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size),
nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
nn.GELU(),
nn.LayerNorm(config.mm_hidden_size // 3),
nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size),
)
else:
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
self.layers = nn.Sequential(*modules)
else:
raise ValueError(f"Unknown projector type: {mm_projector_type}")
def forward(self, x, *args, **kwargs):
return self.layers(x)
# AutoConfig.register("v2l_projector", MultimodalProjectorConfig)
# AutoModel.register(MultimodalProjectorConfig, MultimodalProjector)