|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import base64 |
|
import os |
|
import tempfile |
|
from io import BytesIO |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import StoppingCriteria |
|
|
|
from llava.constants import DEFAULT_IMAGE_TOKEN |
|
|
|
|
|
def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None): |
|
import cv2 |
|
|
|
if fps == None or frame_count == None: |
|
|
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
if fps == 0 or frame_count == 0: |
|
print(f"Video file not found. return empty images. {video_file_name}") |
|
return [ |
|
Image.new("RGB", (720, 720)), |
|
] * num_frames, 0 |
|
|
|
duration = frame_count / fps |
|
frame_interval = frame_count // num_frames |
|
if frame_interval == 0 and frame_count <= 1: |
|
print(f"frame_interval is equal to 0. return empty image. {video_file_name}") |
|
return [ |
|
Image.new("RGB", (720, 720)), |
|
] * num_frames, 0 |
|
|
|
|
|
images = [] |
|
count = 0 |
|
success = True |
|
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int) |
|
while success: |
|
|
|
if frame_count >= num_frames: |
|
success, frame = vidcap.read() |
|
if count in frame_indices: |
|
try: |
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
im_pil = Image.fromarray(img) |
|
images.append(im_pil) |
|
except BaseException: |
|
continue |
|
if len(images) >= num_frames: |
|
return images, num_frames |
|
count += 1 |
|
else: |
|
|
|
success, frame = vidcap.read() |
|
if success: |
|
try: |
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
im_pil = Image.fromarray(img) |
|
images.append(im_pil) |
|
except BaseException: |
|
continue |
|
count += 1 |
|
else: |
|
break |
|
if len(images) == 0: |
|
raise ValueError("Did not find enough frames in the video. return empty image.") |
|
|
|
return images, len(images) |
|
|
|
|
|
def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None): |
|
""" |
|
num_frames is the max number of frames the model can support. |
|
frame_count is the number of frames in the input video. |
|
max_fps is the max FPS of the model can support. |
|
fps is the fps of the input video. |
|
""" |
|
|
|
import random |
|
|
|
import cv2 |
|
|
|
if fps == None or frame_count == None: |
|
|
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
if fps == 0 or frame_count == 0: |
|
print(f"Video file not found. return empty images. {video_file_name}") |
|
empty_video_frames = int(random.uniform(2, 8 * max_fps)) |
|
return [ |
|
Image.new("RGB", (720, 720)), |
|
] * empty_video_frames, 0 |
|
|
|
duration = frame_count / fps |
|
|
|
|
|
|
|
if duration >= num_frames / max_fps: |
|
frame_interval = frame_count // num_frames |
|
|
|
|
|
if frame_interval == 0 and frame_count <= 1: |
|
print(f"frame_interval is equal to 0. return empty image. {video_file_name}") |
|
empty_video_frames = int(random.uniform(2, 8 * max_fps)) |
|
return [ |
|
Image.new("RGB", (720, 720)), |
|
] * empty_video_frames, 0 |
|
|
|
images = [] |
|
count = 0 |
|
success = True |
|
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int) |
|
|
|
while success: |
|
if frame_count >= num_frames: |
|
|
|
if count in frame_indices: |
|
success, frame = vidcap.read() |
|
try: |
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
im_pil = Image.fromarray(img) |
|
images.append(im_pil) |
|
except: |
|
|
|
continue |
|
if len(images) >= num_frames: |
|
return images, num_frames |
|
else: |
|
success = vidcap.grab() |
|
count += 1 |
|
else: |
|
|
|
success, frame = vidcap.read() |
|
if success: |
|
try: |
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
im_pil = Image.fromarray(img) |
|
images.append(im_pil) |
|
except: |
|
|
|
continue |
|
count += 1 |
|
else: |
|
break |
|
else: |
|
frames_required = int(duration * max_fps) |
|
frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int) |
|
if frames_required == 0: |
|
print(f"frames_required is fewer than 2. Duration {duration}, return empty image.") |
|
empty_video_frames = int(random.uniform(2, 8 * max_fps)) |
|
return [ |
|
Image.new("RGB", (720, 720)), |
|
] * empty_video_frames, 0 |
|
elif frames_required == 1: |
|
frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int) |
|
images = [] |
|
count = 0 |
|
looked = 0 |
|
success = True |
|
|
|
while success: |
|
success, frame = vidcap.read() |
|
if success and (looked in frame_indices): |
|
try: |
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
im_pil = Image.fromarray(img) |
|
images.append(im_pil) |
|
except: |
|
continue |
|
count += 1 |
|
looked += 1 |
|
|
|
if len(images) == 0: |
|
empty_video_frames = int(random.uniform(2, 8 * max_fps)) |
|
return [ |
|
Image.new("RGB", (720, 720)), |
|
] * empty_video_frames, 0 |
|
else: |
|
return images, len(images) |
|
|
|
|
|
def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None): |
|
""" |
|
Extract frames from a video using OpenCV. |
|
|
|
Args: |
|
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video. |
|
frames (int): Number of frames to extract from the video. |
|
fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals. |
|
|
|
Returns: |
|
list: List of PIL Images extracted from the video. |
|
|
|
Raises: |
|
NotImplementedError: If the type of `vpath_or_bytesio` is not supported. |
|
""" |
|
import cv2 |
|
|
|
if isinstance(vpath_or_bytesio, str): |
|
vidcap = cv2.VideoCapture(vpath_or_bytesio) |
|
if max_fps > 0.0: |
|
return get_frame_from_vcap_with_fps( |
|
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio |
|
) |
|
return get_frame_from_vcap( |
|
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio |
|
) |
|
elif isinstance(vpath_or_bytesio, (BytesIO,)): |
|
|
|
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video: |
|
temp_video.write(vpath_or_bytesio.read()) |
|
temp_video_name = temp_video.name |
|
vidcap = cv2.VideoCapture(temp_video_name) |
|
if max_fps > 0.0: |
|
return get_frame_from_vcap_with_fps( |
|
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name |
|
) |
|
return get_frame_from_vcap( |
|
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name |
|
) |
|
else: |
|
raise NotImplementedError(type(vpath_or_bytesio)) |
|
|
|
|
|
def load_image_from_base64(image): |
|
return Image.open(BytesIO(base64.b64decode(image))) |
|
|
|
|
|
def expand2square(pil_img, background_color): |
|
""" |
|
Expand the given PIL image to a square shape by adding padding. |
|
|
|
Parameters: |
|
- pil_img: The PIL image to be expanded. |
|
- background_color: The color of the padding to be added. |
|
|
|
Returns: |
|
- The expanded PIL image. |
|
|
|
If the image is already square, it is returned as is. |
|
If the image is wider than it is tall, padding is added to the top and bottom. |
|
If the image is taller than it is wide, padding is added to the left and right. |
|
""" |
|
width, height = pil_img.size |
|
if pil_img.mode == "L": |
|
background_color = background_color[0] |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float("inf") |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = { |
|
(i, j) |
|
for n in range(min_num, max_num + 1) |
|
for i in range(1, n + 1) |
|
for j in range(1, n + 1) |
|
if i * j <= max_num and i * j >= min_num |
|
} |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size, |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
min_num = (s2_scales[-1] // s2_scales[0]) ** 2 |
|
|
|
processed_images = [] |
|
|
|
|
|
|
|
|
|
|
|
for scale in s2_scales[:-1]: |
|
target_width = image_size * (scale // s2_scales[0]) |
|
target_height = image_size * (scale // s2_scales[0]) |
|
blocks = (scale // s2_scales[0]) ** 2 |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size, |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
target_ratios = { |
|
(i, j) |
|
for n in range(min_num, max_num + 1) |
|
for i in range(1, n + 1) |
|
for j in range(1, n + 1) |
|
if i * j <= max_num and i * j >= min_num |
|
} |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size, |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
|
|
return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0]) |
|
|
|
|
|
def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None): |
|
prompt = prompt.split(DEFAULT_IMAGE_TOKEN) |
|
idx = 0 |
|
all_images = [] |
|
for img in images: |
|
processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles) |
|
all_images.append(processed_images) |
|
prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0]) |
|
idx += 2 |
|
prompt = "".join(prompt) |
|
if all_images: |
|
all_images = torch.cat(all_images) |
|
else: |
|
all_images = None |
|
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "") |
|
return all_images, prompt |
|
|
|
|
|
def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None): |
|
idx = 0 |
|
all_images = [] |
|
all_block_size = [] |
|
for img in images: |
|
processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True) |
|
all_images.append(processed_images) |
|
all_block_size.append(block_size) |
|
idx += 2 |
|
if all_images: |
|
all_images = torch.cat(all_images) |
|
else: |
|
all_images = None |
|
return all_images, all_block_size |
|
|
|
|
|
def process_image( |
|
image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None |
|
): |
|
processor = data_args.image_processor |
|
if isinstance(image_file, str): |
|
if image_folder is not None: |
|
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") |
|
else: |
|
image = Image.open(image_file).convert("RGB") |
|
else: |
|
|
|
image = image_file |
|
image = image.convert("RGB") |
|
if hasattr(data_args.image_processor, "crop_size"): |
|
|
|
crop_size = data_args.image_processor.crop_size |
|
else: |
|
|
|
assert hasattr(data_args.image_processor, "size") |
|
crop_size = data_args.image_processor.size |
|
if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2: |
|
assert crop_size["height"] == crop_size["width"] |
|
images, block_size = dynamic_s2_preprocess( |
|
image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"] |
|
) |
|
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images] |
|
return torch.stack(images), block_size |
|
if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res: |
|
assert crop_size["height"] == crop_size["width"] |
|
if max_tiles is not None: |
|
max_num = max_tiles |
|
else: |
|
max_num = data_args.max_tiles |
|
images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"]) |
|
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images] |
|
return torch.stack(images) |
|
|
|
if data_args.image_aspect_ratio == "resize": |
|
image = image.resize((crop_size["width"], crop_size["height"])) |
|
if data_args.image_aspect_ratio == "pad": |
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) |
|
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] |
|
return image |
|
|
|
|
|
def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None): |
|
model_cfg.image_processor = image_processor |
|
new_images = [ |
|
process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles) |
|
for image in images |
|
] |
|
|
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
if len(new_images[0].shape) == 4: |
|
new_images = torch.cat(new_images, dim=0) |
|
elif len(new_images[0].shape) == 3: |
|
new_images = torch.stack(new_images, dim=0) |
|
else: |
|
raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}") |
|
else: |
|
raise ValueError("The shape of images in new_images is different!") |
|
return new_images |
|
|
|
|
|
def tokenizer_image_token(prompt, tokenizer, return_tensors=None): |
|
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0] |
|
|
|
|
|
def is_gemma_tokenizer(tokenizer): |
|
return "gemma" in tokenizer.__class__.__name__.lower() |
|
|
|
|
|
def get_model_name_from_path(model_path): |
|
model_path = model_path.strip("/") |
|
model_paths = model_path.split("/") |
|
if model_paths[-1].startswith("checkpoint-"): |
|
return model_paths[-2] + "_" + model_paths[-1] |
|
else: |
|
return model_paths[-1] |
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
self.max_keyword_len = 0 |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
if len(cur_keyword_ids) > self.max_keyword_len: |
|
self.max_keyword_len = len(cur_keyword_ids) |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all(): |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
outputs = [] |
|
for i in range(output_ids.shape[0]): |
|
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) |
|
return all(outputs) |
|
|