Ligeng-Zhu's picture
Upload files with `vila-upload`.
d8c0285 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
import base64
import os
import tempfile
from io import BytesIO
import numpy as np
import torch
from PIL import Image
from transformers import StoppingCriteria
from llava.constants import DEFAULT_IMAGE_TOKEN
def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
import cv2
if fps == None or frame_count == None:
# if one of fps or frame_count is None, still recompute
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
if fps == 0 or frame_count == 0:
print(f"Video file not found. return empty images. {video_file_name}")
return [
Image.new("RGB", (720, 720)),
] * num_frames, 0
duration = frame_count / fps
frame_interval = frame_count // num_frames
if frame_interval == 0 and frame_count <= 1:
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
return [
Image.new("RGB", (720, 720)),
] * num_frames, 0
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
images = []
count = 0
success = True
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
while success:
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
if frame_count >= num_frames:
success, frame = vidcap.read()
if count in frame_indices:
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except BaseException:
continue
if len(images) >= num_frames:
return images, num_frames
count += 1
else:
# Left padding frames if the video is not long enough
success, frame = vidcap.read()
if success:
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except BaseException:
continue
count += 1
else:
break
if len(images) == 0:
raise ValueError("Did not find enough frames in the video. return empty image.")
return images, len(images)
def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
"""
num_frames is the max number of frames the model can support.
frame_count is the number of frames in the input video.
max_fps is the max FPS of the model can support.
fps is the fps of the input video.
"""
import random
import cv2
if fps == None or frame_count == None:
# if one of fps or frame_count is None, still recompute
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
if fps == 0 or frame_count == 0:
print(f"Video file not found. return empty images. {video_file_name}")
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
duration = frame_count / fps
# print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
# If the video is too long (longer than max_fps and num_frames can support),
# we will use lower fps to sample frames.
if duration >= num_frames / max_fps:
frame_interval = frame_count // num_frames
# If the video is too short, we will skip the video if there is only one frame.
if frame_interval == 0 and frame_count <= 1:
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
images = []
count = 0
success = True
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
while success:
if frame_count >= num_frames:
# success, frame = vidcap.read()
if count in frame_indices:
success, frame = vidcap.read()
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except:
# print("Failed to read frame:", count)
continue
if len(images) >= num_frames:
return images, num_frames
else:
success = vidcap.grab()
count += 1
else:
# Left padding frames if the video is not long enough
success, frame = vidcap.read()
if success:
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except:
# print("Failed to read frame:", count)
continue
count += 1
else:
break
else:
frames_required = int(duration * max_fps)
frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
if frames_required == 0:
print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
elif frames_required == 1:
frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
images = []
count = 0
looked = 0
success = True
while success:
success, frame = vidcap.read()
if success and (looked in frame_indices):
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except:
continue
count += 1
looked += 1
if len(images) == 0:
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
else:
return images, len(images)
def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
"""
Extract frames from a video using OpenCV.
Args:
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
frames (int): Number of frames to extract from the video.
fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
Returns:
list: List of PIL Images extracted from the video.
Raises:
NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
"""
import cv2
if isinstance(vpath_or_bytesio, str):
vidcap = cv2.VideoCapture(vpath_or_bytesio)
if max_fps > 0.0:
return get_frame_from_vcap_with_fps(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
)
return get_frame_from_vcap(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
)
elif isinstance(vpath_or_bytesio, (BytesIO,)):
# assuming mp4
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
temp_video.write(vpath_or_bytesio.read())
temp_video_name = temp_video.name
vidcap = cv2.VideoCapture(temp_video_name)
if max_fps > 0.0:
return get_frame_from_vcap_with_fps(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
)
return get_frame_from_vcap(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
)
else:
raise NotImplementedError(type(vpath_or_bytesio))
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
"""
Expand the given PIL image to a square shape by adding padding.
Parameters:
- pil_img: The PIL image to be expanded.
- background_color: The color of the padding to be added.
Returns:
- The expanded PIL image.
If the image is already square, it is returned as is.
If the image is wider than it is tall, padding is added to the top and bottom.
If the image is taller than it is wide, padding is added to the left and right.
"""
width, height = pil_img.size
if pil_img.mode == "L":
background_color = background_color[0]
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
processed_images = []
##########################################################################################
############# Add tiles for all but the last scale using fixed squre ratio ###############
##########################################################################################
for scale in s2_scales[:-1]:
target_width = image_size * (scale // s2_scales[0])
target_height = image_size * (scale // s2_scales[0])
blocks = (scale // s2_scales[0]) ** 2
# resize the image
resized_img = image.resize((target_width, target_height))
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
##########################################################################################
################ Add tiles for the last scale using dynamic aspect ratio #################
##########################################################################################
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None):
prompt = prompt.split(DEFAULT_IMAGE_TOKEN)
idx = 0
all_images = []
for img in images:
processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles)
all_images.append(processed_images)
prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0])
idx += 2
prompt = "".join(prompt)
if all_images:
all_images = torch.cat(all_images)
else:
all_images = None
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "")
return all_images, prompt
def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None):
idx = 0
all_images = []
all_block_size = []
for img in images:
processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
all_images.append(processed_images)
all_block_size.append(block_size)
idx += 2
if all_images:
all_images = torch.cat(all_images)
else:
all_images = None
return all_images, all_block_size
def process_image(
image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
):
processor = data_args.image_processor
if isinstance(image_file, str):
if image_folder is not None:
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
else:
# image is stored in bytearray
image = image_file
image = image.convert("RGB")
if hasattr(data_args.image_processor, "crop_size"):
# CLIP vision tower
crop_size = data_args.image_processor.crop_size
else:
# SIGLIP vision tower
assert hasattr(data_args.image_processor, "size")
crop_size = data_args.image_processor.size
if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
assert crop_size["height"] == crop_size["width"]
images, block_size = dynamic_s2_preprocess(
image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
)
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
return torch.stack(images), block_size
if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
assert crop_size["height"] == crop_size["width"]
if max_tiles is not None:
max_num = max_tiles
else:
max_num = data_args.max_tiles
images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
return torch.stack(images)
if data_args.image_aspect_ratio == "resize":
image = image.resize((crop_size["width"], crop_size["height"]))
if data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
else:
# Using default behavior of the vision encoder
# For CLIP, default is central crop
# For Radio, default is central crop
# For Siglip, default is resize
# For InternVIT, default is resize
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
return image
def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
model_cfg.image_processor = image_processor
new_images = [
process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
for image in images
]
if all(x.shape == new_images[0].shape for x in new_images):
if len(new_images[0].shape) == 4:
new_images = torch.cat(new_images, dim=0)
elif len(new_images[0].shape) == 3:
new_images = torch.stack(new_images, dim=0)
else:
raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
else:
raise ValueError("The shape of images in new_images is different!")
return new_images
def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
def is_gemma_tokenizer(tokenizer):
return "gemma" in tokenizer.__class__.__name__.lower()
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
self.max_keyword_len = 0
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
if len(cur_keyword_ids) > self.max_keyword_len:
self.max_keyword_len = len(cur_keyword_ids)
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
outputs = []
for i in range(output_ids.shape[0]):
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
return all(outputs)