Elliott commited on
Commit
e607abb
·
verified ·
1 Parent(s): f653fc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -176
README.md CHANGED
@@ -1,199 +1,83 @@
1
  ---
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-Math-1.5B
4
  library_name: transformers
5
+ license: mit
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - reasoning
9
+ - Zero-RL
10
  ---
11
 
12
+ # 📖Introduction
13
 
14
+ ![Github](https://img.shields.io/badge/LUFFY-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white)
15
 
16
+ LUFFY is a reinforcement learning framework that bridges the gap between zero-RL and imitation learning by incorporating off-policy reasoning traces into the training process. Built upon GRPO, LUFFY combines on-policy rollouts with off-policy demonstrations during advantage estimation and introduces **policy shaping** via regularized importance sampling to emphasize low-probability yet crucial actions.
17
 
18
+ ### Key Highlights:
19
+ - **Off-Policy Guidance:** Seamlessly integrates external reasoning traces to bootstrap learning from stronger models.
20
+ - **Dynamic Balance:** Learns when to imitate and when to explore, adapting over the course of training.
21
+ - **Policy Shaping:** Emphasizes important actions often ignored in standard policy gradients, enabling better generalization.
22
 
23
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ ## Inference
26
 
27
+ Here’s an example of using LUFFY for inference:
28
 
 
29
 
30
+ ```python
31
+ from transformers import AutoTokenizer
32
+ from vllm import LLM, SamplingParams
33
 
34
+ model_path="Elliott/LUFFY-Qwen-Math-7B-Zero"
35
 
36
+ question = "which number is larger? 9.11 or 9.9?"
37
 
38
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
39
+ messages = [{"role": "user", "content": question}]
40
+ chat = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
41
 
42
+ llm = LLM(model=model_path)
43
+ params = SamplingParams(temperature=0.6, max_tokens=8192)
44
+ outputs = llm.generate([chat], params)
45
+ print(outputs[0].outputs[0].text)
46
+ ```
47
 
48
+ ---
49
 
50
+ # 📃Evaluation
51
 
52
+ LUFFY is evaluated on six competition-level benchmarks, achieving state-of-the-art results among all zero-RL methods. It surpasses both on-policy RL and imitation learning (SFT), especially in generalization:
53
 
 
54
 
55
+ | **Model** | **AIME 24** | **AIME 25** | **AMC** | **MATH-500** | **Minerva** | **Olympiad** | **Avg.** |
56
+ |-------|---------|---------|-----|----------|---------|----------|------|
57
+ | Qwen2.5-Math-1.5B-Base | 7.9 | 4.7 | 26.4 | 31.0 | 12.1 | 21.5 | 17.3 |
58
+ | Qwen2.5-Math-1.5B-Instruct | 11.4 | 8.5 | 47.4 | 75.2 | 27.6 | 38.7 | 34.8 |
59
+ | SFT | 15.2 | **14.3** | 43.5 | 74.8 | **30.9** | 36.9 | 40.3 |
60
+ | On-Policy RL | 12.6 | 6.5 | 42.6 | 68.8 | 22.1 | 34.4 | 36.1 |
61
+ | **LUFFY-1.5B-Zero** | **15.2** | 12.7 | **46.8** | **79.4** | 26.5 | **42.4** | **42.1** |
62
 
63
+ ---
64
 
65
+ # 🌻Acknowledgement
66
+
67
+ LUFFY builds upon [veRL](https://github.com/volcengine/verl) and [deepscaler](https://github.com/agentica-project/rllm), and utilizes [vLLM](https://github.com/vllm-project/vllm) for inference. We utilize [Math-Verify](https://github.com/huggingface/Math-Verify) for math reasoning evaluation. We thank the open-source community for datasets and backbones, including [NuminaMath](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT), [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math), and [DeepSeek-R1](https://github.com/deepseek-ai/deepseek-r1) model.
68
+
69
+ Code: https://github.com/ElliottYan/LUFFY
70
+
71
+ # Citation
72
+ If you find our model, data, or evaluation code useful, please kindly cite our paper:
73
+ ```bib
74
+ @misc{luffy,
75
+ title={Learning to Reason under Off-Policy Guidance},
76
+ author={Jianhao Yan and Yafu Li and Zican Hu and Zhi Wang and Ganqu Cui and Xiaoye Qu and Yu Cheng and Yue Zhang},
77
+ year={2025},
78
+ eprint={2504.14945},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.LG},
81
+ url={https://arxiv.org/abs/2504.14945},
82
+ }
83
+ ```