Elliott commited on
Commit
9d3e41a
·
verified ·
1 Parent(s): 8881f09

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -176
README.md CHANGED
@@ -1,199 +1,104 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - reasoning
5
+ - Zero-RL
6
+ license: mit
7
+ base_model:
8
+ - Qwen/Qwen2.5-Math-7B
9
+ pipeline_tag: text-generation
10
+ ---
11
+ # 📖Introduction
12
+
13
+ ![Github](https://img.shields.io/badge/LUFFY-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white)
14
+
15
+ LUFFY is a reinforcement learning framework that bridges the gap between zero-RL and imitation learning by incorporating off-policy reasoning traces into the training process. Built upon GRPO, LUFFY combines on-policy rollouts with off-policy demonstrations during advantage estimation and introduces **policy shaping** via regularized importance sampling to emphasize low-probability yet crucial actions.
16
+
17
+ ### Key Highlights:
18
+ - **Off-Policy Guidance:** Seamlessly integrates external reasoning traces to bootstrap learning from stronger models.
19
+ - **Dynamic Balance:** Learns when to imitate and when to explore, adapting over the course of training.
20
+ - **Policy Shaping:** Emphasizes important actions often ignored in standard policy gradients, enabling better generalization.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ ## Inference
25
 
26
+ Here’s an example of using LUFFY for inference:
27
 
 
28
 
29
+ ```python
30
+ from transformers import AutoTokenizer
31
+ from vllm import LLM, SamplingParams
32
 
33
+ model_path="Elliott/LUFFY-Qwen-Math-7B-Zero"
34
 
35
+ question = "which number is larger? 9.11 or 9.9?"
36
 
37
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
38
+ messages = [{"role": "user", "content": question}]
39
+ chat = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
40
 
41
+ llm = LLM(model=model_path)
42
+ params = SamplingParams(temperature=0.6, max_tokens=8192)
43
+ outputs = llm.generate([chat], params)
44
+ print(outputs[0].outputs[0].text)
45
+ ```
46
 
47
+ ---
48
 
49
+ # 📃Evaluation
50
 
51
+ LUFFY is evaluated on six competition-level benchmarks, achieving state-of-the-art results among all zero-RL methods. It surpasses both on-policy RL and imitation learning (SFT), especially in generalization:
52
 
 
53
 
 
54
 
55
+ | **Model** | **AIME 2024** | **AIME 2025** | **AMC** | **MATH-500** | **Minerva** | **Olympiad** | **Avg.** |
56
+ |-----------------------------------|-------------|-------------|---------|---------------|-------------|---------------|----------|
57
+ | Qwen2.5-Math | 12.9 | 4.2 | 32.6 | 48.8 | 10.7 | 14.8 | 20.7 |
58
+ | Qwen2.5-Math-Instruct | 11.4 | 8.8 | 48.3 | 81.2 | 33.1 | 38.8 | 36.9 |
59
+ | SimpleRL-Zero | 26.3 | 6.7 | 55.4 | 74.4 | 25.7 | 35.4 | 37.3 |
60
+ | OpenReasoner-Zero | 17.2 | 15.0 | 52.3 | 84.6 | 33.8 | 47.1 | 41.7 |
61
+ | PRIME-Zero | 17.9 | 14.7 | 55.2 | 79.4 | **38.2** | 42.2 | 41.3 |
62
+ | Oat-Zero | **31.7** | 11.0 | 61.6 | 79.2 | 29.8 | 42.5 | 42.6 |
63
+ | SFT (Our repication) | 28.6 | **23.5** | 59.0 | 86.0 | 37.5 | 51.1 | 47.6 |
64
+ | On-Policy RL (Our repication) | 24.6 | 15.7 | 61.3 | 84.6 | 34.9 | 47.9 | 44.8 |
65
+ | **LUFFY** | 29.5 | 23.2 | **66.1**| **88.4** | 33.8 | **56.4** | **49.6** |
66
 
67
+ ---
68
 
 
69
 
 
70
 
71
+ LUFFY also generalizes well to out-of-distribution tasks, with over +6.2 average gain on ARC-C, GPQA, and MMLU-Pro.
72
 
 
73
 
74
+ | **Model** | **ARC-c** | **GPQA-diamond** | **MMLU-Pro** | **Avg.** |
75
+ |----------------------------------|-----------|------------------|--------------|----------|
76
+ | Qwen2.5-Math-7B-Base | 18.2 | 11.1 | 16.9 | 15.4 |
77
+ | Qwen2.5-Math-7B-Instruct | 70.3 | 24.7 | 34.1 | 43.0 |
78
+ | SimpleRL-Zero | 30.2 | 23.2 | 34.5 | 29.3 |
79
+ | OpenReasoner-Zero | 66.2 | 29.8 | 58.7 | 51.6 |
80
+ | PRIME-Zero | **73.3** | 18.2 | 32.7 | 41.4 |
81
+ | Oat-Zero | 70.1 | 23.7 | 41.7 | 45.2 |
82
+ | SFT (Our repication) | 75.2 | 24.7 | 42.7 | 47.5 |
83
+ | On-Policy RL (Our repication) | **82.3** | **40.4** | _49.3_ | _57.3_ |
84
+ | **LUFFY** | _80.5_ | _39.9_ | **53.0** | **57.8** |
85
 
86
+ ---
87
 
88
+ # 🌻Acknowledgement
89
+
90
+ LUFFY builds upon [veRL](https://github.com/volcengine/verl) and [deepscaler](https://github.com/agentica-project/rllm), and utilizes [vLLM](https://github.com/vllm-project/vllm) for inference. We utilize [Math-Verify](https://github.com/huggingface/Math-Verify) for math reasoning evaluation. We thank the open-source community for datasets and backbones, including [NuminaMath](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT), [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math), and [DeepSeek-R1](https://github.com/deepseek-ai/deepseek-r1) model.
91
+
92
+ # Citation
93
+ If you find our model, data, or evaluation code useful, please kindly cite our paper:
94
+ ```bib
95
+ @misc{luffy,
96
+ title={Learning to Reason under Off-Policy Guidance},
97
+ author={Jianhao Yan and Yafu Li and Zican Hu and Zhi Wang and Ganqu Cui and Xiaoye Qu and Yu Cheng and Yue Zhang},
98
+ year={2025},
99
+ eprint={2504.14945},
100
+ archivePrefix={arXiv},
101
+ primaryClass={cs.LG},
102
+ url={https://arxiv.org/abs/2504.14945},
103
+ }
104
+ ```