Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- MMP_Diffusion_Lora_config.py +368 -0
- MMP_Diffusion_Lora_train.py +861 -0
- models/.DS_Store +0 -0
- models/__init__.py +0 -0
- models/attention_processor.py +0 -0
- models/lora.py +246 -0
- models/mm_attention.py +1254 -0
- models/transformers_2d.py +569 -0
- models/unet_2d_blocks.py +0 -0
- models/unet_2d_condition.py +1316 -0
- models/visual_prompts.py +166 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
MMP_Diffusion_Lora_config.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
|
5 |
+
|
6 |
+
def import_model_class_from_model_name_or_path(
|
7 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
8 |
+
):
|
9 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
10 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
11 |
+
)
|
12 |
+
model_class = text_encoder_config.architectures[0]
|
13 |
+
|
14 |
+
if model_class == "CLIPTextModel":
|
15 |
+
from transformers import CLIPTextModel
|
16 |
+
|
17 |
+
return CLIPTextModel
|
18 |
+
elif model_class == "CLIPTextModelWithProjection":
|
19 |
+
from transformers import CLIPTextModelWithProjection
|
20 |
+
|
21 |
+
return CLIPTextModelWithProjection
|
22 |
+
else:
|
23 |
+
raise ValueError(f"{model_class} is not supported.")
|
24 |
+
|
25 |
+
|
26 |
+
def parse_args():
|
27 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
28 |
+
parser.add_argument(
|
29 |
+
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--pretrained_model_name_or_path",
|
33 |
+
type=str,
|
34 |
+
default='/cpfs04/user/liudawei/jgl/projects/download_models/stable-diffusion/SDXL',
|
35 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--revision",
|
39 |
+
type=str,
|
40 |
+
default=None,
|
41 |
+
required=False,
|
42 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--dataset_name",
|
46 |
+
type=str,
|
47 |
+
default='custom',
|
48 |
+
help=(
|
49 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
50 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
51 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
52 |
+
),
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--dataset_path",
|
56 |
+
type=str,
|
57 |
+
default='/cpfs02/shared/llmit6/liudawei/jgl/EmotionDPO/data/ETI_emotion.parquet',
|
58 |
+
help=(
|
59 |
+
"The path of ETI dataset"
|
60 |
+
),
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--dataset_config_name",
|
64 |
+
type=str,
|
65 |
+
default=None,
|
66 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--train_data_dir",
|
70 |
+
type=str,
|
71 |
+
default=None,
|
72 |
+
help=(
|
73 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
74 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
75 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
76 |
+
),
|
77 |
+
)
|
78 |
+
parser.add_argument(
|
79 |
+
"--visual_prompts_dir",
|
80 |
+
type=str,
|
81 |
+
default='features/origin',
|
82 |
+
help="Path to initial visual prompts",
|
83 |
+
)
|
84 |
+
parser.add_argument(
|
85 |
+
"--prompt_len",
|
86 |
+
type=int,
|
87 |
+
default=16,
|
88 |
+
help="visual prompts length",
|
89 |
+
)
|
90 |
+
parser.add_argument(
|
91 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
|
92 |
+
)
|
93 |
+
parser.add_argument(
|
94 |
+
"--caption_column",
|
95 |
+
type=str,
|
96 |
+
default="caption",
|
97 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
98 |
+
)
|
99 |
+
parser.add_argument(
|
100 |
+
"--max_train_samples",
|
101 |
+
type=int,
|
102 |
+
default=None,
|
103 |
+
# default=256,
|
104 |
+
help=(
|
105 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
106 |
+
"value if set."
|
107 |
+
),
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"--cache_dir",
|
111 |
+
type=str,
|
112 |
+
default='/cpfs04/user/liudawei/jgl/projects/download_models',
|
113 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
114 |
+
)
|
115 |
+
parser.add_argument("--seed",
|
116 |
+
type=int,
|
117 |
+
# default=None,
|
118 |
+
default=42,
|
119 |
+
# was random for submission, need to test that not distributing same noise etc across devices
|
120 |
+
help="A seed for reproducible training."
|
121 |
+
)
|
122 |
+
parser.add_argument(
|
123 |
+
"--resolution",
|
124 |
+
type=int,
|
125 |
+
default=512,
|
126 |
+
help=(
|
127 |
+
"The resolution for input images, all the images in the dataset will be resized to this"
|
128 |
+
" resolution"
|
129 |
+
),
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--random_crop",
|
133 |
+
default=False,
|
134 |
+
action="store_true",
|
135 |
+
help=(
|
136 |
+
"If set the images will be randomly"
|
137 |
+
" cropped (instead of center). The images will be resized to the resolution first before cropping."
|
138 |
+
),
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--no_hflip",
|
142 |
+
action="store_true",
|
143 |
+
help="whether to supress horizontal flipping",
|
144 |
+
)
|
145 |
+
parser.add_argument(
|
146 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--num_train_epochs", type=int, default=3
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--max_train_steps",
|
153 |
+
type=int,
|
154 |
+
default=2000,
|
155 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--gradient_accumulation_steps",
|
159 |
+
type=int,
|
160 |
+
default=1,
|
161 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--gradient_checkpointing",
|
165 |
+
action="store_true",
|
166 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--learning_rate_unet",
|
170 |
+
type=float,
|
171 |
+
default=1e-6,
|
172 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--learning_rate_lora",
|
176 |
+
type=float,
|
177 |
+
default=1e-5,
|
178 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--learning_rate_prompts",
|
182 |
+
type=float,
|
183 |
+
default=1e-5,
|
184 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
185 |
+
)
|
186 |
+
parser.add_argument(
|
187 |
+
"--scale_lr",
|
188 |
+
action="store_false",
|
189 |
+
default=False,
|
190 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--lr_scheduler",
|
194 |
+
type=str,
|
195 |
+
default="constant_with_warmup",
|
196 |
+
help=(
|
197 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
198 |
+
' "constant", "constant_with_warmup"]'
|
199 |
+
),
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
203 |
+
)
|
204 |
+
parser.add_argument(
|
205 |
+
"--use_adafactor", action="store_true", help="Whether or not to use adafactor (should save mem)"
|
206 |
+
)
|
207 |
+
# Bram Note: Haven't looked @ this yet
|
208 |
+
parser.add_argument(
|
209 |
+
"--allow_tf32",
|
210 |
+
action="store_true",
|
211 |
+
help=(
|
212 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
213 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
214 |
+
),
|
215 |
+
)
|
216 |
+
parser.add_argument(
|
217 |
+
"--dataloader_num_workers",
|
218 |
+
type=int,
|
219 |
+
default=16,
|
220 |
+
help=(
|
221 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
222 |
+
),
|
223 |
+
)
|
224 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
225 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
226 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
227 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
228 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
229 |
+
parser.add_argument(
|
230 |
+
"--hub_model_id",
|
231 |
+
type=str,
|
232 |
+
default=None,
|
233 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--logging_dir",
|
237 |
+
type=str,
|
238 |
+
default="logs",
|
239 |
+
help=(
|
240 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
241 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
242 |
+
),
|
243 |
+
)
|
244 |
+
parser.add_argument(
|
245 |
+
"--mixed_precision",
|
246 |
+
type=str,
|
247 |
+
default="no",
|
248 |
+
choices=["no", "fp16", "bf16"],
|
249 |
+
help=(
|
250 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
251 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
252 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
253 |
+
),
|
254 |
+
)
|
255 |
+
parser.add_argument(
|
256 |
+
"--report_to",
|
257 |
+
type=str,
|
258 |
+
default="wandb",
|
259 |
+
help=(
|
260 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
261 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
262 |
+
),
|
263 |
+
)
|
264 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
265 |
+
parser.add_argument(
|
266 |
+
"--checkpointing_steps",
|
267 |
+
type=int,
|
268 |
+
default=100,
|
269 |
+
help=(
|
270 |
+
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
271 |
+
" training using `--resume_from_checkpoint`."
|
272 |
+
),
|
273 |
+
)
|
274 |
+
parser.add_argument(
|
275 |
+
"--resume_from_checkpoint",
|
276 |
+
type=str,
|
277 |
+
default='latest',
|
278 |
+
help=(
|
279 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
280 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
281 |
+
),
|
282 |
+
)
|
283 |
+
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
|
284 |
+
parser.add_argument(
|
285 |
+
"--tracker_project_name",
|
286 |
+
type=str,
|
287 |
+
default="EmotionDPO",
|
288 |
+
help="exp group name",
|
289 |
+
)
|
290 |
+
parser.add_argument(
|
291 |
+
"--tracker_run_name",
|
292 |
+
type=str,
|
293 |
+
default="emotion_dpo_lora_v0_0_3_sdxl_2",
|
294 |
+
help="exp name",
|
295 |
+
)
|
296 |
+
parser.add_argument(
|
297 |
+
"--output_dir",
|
298 |
+
type=str,
|
299 |
+
default="log_training/emotion_dpo_lora_v0_0_3_sdxl_2",
|
300 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
301 |
+
)
|
302 |
+
|
303 |
+
## SDXL
|
304 |
+
parser.add_argument(
|
305 |
+
"--pretrained_vae_model_name_or_path",
|
306 |
+
type=str,
|
307 |
+
default=None,
|
308 |
+
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
|
309 |
+
)
|
310 |
+
parser.add_argument("--sdxl", action='store_false', help="Train sdxl")
|
311 |
+
|
312 |
+
## DPO
|
313 |
+
parser.add_argument("--sft", action='store_true', help="Run Supervised Fine-Tuning instead of Direct Preference Optimization")
|
314 |
+
parser.add_argument("--beta_dpo", type=float, default=5000, help="The beta DPO temperature controlling strength of KL penalty")
|
315 |
+
parser.add_argument(
|
316 |
+
"--hard_skip_resume", action="store_true", help="Load weights etc. but don't iter through loader for loader resume, useful b/c resume takes forever"
|
317 |
+
)
|
318 |
+
parser.add_argument(
|
319 |
+
"--unet_init", type=str, default='', help="Initialize start of run from unet (not compatible w/ checkpoint load)"
|
320 |
+
)
|
321 |
+
parser.add_argument(
|
322 |
+
"--proportion_empty_prompts",
|
323 |
+
type=float,
|
324 |
+
default=0.2,
|
325 |
+
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--split", type=str, default='train', help="Datasplit"
|
329 |
+
)
|
330 |
+
parser.add_argument(
|
331 |
+
"--choice_model", type=str, default='', help="Model to use for ranking (override dataset PS label_0/1). choices: aes, clip, hps, pickscore"
|
332 |
+
)
|
333 |
+
parser.add_argument(
|
334 |
+
"--dreamlike_pairs_only", action="store_true", help="Only train on pairs where both generations are from dreamlike"
|
335 |
+
)
|
336 |
+
parser.add_argument(
|
337 |
+
"--use_lora",
|
338 |
+
action="store_true",
|
339 |
+
default=True,
|
340 |
+
help="Whether or not to use LoRA (Low-Rank Adaptation).",
|
341 |
+
)
|
342 |
+
parser.add_argument(
|
343 |
+
"--lora_rank",
|
344 |
+
type=int,
|
345 |
+
default=64,
|
346 |
+
help="Rank parameter for LoRA (Low-Rank Adaptation).",
|
347 |
+
)
|
348 |
+
|
349 |
+
args = parser.parse_args()
|
350 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
351 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
352 |
+
args.local_rank = env_local_rank
|
353 |
+
|
354 |
+
# Sanity checks
|
355 |
+
if args.dataset_name is None and args.train_data_dir is None:
|
356 |
+
raise ValueError("Need either a dataset name or a training folder.")
|
357 |
+
|
358 |
+
## SDXL
|
359 |
+
if args.sdxl:
|
360 |
+
print("Running SDXL")
|
361 |
+
if args.resolution is None:
|
362 |
+
if args.sdxl:
|
363 |
+
args.resolution = 512
|
364 |
+
else:
|
365 |
+
args.resolution = 512
|
366 |
+
|
367 |
+
args.train_method = 'sft' if args.sft else 'dpo'
|
368 |
+
return args
|
MMP_Diffusion_Lora_train.py
ADDED
@@ -0,0 +1,861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
6 |
+
import random
|
7 |
+
import shutil
|
8 |
+
import sys
|
9 |
+
sys.path.append('./')
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import accelerate
|
13 |
+
import datasets
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torch.utils.checkpoint
|
19 |
+
import transformers
|
20 |
+
from accelerate import Accelerator
|
21 |
+
from accelerate.logging import get_logger
|
22 |
+
from accelerate.state import AcceleratorState
|
23 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
24 |
+
from datasets import load_dataset
|
25 |
+
from huggingface_hub import create_repo, upload_folder
|
26 |
+
from packaging import version
|
27 |
+
from torchvision import transforms
|
28 |
+
from tqdm.auto import tqdm
|
29 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
30 |
+
from transformers.utils import ContextManagers
|
31 |
+
|
32 |
+
import diffusers
|
33 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLPipeline, UNet2DConditionModel
|
34 |
+
from models.unet_2d_condition import UNet2DLoRAConditionModel
|
35 |
+
from models.lora import add_lora_to_model
|
36 |
+
from diffusers.optimization import get_scheduler
|
37 |
+
from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid
|
38 |
+
from diffusers.utils.import_utils import is_xformers_available
|
39 |
+
from MMP_Diffusion_Lora_config import parse_args, import_model_class_from_model_name_or_path
|
40 |
+
|
41 |
+
from peft.utils import get_peft_model_state_dict
|
42 |
+
from diffusers.utils import convert_state_dict_to_diffusers
|
43 |
+
from models.visual_prompts import EmotionEmbedding, EmotionEmbedding2
|
44 |
+
import copy
|
45 |
+
|
46 |
+
if is_wandb_available():
|
47 |
+
import wandb
|
48 |
+
|
49 |
+
|
50 |
+
## SDXL
|
51 |
+
import functools
|
52 |
+
import gc
|
53 |
+
from torchvision.transforms.functional import crop
|
54 |
+
from transformers import AutoTokenizer
|
55 |
+
|
56 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
57 |
+
check_min_version("0.20.0")
|
58 |
+
|
59 |
+
logger = get_logger(__name__, log_level="INFO")
|
60 |
+
|
61 |
+
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
|
62 |
+
def encode_prompt_sdxl(batch, text_encoders, tokenizers, proportion_empty_prompts, caption_column, is_train=True):
|
63 |
+
prompt_embeds_list = []
|
64 |
+
prompt_batch = batch[caption_column]
|
65 |
+
|
66 |
+
captions = []
|
67 |
+
for caption in prompt_batch:
|
68 |
+
if random.random() < proportion_empty_prompts:
|
69 |
+
captions.append("")
|
70 |
+
elif isinstance(caption, str):
|
71 |
+
captions.append(caption)
|
72 |
+
elif isinstance(caption, (list, np.ndarray)):
|
73 |
+
# take a random caption if there are multiple
|
74 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
75 |
+
|
76 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
77 |
+
|
78 |
+
text_input_ids = tokenizer(
|
79 |
+
captions,
|
80 |
+
padding="max_length",
|
81 |
+
max_length=tokenizer.model_max_length,
|
82 |
+
truncation=True,
|
83 |
+
return_tensors="pt",
|
84 |
+
).input_ids
|
85 |
+
|
86 |
+
with torch.no_grad():
|
87 |
+
prompt_embeds = text_encoder(
|
88 |
+
text_input_ids.to('cuda'),
|
89 |
+
output_hidden_states=True,
|
90 |
+
)
|
91 |
+
|
92 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
93 |
+
# torch.Size([32, 1280]) this
|
94 |
+
# odict_keys(['text_embeds', 'last_hidden_state', 'hidden_states'])
|
95 |
+
if isinstance(text_encoder, CLIPTextModel):
|
96 |
+
pass
|
97 |
+
elif isinstance(text_encoder, CLIPTextModelWithProjection):
|
98 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
99 |
+
|
100 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
101 |
+
# torch.Size([32, 77, 768/1280])
|
102 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
103 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
104 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
105 |
+
prompt_embeds_list.append(prompt_embeds)
|
106 |
+
|
107 |
+
# torch.Size([32, 77, 768+1280=2048])
|
108 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
109 |
+
# torch.Size([32, 1280])
|
110 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
111 |
+
|
112 |
+
return {
|
113 |
+
"prompt_embeds": prompt_embeds,
|
114 |
+
"pooled_prompt_embeds": pooled_prompt_embeds,
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
def init_emotion_prompts(visual_prompts_dir, is_sdxl=True, prompt_len=16):
|
119 |
+
emotions = ["amusement", "anger", "awe", "contentment",
|
120 |
+
"disgust", "excitement", "fear", "sadness"]
|
121 |
+
if is_sdxl:
|
122 |
+
output_dim = 2048
|
123 |
+
else:
|
124 |
+
output_dim = 768
|
125 |
+
feature_names = ["clip", "vgg", "dinov2"]
|
126 |
+
visual_prompts = EmotionEmbedding(emotions, visual_prompts_dir,
|
127 |
+
feature_names, output_dim=output_dim, prompt_len=prompt_len)
|
128 |
+
return visual_prompts
|
129 |
+
|
130 |
+
def init_emotion_prompts2(is_sdxl=True):
|
131 |
+
emotions = ["amusement", "anger", "awe", "contentment",
|
132 |
+
"disgust", "excitement", "fear", "sadness"]
|
133 |
+
if is_sdxl:
|
134 |
+
output_dim = 2048
|
135 |
+
else:
|
136 |
+
output_dim = 768
|
137 |
+
input_dim = 2048
|
138 |
+
visual_prompts = EmotionEmbedding2(emotions, input_dim, output_dim=output_dim)
|
139 |
+
return visual_prompts
|
140 |
+
|
141 |
+
def random_sample_emotions(anchor_emotions):
|
142 |
+
emotions = ["amusement", "anger", "awe", "contentment", "disgust",
|
143 |
+
"excitement", "fear", "sadness"]
|
144 |
+
random_emotions = []
|
145 |
+
for anchor in anchor_emotions:
|
146 |
+
available_emotions = [emotion for emotion in emotions if emotion != anchor]
|
147 |
+
random_choice = random.choice(available_emotions)
|
148 |
+
random_emotions.append(random_choice)
|
149 |
+
return random_emotions
|
150 |
+
|
151 |
+
|
152 |
+
def main():
|
153 |
+
args = parse_args()
|
154 |
+
#### START ACCELERATOR BOILERPLATE ###
|
155 |
+
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
156 |
+
|
157 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
158 |
+
|
159 |
+
accelerator = Accelerator(
|
160 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
161 |
+
mixed_precision=args.mixed_precision,
|
162 |
+
log_with=args.report_to,
|
163 |
+
project_config=accelerator_project_config,
|
164 |
+
)
|
165 |
+
|
166 |
+
# Make one log on every process with the configuration for debugging.
|
167 |
+
logging.basicConfig(
|
168 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
169 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
170 |
+
level=logging.INFO,
|
171 |
+
)
|
172 |
+
logger.info(accelerator.state, main_process_only=False)
|
173 |
+
if accelerator.is_local_main_process:
|
174 |
+
datasets.utils.logging.set_verbosity_warning()
|
175 |
+
transformers.utils.logging.set_verbosity_warning()
|
176 |
+
diffusers.utils.logging.set_verbosity_info()
|
177 |
+
else:
|
178 |
+
datasets.utils.logging.set_verbosity_error()
|
179 |
+
transformers.utils.logging.set_verbosity_error()
|
180 |
+
diffusers.utils.logging.set_verbosity_error()
|
181 |
+
|
182 |
+
# If passed along, set the training seed now.
|
183 |
+
if args.seed is not None:
|
184 |
+
set_seed(args.seed + accelerator.process_index) # added in + term, untested
|
185 |
+
|
186 |
+
# Handle the repository creation
|
187 |
+
if accelerator.is_main_process:
|
188 |
+
if args.output_dir is not None:
|
189 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
190 |
+
### END ACCELERATOR BOILERPLATE
|
191 |
+
|
192 |
+
|
193 |
+
### START DIFFUSION BOILERPLATE ###
|
194 |
+
# Load scheduler, tokenizer and models.
|
195 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path,
|
196 |
+
subfolder="scheduler")
|
197 |
+
|
198 |
+
# SDXL has two text encoders
|
199 |
+
if args.sdxl:
|
200 |
+
tokenizer_and_encoder_name = args.pretrained_model_name_or_path
|
201 |
+
tokenizer_one = AutoTokenizer.from_pretrained(tokenizer_and_encoder_name, subfolder="tokenizer", revision=args.revision, use_fast=False)
|
202 |
+
tokenizer_two = AutoTokenizer.from_pretrained(tokenizer_and_encoder_name, subfolder="tokenizer_2", revision=args.revision, use_fast=False)
|
203 |
+
else:
|
204 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision)
|
205 |
+
|
206 |
+
# Not sure if we're hitting this at all
|
207 |
+
def deepspeed_zero_init_disabled_context_manager():
|
208 |
+
"""
|
209 |
+
returns either a context list that includes one that will disable zero.Init or an empty context list
|
210 |
+
"""
|
211 |
+
deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None
|
212 |
+
if deepspeed_plugin is None:
|
213 |
+
return []
|
214 |
+
|
215 |
+
return [deepspeed_plugin.zero3_init_context_manager(enable=False)]
|
216 |
+
|
217 |
+
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
|
218 |
+
# SDXL has two text encoders
|
219 |
+
if args.sdxl:
|
220 |
+
# import correct text encoder classes
|
221 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(tokenizer_and_encoder_name, args.revision, subfolder="text_encoder")
|
222 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(tokenizer_and_encoder_name, args.revision, subfolder="text_encoder_2")
|
223 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(tokenizer_and_encoder_name, revision=args.revision, subfolder="text_encoder")
|
224 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(tokenizer_and_encoder_name, revision=args.revision, subfolder="text_encoder_2")
|
225 |
+
text_encoders = [text_encoder_one, text_encoder_two]
|
226 |
+
tokenizers = [tokenizer_one, tokenizer_two]
|
227 |
+
else:
|
228 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision)
|
229 |
+
# Can custom-select VAE (used in original SDXL tuning)
|
230 |
+
vae_path = (
|
231 |
+
args.pretrained_model_name_or_path
|
232 |
+
if args.pretrained_vae_model_name_or_path is None
|
233 |
+
else args.pretrained_vae_model_name_or_path
|
234 |
+
)
|
235 |
+
vae = AutoencoderKL.from_pretrained(
|
236 |
+
vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision
|
237 |
+
)
|
238 |
+
# clone of model
|
239 |
+
ref_unet = UNet2DConditionModel.from_pretrained(
|
240 |
+
args.pretrained_model_name_or_path,
|
241 |
+
subfolder="unet", revision=args.revision
|
242 |
+
)
|
243 |
+
|
244 |
+
unet = UNet2DLoRAConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision)
|
245 |
+
|
246 |
+
print("======== init_emotion_prompts ================")
|
247 |
+
visual_prompts = init_emotion_prompts(args.visual_prompts_dir, is_sdxl=args.sdxl, prompt_len=args.prompt_len).to(accelerator.device)
|
248 |
+
# visual_prompts = init_emotion_prompts2(is_sdxl=args.sdxl).to(accelerator.device)
|
249 |
+
print("======== init_emotion_prompts done ================")
|
250 |
+
|
251 |
+
# Freeze vae, text_encoder(s), reference unet
|
252 |
+
vae.requires_grad_(False)
|
253 |
+
if args.sdxl:
|
254 |
+
text_encoder_one.requires_grad_(False)
|
255 |
+
text_encoder_two.requires_grad_(False)
|
256 |
+
else:
|
257 |
+
text_encoder.requires_grad_(False)
|
258 |
+
if args.train_method == 'dpo':
|
259 |
+
ref_unet.requires_grad_(False)
|
260 |
+
|
261 |
+
# if args.use_lora:
|
262 |
+
# unet.requires_grad_(False)
|
263 |
+
# args.lora_rank default 32
|
264 |
+
lora_p, negation = add_lora_to_model(unet, dropout=0.1, lora_rank=args.lora_rank, scale=1.0)
|
265 |
+
|
266 |
+
# xformers efficient attention
|
267 |
+
if is_xformers_available():
|
268 |
+
import xformers
|
269 |
+
|
270 |
+
xformers_version = version.parse(xformers.__version__)
|
271 |
+
if xformers_version == version.parse("0.0.16"):
|
272 |
+
logger.warning(
|
273 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
274 |
+
)
|
275 |
+
unet.enable_xformers_memory_efficient_attention()
|
276 |
+
else:
|
277 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
278 |
+
|
279 |
+
# BRAM NOTE: We're using >=0.16.0. Below was a bit of a bug hive. I hacked around it, but ideally ref_unet wouldn't
|
280 |
+
# be getting passed here
|
281 |
+
#
|
282 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
283 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
284 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
285 |
+
def save_model_hook(models, weights, output_dir):
|
286 |
+
|
287 |
+
print("save_model_hook")
|
288 |
+
for i in range(len(models)):
|
289 |
+
print(models[i].__class__.__name__)
|
290 |
+
|
291 |
+
if len(models) > 1:
|
292 |
+
assert args.train_method == 'dpo' # 2nd model is just ref_unet in DPO case
|
293 |
+
|
294 |
+
if args.sdxl:
|
295 |
+
|
296 |
+
# UNet2DLoRAConditionModel
|
297 |
+
models[0].save_pretrained(os.path.join(output_dir, 'unet_with_lora'))
|
298 |
+
weights.pop()
|
299 |
+
|
300 |
+
# EmotionEmbedding
|
301 |
+
torch.save(models[1].state_dict(), os.path.join(output_dir, "EmotionEmbedding.pth"))
|
302 |
+
weights.pop()
|
303 |
+
|
304 |
+
def load_model_hook(models, input_dir):
|
305 |
+
|
306 |
+
print("load_model_hook")
|
307 |
+
for i in range(len(models)):
|
308 |
+
print(models[i].__class__.__name__)
|
309 |
+
|
310 |
+
if len(models) > 1:
|
311 |
+
assert args.train_method == 'dpo' # 2nd model is just ref_unet in DPO case
|
312 |
+
|
313 |
+
if args.sdxl:
|
314 |
+
|
315 |
+
# UNet2DLoRAConditionModel
|
316 |
+
model = models.pop(0)
|
317 |
+
from safetensors.torch import load_file
|
318 |
+
# 加载两个safetensors文件
|
319 |
+
state_dict_1 = load_file(os.path.join(input_dir, 'unet_with_lora', 'diffusion_pytorch_model-00001-of-00002.safetensors'))
|
320 |
+
state_dict_2 = load_file(os.path.join(input_dir, 'unet_with_lora', 'diffusion_pytorch_model-00002-of-00002.safetensors'))
|
321 |
+
# 合并状态字典
|
322 |
+
state_dict = {**state_dict_1, **state_dict_2}
|
323 |
+
model.load_state_dict(state_dict)
|
324 |
+
|
325 |
+
# EmotionEmbedding
|
326 |
+
model = models.pop(0)
|
327 |
+
state_dict = torch.load(os.path.join(input_dir, "EmotionEmbedding.pth"), weights_only=True)
|
328 |
+
model.load_state_dict(state_dict)
|
329 |
+
|
330 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
331 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
332 |
+
|
333 |
+
if args.gradient_checkpointing or args.sdxl: # (args.sdxl and ('turbo' not in args.pretrained_model_name_or_path) ):
|
334 |
+
print("Enabling gradient checkpointing, either because you asked for this or because you're using SDXL")
|
335 |
+
unet.enable_gradient_checkpointing()
|
336 |
+
|
337 |
+
# Bram Note: haven't touched
|
338 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
339 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
340 |
+
if args.allow_tf32:
|
341 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
342 |
+
|
343 |
+
if args.scale_lr:
|
344 |
+
args.learning_rate = (
|
345 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
346 |
+
)
|
347 |
+
|
348 |
+
unet_params = []
|
349 |
+
lora_params = []
|
350 |
+
for name, param in unet.named_parameters():
|
351 |
+
if 'lora' in name.lower():
|
352 |
+
lora_params.append(param)
|
353 |
+
else:
|
354 |
+
if param.requires_grad:
|
355 |
+
unet_params.append(param)
|
356 |
+
|
357 |
+
# if args.use_adafactor or args.sdxl:
|
358 |
+
print("Using Adafactor either because you asked for it or you're using SDXL")
|
359 |
+
param_groups = [
|
360 |
+
{
|
361 |
+
"params": unet_params,
|
362 |
+
"lr": args.learning_rate_unet,
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"params": lora_params,
|
366 |
+
"lr": args.learning_rate_lora,
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"params": visual_prompts.parameters(),
|
370 |
+
"lr": args.learning_rate_prompts,
|
371 |
+
}
|
372 |
+
]
|
373 |
+
optimizer = transformers.Adafactor(
|
374 |
+
param_groups,
|
375 |
+
weight_decay=args.adam_weight_decay,
|
376 |
+
clip_threshold=1.0,
|
377 |
+
scale_parameter=False,
|
378 |
+
relative_step=False
|
379 |
+
)
|
380 |
+
|
381 |
+
# else:
|
382 |
+
# optimizer = torch.optim.AdamW([
|
383 |
+
# {"params": unet_params, "lr": args.learning_rate,
|
384 |
+
# "beta": (args.adam_beta1, args.adam_beta2), "weight_decay": args.adam_weight_decay,
|
385 |
+
# "eps": args.adam_epsilon},
|
386 |
+
# {"params": lora_params, "lr": args.learning_rate*5,
|
387 |
+
# "beta": (args.adam_beta1, args.adam_beta2), "weight_decay": args.adam_weight_decay,
|
388 |
+
# "eps": args.adam_epsilon},
|
389 |
+
# {"params": visual_prompts.parameters(), "lr": args.learning_rate*5,
|
390 |
+
# "beta": (args.adam_beta1, args.adam_beta2), "weight_decay": args.adam_weight_decay,
|
391 |
+
# "eps": args.adam_epsilon}
|
392 |
+
# ])
|
393 |
+
|
394 |
+
|
395 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
396 |
+
# download the dataset.
|
397 |
+
dataset = load_dataset(path='parquet', data_files=args.dataset_path)
|
398 |
+
caption_column = args.caption_column
|
399 |
+
|
400 |
+
def tokenize_captions(examples, is_train=True):
|
401 |
+
captions = []
|
402 |
+
for caption in examples[caption_column]:
|
403 |
+
if random.random() < args.proportion_empty_prompts:
|
404 |
+
captions.append("")
|
405 |
+
elif isinstance(caption, str):
|
406 |
+
captions.append(caption)
|
407 |
+
elif isinstance(caption, (list, np.ndarray)):
|
408 |
+
# take a random caption if there are multiple
|
409 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
410 |
+
else:
|
411 |
+
raise ValueError(
|
412 |
+
f"Caption column `{caption_column}` should contain either strings or lists of strings."
|
413 |
+
)
|
414 |
+
inputs = tokenizer(
|
415 |
+
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
416 |
+
)
|
417 |
+
return inputs.input_ids
|
418 |
+
|
419 |
+
# Preprocessing the datasets.
|
420 |
+
train_transforms = transforms.Compose(
|
421 |
+
[
|
422 |
+
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
423 |
+
transforms.RandomCrop(args.resolution) if args.random_crop else transforms.CenterCrop(args.resolution),
|
424 |
+
transforms.Lambda(lambda x: x) if args.no_hflip else transforms.RandomHorizontalFlip(),
|
425 |
+
transforms.ToTensor(),
|
426 |
+
transforms.Normalize([0.5], [0.5]),
|
427 |
+
]
|
428 |
+
)
|
429 |
+
|
430 |
+
#### START PREPROCESSING/COLLATION ####
|
431 |
+
if args.train_method == 'dpo':
|
432 |
+
print("Ignoring image_column variable, reading from jpg_0 and jpg_1")
|
433 |
+
def preprocess_train(examples):
|
434 |
+
all_pixel_values = []
|
435 |
+
for col_name in ['jpg_0', 'jpg_1']:
|
436 |
+
images = [Image.open(io.BytesIO(im_bytes)).convert("RGB")
|
437 |
+
for im_bytes in examples[col_name]]
|
438 |
+
pixel_values = [train_transforms(image) for image in images]
|
439 |
+
all_pixel_values.append(pixel_values)
|
440 |
+
# DOUBLE win images for visual prompts optimization
|
441 |
+
# all_pixel_values
|
442 |
+
# [[jpg_0,...],[jpg_1,...]]
|
443 |
+
# => [[jpg_0,...],[jpg_1,...],[jpg_0,...]]
|
444 |
+
all_pixel_values.append(copy.deepcopy(all_pixel_values[0]))
|
445 |
+
|
446 |
+
# Triple on channel dim, jpg_y then jpg_w and jpg_y
|
447 |
+
# im_tup_iterator = [(jpg_0,jpg_1,jpg_0),...]
|
448 |
+
im_tup_iterator = zip(*all_pixel_values)
|
449 |
+
combined_pixel_values = []
|
450 |
+
# item = (jpg_0,jpg_1,jpg_0), label
|
451 |
+
for im_tup, label_0 in zip(im_tup_iterator, examples['label_0']):
|
452 |
+
# print(len(im_tup), im_tup[0].shape)
|
453 |
+
# 3 torch.Size([3, 512, 512])
|
454 |
+
if label_0==0 and (not args.choice_model): # don't want to flip things if using choice_model for AI feedback
|
455 |
+
im_tup = im_tup[::-1]
|
456 |
+
# [3+3+3, 512, 512]
|
457 |
+
combined_im = torch.cat(im_tup, dim=0) # no batch dim
|
458 |
+
combined_pixel_values.append(combined_im)
|
459 |
+
# [[9, 512, 512],...]
|
460 |
+
examples["pixel_values"] = combined_pixel_values
|
461 |
+
# SDXL takes raw prompts
|
462 |
+
if not args.sdxl:
|
463 |
+
examples["input_ids"] = tokenize_captions(examples)
|
464 |
+
return examples
|
465 |
+
|
466 |
+
def collate_fn(examples):
|
467 |
+
# [bs, 9, 512, 512]
|
468 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
469 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
470 |
+
return_d = {"pixel_values": pixel_values}
|
471 |
+
return_d["emotions"] = [example["emotion"] for example in examples]
|
472 |
+
|
473 |
+
# SDXL takes raw prompts
|
474 |
+
if args.sdxl:
|
475 |
+
return_d["caption"] = [example["caption"] for example in examples]
|
476 |
+
else:
|
477 |
+
return_d["input_ids"] = torch.stack([example["input_ids"] for example in examples])
|
478 |
+
|
479 |
+
if args.choice_model:
|
480 |
+
# If using AIF then deliver image data for choice model to determine if should flip pixel values
|
481 |
+
for k in ['jpg_0', 'jpg_1']:
|
482 |
+
return_d[k] = [Image.open(io.BytesIO( example[k])).convert("RGB")
|
483 |
+
for example in examples]
|
484 |
+
return_d["caption"] = [example["caption"] for example in examples]
|
485 |
+
return return_d
|
486 |
+
|
487 |
+
### DATASET #####
|
488 |
+
with accelerator.main_process_first():
|
489 |
+
if args.max_train_samples is not None:
|
490 |
+
dataset[args.split] = dataset[args.split].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
491 |
+
train_dataset = dataset[args.split].with_transform(preprocess_train)
|
492 |
+
|
493 |
+
# DataLoaders creation:
|
494 |
+
train_dataloader = torch.utils.data.DataLoader(
|
495 |
+
train_dataset,
|
496 |
+
shuffle=(args.split=='train'),
|
497 |
+
collate_fn=collate_fn,
|
498 |
+
batch_size=args.train_batch_size,
|
499 |
+
num_workers=args.dataloader_num_workers,
|
500 |
+
drop_last=True
|
501 |
+
)
|
502 |
+
##### END BIG OLD DATASET BLOCK #####
|
503 |
+
|
504 |
+
# Scheduler and math around the number of training steps.
|
505 |
+
overrode_max_train_steps = False
|
506 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
507 |
+
if args.max_train_steps is None:
|
508 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
509 |
+
overrode_max_train_steps = True
|
510 |
+
|
511 |
+
lr_scheduler = get_scheduler(
|
512 |
+
args.lr_scheduler,
|
513 |
+
optimizer=optimizer,
|
514 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
515 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
516 |
+
)
|
517 |
+
|
518 |
+
#### START ACCELERATOR PREP ####
|
519 |
+
unet, visual_prompts, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
520 |
+
unet, visual_prompts, optimizer, train_dataloader, lr_scheduler
|
521 |
+
)
|
522 |
+
|
523 |
+
weight_dtype = torch.float32
|
524 |
+
|
525 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
526 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
527 |
+
if args.sdxl:
|
528 |
+
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
|
529 |
+
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
|
530 |
+
# print("offload vae (this actually stays as CPU)")
|
531 |
+
# vae = accelerate.cpu_offload(vae)
|
532 |
+
# print("Offloading text encoders to cpu")
|
533 |
+
text_encoder_one = accelerate.cpu_offload(text_encoder_one)
|
534 |
+
text_encoder_two = accelerate.cpu_offload(text_encoder_two)
|
535 |
+
if args.train_method == 'dpo':
|
536 |
+
ref_unet.to(accelerator.device, dtype=weight_dtype)
|
537 |
+
# print("offload ref_unet")
|
538 |
+
# ref_unet = accelerate.cpu_offload(ref_unet)
|
539 |
+
else:
|
540 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
541 |
+
if args.train_method == 'dpo':
|
542 |
+
ref_unet.to(accelerator.device, dtype=weight_dtype)
|
543 |
+
### END ACCELERATOR PREP ###
|
544 |
+
|
545 |
+
|
546 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
547 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
548 |
+
if overrode_max_train_steps:
|
549 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
550 |
+
# Afterwards we recalculate our number of training epochs
|
551 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
552 |
+
|
553 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
554 |
+
# The trackers initializes automatically on the main process.
|
555 |
+
if accelerator.is_main_process:
|
556 |
+
tracker_config = dict(vars(args))
|
557 |
+
init_kwargs = {
|
558 |
+
"wandb": {
|
559 |
+
"name": args.tracker_run_name,
|
560 |
+
}
|
561 |
+
}
|
562 |
+
accelerator.init_trackers(args.tracker_project_name, tracker_config, init_kwargs)
|
563 |
+
|
564 |
+
# Training initialization
|
565 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
566 |
+
|
567 |
+
logger.info("***** Running training *****")
|
568 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
569 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
570 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
571 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
572 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
573 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
574 |
+
global_step = 0
|
575 |
+
first_epoch = 0
|
576 |
+
|
577 |
+
# Potentially load in the weights and states from a previous save
|
578 |
+
if args.resume_from_checkpoint:
|
579 |
+
if args.resume_from_checkpoint != "latest":
|
580 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
581 |
+
else:
|
582 |
+
# Get the most recent checkpoint
|
583 |
+
dirs = os.listdir(args.output_dir)
|
584 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
585 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
586 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
587 |
+
|
588 |
+
if path is None:
|
589 |
+
accelerator.print(
|
590 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
591 |
+
)
|
592 |
+
args.resume_from_checkpoint = None
|
593 |
+
else:
|
594 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
595 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
596 |
+
global_step = int(path.split("-")[1])
|
597 |
+
|
598 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
599 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
600 |
+
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
601 |
+
|
602 |
+
|
603 |
+
# Bram Note: This was pretty janky to wrangle to look proper but works to my liking now
|
604 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
605 |
+
progress_bar.set_description("Steps")
|
606 |
+
|
607 |
+
|
608 |
+
#### START MAIN TRAINING LOOP #####
|
609 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
610 |
+
unet.train()
|
611 |
+
train_loss = 0.0
|
612 |
+
implicit_acc_accumulated_d, implicit_acc_accumulated_c = 0.0, 0.0
|
613 |
+
for step, batch in enumerate(train_dataloader):
|
614 |
+
# Skip steps until we reach the resumed step
|
615 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step and (not args.hard_skip_resume):
|
616 |
+
if step % args.gradient_accumulation_steps == 0:
|
617 |
+
print(f"Dummy processing step {step}, will start training at {resume_step}")
|
618 |
+
continue
|
619 |
+
with accelerator.accumulate(unet):
|
620 |
+
# Convert images to latent space
|
621 |
+
if args.train_method == 'dpo':
|
622 |
+
# [bs, 6, 512, 512] =>
|
623 |
+
# [[bs, 3, 512, 512]*3] =>
|
624 |
+
# [bs*3, 3, 512, 512]
|
625 |
+
feed_pixel_values = torch.cat(batch["pixel_values"].chunk(3, dim=1))
|
626 |
+
elif args.train_method == 'sft':
|
627 |
+
feed_pixel_values = batch["pixel_values"]
|
628 |
+
|
629 |
+
#### Diffusion Stuff ####
|
630 |
+
# encode pixels --> latents
|
631 |
+
with torch.no_grad():
|
632 |
+
latents = vae.encode(feed_pixel_values.to(weight_dtype)).latent_dist.sample()
|
633 |
+
latents = latents * vae.config.scaling_factor
|
634 |
+
|
635 |
+
# Sample noise that we'll add to the latents
|
636 |
+
noise = torch.randn_like(latents)
|
637 |
+
|
638 |
+
bsz = latents.shape[0]
|
639 |
+
# Sample a random timestep for each image
|
640 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
641 |
+
timesteps = timesteps.long()
|
642 |
+
|
643 |
+
if args.train_method == 'dpo':
|
644 |
+
# make timesteps and noise same for pairs in DPO
|
645 |
+
# [bs] => [1/3bs, 1/3bs, 1/3bs] => [1/3bs] => [bs]
|
646 |
+
timesteps = timesteps.chunk(3)[0].repeat(3)
|
647 |
+
noise = noise.chunk(3)[0].repeat(3, 1, 1, 1)
|
648 |
+
|
649 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
650 |
+
# (this is the forward diffusion process)
|
651 |
+
|
652 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
653 |
+
### START PREP BATCH ###
|
654 |
+
if args.sdxl:
|
655 |
+
# Get the text embedding for conditioning
|
656 |
+
with torch.no_grad():
|
657 |
+
# Need to compute "time_ids" https://github.com/huggingface/diffusers/blob/v0.20.0-release/examples/text_to_image/train_text_to_image_sdxl.py#L969
|
658 |
+
# for SDXL-base these are torch.tensor([args.resolution, args.resolution, *crop_coords_top_left, *target_size))
|
659 |
+
add_time_ids = torch.tensor([args.resolution,
|
660 |
+
args.resolution,
|
661 |
+
0,
|
662 |
+
0,
|
663 |
+
args.resolution,
|
664 |
+
args.resolution],
|
665 |
+
dtype=weight_dtype,
|
666 |
+
device=accelerator.device)[None, :].repeat(timesteps.size(0), 1)
|
667 |
+
prompt_batch = encode_prompt_sdxl(batch,
|
668 |
+
text_encoders,
|
669 |
+
tokenizers,
|
670 |
+
args.proportion_empty_prompts,
|
671 |
+
caption_column,
|
672 |
+
is_train=True,
|
673 |
+
)
|
674 |
+
if args.train_method == 'dpo':
|
675 |
+
prompt_batch["prompt_embeds"] = prompt_batch["prompt_embeds"].repeat(3, 1, 1)
|
676 |
+
prompt_batch["pooled_prompt_embeds"] = prompt_batch["pooled_prompt_embeds"].repeat(3, 1)
|
677 |
+
unet_added_conditions = {"time_ids": add_time_ids,
|
678 |
+
"text_embeds": prompt_batch["pooled_prompt_embeds"]}
|
679 |
+
else: # sd1.5
|
680 |
+
# Get the text embedding for conditioning
|
681 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
682 |
+
if args.train_method == 'dpo':
|
683 |
+
encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1)
|
684 |
+
|
685 |
+
emotion_visual_prompts = visual_prompts(batch['emotions'])
|
686 |
+
|
687 |
+
if args.train_method == 'dpo':
|
688 |
+
random_emotions = random_sample_emotions(batch['emotions'])
|
689 |
+
random_emotion_visual_prompts = visual_prompts(random_emotions)
|
690 |
+
emotion_visual_prompts = torch.cat([emotion_visual_prompts, emotion_visual_prompts, random_emotion_visual_prompts], dim=0)
|
691 |
+
|
692 |
+
#### END PREP BATCH ####
|
693 |
+
|
694 |
+
assert noise_scheduler.config.prediction_type == "epsilon"
|
695 |
+
target = noise
|
696 |
+
|
697 |
+
# Make the prediction from the model we're learning
|
698 |
+
model_batch_args = (
|
699 |
+
noisy_latents,
|
700 |
+
timesteps,
|
701 |
+
prompt_batch["prompt_embeds"] if args.sdxl else encoder_hidden_states
|
702 |
+
)
|
703 |
+
lora_model_batch_args = (
|
704 |
+
noisy_latents,
|
705 |
+
timesteps,
|
706 |
+
prompt_batch["prompt_embeds"] if args.sdxl else encoder_hidden_states,
|
707 |
+
emotion_visual_prompts
|
708 |
+
)
|
709 |
+
added_cond_kwargs = unet_added_conditions if args.sdxl else None
|
710 |
+
|
711 |
+
model_pred = unet(
|
712 |
+
*lora_model_batch_args,
|
713 |
+
added_cond_kwargs = added_cond_kwargs
|
714 |
+
).sample
|
715 |
+
#### START LOSS COMPUTATION ####
|
716 |
+
if args.train_method == 'sft': # SFT, casting for F.mse_loss
|
717 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
718 |
+
elif args.train_method == 'dpo':
|
719 |
+
# model_pred and ref_pred will be (2 * LBS) x 4 x latent_spatial_dim x latent_spatial_dim
|
720 |
+
# losses are both 2 * LBS
|
721 |
+
# 1st half of tensors is preferred (y_w), second half is unpreferred
|
722 |
+
model_losses = (model_pred - target).pow(2).mean(dim=[1,2,3])
|
723 |
+
model_losses_w, model_losses_l_d, model_losses_l_c = model_losses.chunk(3)
|
724 |
+
# below for logging purposes
|
725 |
+
raw_model_loss = (model_losses_w.mean() + model_losses_l_d.mean() + model_losses_l_c.mean()) / 3
|
726 |
+
|
727 |
+
model_diff_d = model_losses_w - model_losses_l_d # These are both LBS (as is t)
|
728 |
+
model_diff_c = model_losses_w - model_losses_l_c
|
729 |
+
|
730 |
+
with torch.no_grad(): # Get the reference policy (unet) prediction
|
731 |
+
ref_pred = ref_unet(
|
732 |
+
*model_batch_args,
|
733 |
+
added_cond_kwargs = added_cond_kwargs
|
734 |
+
).sample.detach()
|
735 |
+
ref_losses = (ref_pred - target).pow(2).mean(dim=[1,2,3])
|
736 |
+
ref_losses_w, ref_losses_l_d, ref_losses_l_c = ref_losses.chunk(3)
|
737 |
+
ref_diff = ref_losses_w - ref_losses_l_d
|
738 |
+
raw_ref_loss = ref_losses.mean()
|
739 |
+
|
740 |
+
scale_term = -0.5 * args.beta_dpo # beta_dpo = 5000
|
741 |
+
inside_term_d = scale_term * (model_diff_d - ref_diff)
|
742 |
+
implicit_acc_d = (inside_term_d > 0).sum().float() / inside_term_d.size(0)
|
743 |
+
# the scale_term may need to be adjust
|
744 |
+
# inside_term_c = -1 * model_diff_c
|
745 |
+
inside_term_c = scale_term * model_diff_c
|
746 |
+
implicit_acc_c = (inside_term_c > 0).sum().float() / inside_term_c.size(0)
|
747 |
+
loss = -1 * 0.5 * (F.logsigmoid(inside_term_d).mean() + F.logsigmoid(inside_term_c).mean())
|
748 |
+
#### END LOSS COMPUTATION ###
|
749 |
+
|
750 |
+
# Gather the losses across all processes for logging
|
751 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
752 |
+
train_loss += avg_loss.item() / args.gradient_accumulation_steps
|
753 |
+
# Also gather:
|
754 |
+
# - model MSE vs reference MSE (useful to observe divergent behavior)
|
755 |
+
# - Implicit accuracy
|
756 |
+
if args.train_method == 'dpo':
|
757 |
+
avg_model_mse = accelerator.gather(raw_model_loss.repeat(args.train_batch_size)).mean().item()
|
758 |
+
avg_ref_mse = accelerator.gather(raw_ref_loss.repeat(args.train_batch_size)).mean().item()
|
759 |
+
avg_acc_d = accelerator.gather(implicit_acc_d).mean().item()
|
760 |
+
avg_acc_c = accelerator.gather(implicit_acc_c).mean().item()
|
761 |
+
implicit_acc_accumulated_d += avg_acc_d / args.gradient_accumulation_steps
|
762 |
+
implicit_acc_accumulated_c += avg_acc_c / args.gradient_accumulation_steps
|
763 |
+
|
764 |
+
# Backpropagate
|
765 |
+
accelerator.backward(loss)
|
766 |
+
if accelerator.sync_gradients:
|
767 |
+
if not args.use_adafactor: # Adafactor does itself, maybe could do here to cut down on code
|
768 |
+
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
|
769 |
+
|
770 |
+
# # 打印看看梯度
|
771 |
+
# for name, param in unet.named_parameters():
|
772 |
+
# # if "mid_block.attentions.0.transformer_blocks" in name and "lora" in name:
|
773 |
+
# if param.grad is not None:
|
774 |
+
# print(f"{name} has gradient ✅, grad mean: {param.grad.mean().item()}")
|
775 |
+
# else:
|
776 |
+
# print(f"{name} has NO gradient ❌")
|
777 |
+
# for name, param in visual_prompts.named_parameters():
|
778 |
+
# if param.grad is not None:
|
779 |
+
# print(f"{name} has gradient ✅, grad mean: {param.grad.mean().item()}")
|
780 |
+
# else:
|
781 |
+
# print(f"{name} has NO gradient ❌")
|
782 |
+
|
783 |
+
optimizer.step()
|
784 |
+
lr_scheduler.step()
|
785 |
+
optimizer.zero_grad()
|
786 |
+
|
787 |
+
# Checks if the accelerator has just performed an optimization step, if so do "end of batch" logging
|
788 |
+
if accelerator.sync_gradients:
|
789 |
+
progress_bar.update(1)
|
790 |
+
global_step += 1
|
791 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
792 |
+
if args.train_method == 'dpo':
|
793 |
+
accelerator.log({"model_mse_unaccumulated": avg_model_mse}, step=global_step)
|
794 |
+
accelerator.log({"ref_mse_unaccumulated": avg_ref_mse}, step=global_step)
|
795 |
+
accelerator.log({"avg_acc_d": implicit_acc_accumulated_d}, step=global_step)
|
796 |
+
accelerator.log({"avg_acc_c": implicit_acc_accumulated_c}, step=global_step)
|
797 |
+
train_loss = 0.0
|
798 |
+
implicit_acc_accumulated_d, implicit_acc_accumulated_c = 0.0, 0.0
|
799 |
+
|
800 |
+
if global_step % args.checkpointing_steps == 0:
|
801 |
+
if accelerator.is_main_process:
|
802 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
803 |
+
accelerator.save_state(save_path)
|
804 |
+
logger.info(f"Saved state to {save_path}")
|
805 |
+
logger.info("Pretty sure saving/loading is fixed but proceed cautiously")
|
806 |
+
|
807 |
+
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
808 |
+
if args.train_method == 'dpo':
|
809 |
+
logs["implicit_acc_d"] = avg_acc_d
|
810 |
+
logs["implicit_acc_c"] = avg_acc_c
|
811 |
+
progress_bar.set_postfix(**logs)
|
812 |
+
|
813 |
+
if global_step >= args.max_train_steps:
|
814 |
+
break
|
815 |
+
|
816 |
+
|
817 |
+
# Create the pipeline using the trained modules and save it.
|
818 |
+
# This will save to top level of output_dir instead of a checkpoint directory
|
819 |
+
accelerator.wait_for_everyone()
|
820 |
+
if accelerator.is_main_process:
|
821 |
+
unet = accelerator.unwrap_model(unet)
|
822 |
+
if args.sdxl:
|
823 |
+
# Serialize pipeline.
|
824 |
+
if args.use_lora:
|
825 |
+
unet_lora_state_dict = convert_state_dict_to_diffusers(
|
826 |
+
get_peft_model_state_dict(unet)
|
827 |
+
)
|
828 |
+
StableDiffusionXLPipeline.save_lora_weights(
|
829 |
+
save_directory=os.path.join(args.output_dir, 'lora_weights_64'),
|
830 |
+
unet_lora_layers=unet_lora_state_dict,
|
831 |
+
safe_serialization=True,
|
832 |
+
)
|
833 |
+
logger.info("Saved LoRA Model to {}".format(os.path.join(args.output_dir, 'lora_weights_64')))
|
834 |
+
else:
|
835 |
+
vae = AutoencoderKL.from_pretrained(
|
836 |
+
vae_path,
|
837 |
+
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
|
838 |
+
revision=args.revision,
|
839 |
+
torch_dtype=weight_dtype,
|
840 |
+
)
|
841 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
842 |
+
args.pretrained_model_name_or_path, unet=unet, vae=vae, revision=args.revision, torch_dtype=weight_dtype
|
843 |
+
)
|
844 |
+
pipeline.save_pretrained(args.output_dir)
|
845 |
+
logger.info("Saved Model to {}".format(args.output_dir))
|
846 |
+
else:
|
847 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
848 |
+
args.pretrained_model_name_or_path,
|
849 |
+
text_encoder=text_encoder,
|
850 |
+
vae=vae,
|
851 |
+
unet=unet,
|
852 |
+
revision=args.revision,
|
853 |
+
)
|
854 |
+
if not args.use_lora: pipeline.save_pretrained(args.output_dir)
|
855 |
+
|
856 |
+
|
857 |
+
accelerator.end_training()
|
858 |
+
|
859 |
+
|
860 |
+
if __name__ == "__main__":
|
861 |
+
main()
|
models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
models/__init__.py
ADDED
File without changes
|
models/attention_processor.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/lora.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Set, List, Optional, Type
|
5 |
+
|
6 |
+
UNET_DEFAULT_TARGET_REPLACE = {"CrossAttention", "Attention", "GEGLU"}
|
7 |
+
DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE
|
8 |
+
|
9 |
+
|
10 |
+
class LoraInjectedLinear(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self, in_features, out_features, bias=False, r=4, dropout_p=0.1, scale=1.0
|
13 |
+
):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
if r > min(in_features, out_features):
|
17 |
+
#raise ValueError(
|
18 |
+
# f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
|
19 |
+
#)
|
20 |
+
print(f"LoRA rank {r} is too large. setting to: {min(in_features, out_features)}")
|
21 |
+
r = min(in_features, out_features)
|
22 |
+
|
23 |
+
self.r = r
|
24 |
+
self.linear = nn.Linear(in_features, out_features, bias)
|
25 |
+
self.lora_down = nn.Linear(in_features, r, bias=False)
|
26 |
+
self.dropout = nn.Dropout(dropout_p)
|
27 |
+
self.lora_up = nn.Linear(r, out_features, bias=False)
|
28 |
+
self.scale = scale
|
29 |
+
self.selector = nn.Identity()
|
30 |
+
|
31 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
32 |
+
nn.init.zeros_(self.lora_up.weight)
|
33 |
+
|
34 |
+
def update_step(self, cur_step):
|
35 |
+
self.cur_step = cur_step
|
36 |
+
|
37 |
+
def forward(self, input, return_format='linear'):
|
38 |
+
assert return_format in ['linear', 'lora', 'added', 'full']
|
39 |
+
if return_format == 'linear': return self.linear(input)
|
40 |
+
elif return_format == 'lora': return self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
41 |
+
elif return_format == 'added':
|
42 |
+
return (
|
43 |
+
self.linear(input)
|
44 |
+
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
45 |
+
* self.scale
|
46 |
+
)
|
47 |
+
linear_res = self.linear(input)
|
48 |
+
lora_res = self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
49 |
+
return linear_res, lora_res, self.scale
|
50 |
+
|
51 |
+
def realize_as_lora(self):
|
52 |
+
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
53 |
+
|
54 |
+
def set_selector_from_diag(self, diag: torch.Tensor):
|
55 |
+
# diag is a 1D tensor of size (r,)
|
56 |
+
assert diag.shape == (self.r,)
|
57 |
+
self.selector = nn.Linear(self.r, self.r, bias=False)
|
58 |
+
self.selector.weight.data = torch.diag(diag)
|
59 |
+
self.selector.weight.data = self.selector.weight.data.to(
|
60 |
+
self.lora_up.weight.device
|
61 |
+
).to(self.lora_up.weight.dtype)
|
62 |
+
|
63 |
+
|
64 |
+
def _find_modules_v2(
|
65 |
+
model,
|
66 |
+
ancestor_class: Optional[Set[str]] = None,
|
67 |
+
search_name = 'attn2',
|
68 |
+
include_names = ['to_q', 'to_k', 'to_v'],
|
69 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
70 |
+
exclude_children_of: Optional[List[Type[nn.Module]]] = [
|
71 |
+
LoraInjectedLinear,
|
72 |
+
],
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Find all modules of a certain class (or union of classes) that are direct or
|
76 |
+
indirect descendants of other modules of a certain class (or union of classes).
|
77 |
+
|
78 |
+
Returns all matching modules, along with the parent of those moduless and the
|
79 |
+
names they are referenced by.
|
80 |
+
"""
|
81 |
+
|
82 |
+
# Get the targets we should replace all linears under
|
83 |
+
if ancestor_class is not None:
|
84 |
+
ancestors = (
|
85 |
+
module
|
86 |
+
for module in model.modules()
|
87 |
+
if module.__class__.__name__ in ancestor_class
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
# this, incase you want to naively iterate over all modules.
|
91 |
+
ancestors = [module for module in model.modules()]
|
92 |
+
|
93 |
+
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
94 |
+
for ancestor in ancestors:
|
95 |
+
for fullname, module in ancestor.named_modules():
|
96 |
+
if search_name in fullname:
|
97 |
+
*path, base_name = fullname.split('.')
|
98 |
+
parent = ancestor
|
99 |
+
while path:
|
100 |
+
parent = parent.get_submodule(path.pop(0))
|
101 |
+
if base_name in include_names:
|
102 |
+
assert isinstance(module, search_class[0])
|
103 |
+
yield parent, base_name, module
|
104 |
+
# if any([isinstance(module, _class) for _class in search_class]):
|
105 |
+
# # Find the direct parent if this is a descendant, not a child, of target
|
106 |
+
# *path, name = fullname.split(".")
|
107 |
+
# parent = ancestor
|
108 |
+
# while path:
|
109 |
+
# parent = parent.get_submodule(path.pop(0))
|
110 |
+
# # Skip this linear if it's a child of a LoraInjectedLinear
|
111 |
+
# if exclude_children_of and any(
|
112 |
+
# [isinstance(parent, _class) for _class in exclude_children_of]
|
113 |
+
# ):
|
114 |
+
# continue
|
115 |
+
# # Otherwise, yield it
|
116 |
+
# yield parent, name, module
|
117 |
+
|
118 |
+
|
119 |
+
def inject_trainable_lora(
|
120 |
+
model: nn.Module,
|
121 |
+
target_replace_module: Set[str] = DEFAULT_TARGET_REPLACE,
|
122 |
+
lora_rank: int = 4,
|
123 |
+
loras=None, # path to lora .pt
|
124 |
+
verbose: bool = False,
|
125 |
+
dropout: float = 0.0,
|
126 |
+
scale: float = 1.0,
|
127 |
+
):
|
128 |
+
"""
|
129 |
+
inject lora into model, and returns lora parameter groups.
|
130 |
+
"""
|
131 |
+
|
132 |
+
require_grad_params = []
|
133 |
+
names = []
|
134 |
+
|
135 |
+
if loras != None:
|
136 |
+
loras = torch.load(loras)
|
137 |
+
|
138 |
+
for _module, name, _child_module in _find_modules_v2(
|
139 |
+
model, target_replace_module, search_class=[nn.Linear]
|
140 |
+
):
|
141 |
+
weight = _child_module.weight
|
142 |
+
bias = _child_module.bias
|
143 |
+
if verbose:
|
144 |
+
print("LoRA Injection : injecting lora into ", name)
|
145 |
+
print("LoRA Injection : weight shape", weight.shape)
|
146 |
+
_tmp = LoraInjectedLinear(
|
147 |
+
_child_module.in_features,
|
148 |
+
_child_module.out_features,
|
149 |
+
_child_module.bias is not None,
|
150 |
+
r=lora_rank,
|
151 |
+
dropout_p=dropout,
|
152 |
+
scale=scale,
|
153 |
+
)
|
154 |
+
_tmp.linear.weight = weight
|
155 |
+
if bias is not None:
|
156 |
+
_tmp.linear.bias = bias
|
157 |
+
|
158 |
+
# switch the module
|
159 |
+
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
160 |
+
_module._modules[name] = _tmp
|
161 |
+
|
162 |
+
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
163 |
+
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
164 |
+
|
165 |
+
if loras != None:
|
166 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
167 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
168 |
+
|
169 |
+
_module._modules[name].lora_up.weight.requires_grad = True
|
170 |
+
_module._modules[name].lora_down.weight.requires_grad = True
|
171 |
+
names.append(name)
|
172 |
+
|
173 |
+
return require_grad_params, names
|
174 |
+
|
175 |
+
|
176 |
+
lora_args = dict(
|
177 |
+
model = None,
|
178 |
+
loras = None,
|
179 |
+
target_replace_module = [],
|
180 |
+
lora_rank = 4,
|
181 |
+
dropout = 0,
|
182 |
+
scale = 0
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
def extract_lora_ups_down(model, target_replace_module=DEFAULT_TARGET_REPLACE):
|
187 |
+
loras = []
|
188 |
+
for _m, _n, _child_module in _find_modules_v2(
|
189 |
+
model,
|
190 |
+
target_replace_module,
|
191 |
+
search_class=[LoraInjectedLinear],
|
192 |
+
):
|
193 |
+
loras.append((_child_module.lora_up, _child_module.lora_down))
|
194 |
+
|
195 |
+
if len(loras) == 0:
|
196 |
+
raise ValueError("No lora injected.")
|
197 |
+
|
198 |
+
return loras
|
199 |
+
|
200 |
+
|
201 |
+
def do_lora_injection(model, replace_modules, lora_loader_args=None):
|
202 |
+
REPLACE_MODULES = replace_modules
|
203 |
+
|
204 |
+
params = None
|
205 |
+
negation = None
|
206 |
+
injector_args = lora_loader_args
|
207 |
+
|
208 |
+
params, negation = inject_trainable_lora(**injector_args)
|
209 |
+
|
210 |
+
success_inject = True
|
211 |
+
for _up, _down in extract_lora_ups_down(model, target_replace_module=REPLACE_MODULES):
|
212 |
+
|
213 |
+
if not all(x is not None for x in [_up, _down]): success_inject = False
|
214 |
+
|
215 |
+
if success_inject:
|
216 |
+
print(f"Lora successfully injected into {model.__class__.__name__}.")
|
217 |
+
else:
|
218 |
+
print(f'Fail to inject Lora into {model.__class__.__name__}')
|
219 |
+
exit(-1)
|
220 |
+
|
221 |
+
return params, negation
|
222 |
+
|
223 |
+
|
224 |
+
def add_lora_to_model(model, dropout=0.0, lora_rank=16,
|
225 |
+
scale=0, replace_modules: str = ["Transformer2DModel"]):
|
226 |
+
'''
|
227 |
+
replace_modules needs to be fixed to the proper block
|
228 |
+
'''
|
229 |
+
params = None
|
230 |
+
negation = None
|
231 |
+
|
232 |
+
lora_loader_args = lora_args.copy()
|
233 |
+
lora_loader_args.update({
|
234 |
+
"model": model,
|
235 |
+
"loras": None,
|
236 |
+
"target_replace_module": replace_modules,
|
237 |
+
"lora_rank": lora_rank,
|
238 |
+
"dropout": dropout,
|
239 |
+
"scale": scale
|
240 |
+
})
|
241 |
+
|
242 |
+
params, negation = do_lora_injection(model, replace_modules, lora_loader_args=lora_loader_args)
|
243 |
+
|
244 |
+
params = model if params is None else params
|
245 |
+
return params, negation
|
246 |
+
|
models/mm_attention.py
ADDED
@@ -0,0 +1,1254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, List, Optional, Tuple
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import deprecate, logging
|
21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
|
23 |
+
from models.attention_processor import Attention, JointAttnProcessor2_0
|
24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
ff_output = torch.cat(
|
40 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
41 |
+
dim=chunk_dim,
|
42 |
+
)
|
43 |
+
return ff_output
|
44 |
+
|
45 |
+
|
46 |
+
@maybe_allow_in_graph
|
47 |
+
class GatedSelfAttentionDense(nn.Module):
|
48 |
+
r"""
|
49 |
+
A gated self-attention dense layer that combines visual features and object features.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
query_dim (`int`): The number of channels in the query.
|
53 |
+
context_dim (`int`): The number of channels in the context.
|
54 |
+
n_heads (`int`): The number of heads to use for attention.
|
55 |
+
d_head (`int`): The number of channels in each head.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
62 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
63 |
+
|
64 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
65 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
66 |
+
|
67 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
68 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
69 |
+
|
70 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
71 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
72 |
+
|
73 |
+
self.enabled = True
|
74 |
+
|
75 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
76 |
+
if not self.enabled:
|
77 |
+
return x
|
78 |
+
|
79 |
+
n_visual = x.shape[1]
|
80 |
+
objs = self.linear(objs)
|
81 |
+
|
82 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
83 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
84 |
+
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
@maybe_allow_in_graph
|
89 |
+
class JointTransformerBlock(nn.Module):
|
90 |
+
r"""
|
91 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
92 |
+
|
93 |
+
Reference: https://arxiv.org/abs/2403.03206
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
dim (`int`): The number of channels in the input and output.
|
97 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
98 |
+
attention_head_dim (`int`): The number of channels in each head.
|
99 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
100 |
+
processing of `context` conditions.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
dim: int,
|
106 |
+
num_attention_heads: int,
|
107 |
+
attention_head_dim: int,
|
108 |
+
context_pre_only: bool = False,
|
109 |
+
qk_norm: Optional[str] = None,
|
110 |
+
use_dual_attention: bool = False,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.use_dual_attention = use_dual_attention
|
115 |
+
self.context_pre_only = context_pre_only
|
116 |
+
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
117 |
+
|
118 |
+
if use_dual_attention:
|
119 |
+
self.norm1 = SD35AdaLayerNormZeroX(dim)
|
120 |
+
else:
|
121 |
+
self.norm1 = AdaLayerNormZero(dim)
|
122 |
+
|
123 |
+
if context_norm_type == "ada_norm_continous":
|
124 |
+
self.norm1_context = AdaLayerNormContinuous(
|
125 |
+
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
126 |
+
)
|
127 |
+
elif context_norm_type == "ada_norm_zero":
|
128 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
129 |
+
else:
|
130 |
+
raise ValueError(
|
131 |
+
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
132 |
+
)
|
133 |
+
|
134 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
135 |
+
processor = JointAttnProcessor2_0()
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
139 |
+
)
|
140 |
+
|
141 |
+
self.attn = Attention(
|
142 |
+
query_dim=dim,
|
143 |
+
cross_attention_dim=None,
|
144 |
+
added_kv_proj_dim=dim,
|
145 |
+
dim_head=attention_head_dim,
|
146 |
+
heads=num_attention_heads,
|
147 |
+
out_dim=dim,
|
148 |
+
context_pre_only=context_pre_only,
|
149 |
+
bias=True,
|
150 |
+
processor=processor,
|
151 |
+
qk_norm=qk_norm,
|
152 |
+
eps=1e-6,
|
153 |
+
)
|
154 |
+
|
155 |
+
if use_dual_attention:
|
156 |
+
self.attn2 = Attention(
|
157 |
+
query_dim=dim,
|
158 |
+
cross_attention_dim=None,
|
159 |
+
dim_head=attention_head_dim,
|
160 |
+
heads=num_attention_heads,
|
161 |
+
out_dim=dim,
|
162 |
+
bias=True,
|
163 |
+
processor=processor,
|
164 |
+
qk_norm=qk_norm,
|
165 |
+
eps=1e-6,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
self.attn2 = None
|
169 |
+
|
170 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
171 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
172 |
+
|
173 |
+
if not context_pre_only:
|
174 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
175 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
176 |
+
else:
|
177 |
+
self.norm2_context = None
|
178 |
+
self.ff_context = None
|
179 |
+
|
180 |
+
# let chunk size default to None
|
181 |
+
self._chunk_size = None
|
182 |
+
self._chunk_dim = 0
|
183 |
+
|
184 |
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
185 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
186 |
+
# Sets chunk feed-forward
|
187 |
+
self._chunk_size = chunk_size
|
188 |
+
self._chunk_dim = dim
|
189 |
+
|
190 |
+
def forward(
|
191 |
+
self,
|
192 |
+
hidden_states: torch.FloatTensor,
|
193 |
+
encoder_hidden_states: torch.FloatTensor,
|
194 |
+
temb: torch.FloatTensor,
|
195 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
196 |
+
):
|
197 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
198 |
+
if self.use_dual_attention:
|
199 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
|
200 |
+
hidden_states, emb=temb
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
204 |
+
|
205 |
+
if self.context_pre_only:
|
206 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
207 |
+
else:
|
208 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
209 |
+
encoder_hidden_states, emb=temb
|
210 |
+
)
|
211 |
+
|
212 |
+
# Attention.
|
213 |
+
attn_output, context_attn_output = self.attn(
|
214 |
+
hidden_states=norm_hidden_states,
|
215 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
216 |
+
**joint_attention_kwargs,
|
217 |
+
)
|
218 |
+
|
219 |
+
# Process attention outputs for the `hidden_states`.
|
220 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
221 |
+
hidden_states = hidden_states + attn_output
|
222 |
+
|
223 |
+
if self.use_dual_attention:
|
224 |
+
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs)
|
225 |
+
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
|
226 |
+
hidden_states = hidden_states + attn_output2
|
227 |
+
|
228 |
+
norm_hidden_states = self.norm2(hidden_states)
|
229 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
230 |
+
if self._chunk_size is not None:
|
231 |
+
# "feed_forward_chunk_size" can be used to save memory
|
232 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
233 |
+
else:
|
234 |
+
ff_output = self.ff(norm_hidden_states)
|
235 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
236 |
+
|
237 |
+
hidden_states = hidden_states + ff_output
|
238 |
+
|
239 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
240 |
+
if self.context_pre_only:
|
241 |
+
encoder_hidden_states = None
|
242 |
+
else:
|
243 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
244 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
245 |
+
|
246 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
247 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
248 |
+
if self._chunk_size is not None:
|
249 |
+
# "feed_forward_chunk_size" can be used to save memory
|
250 |
+
context_ff_output = _chunked_feed_forward(
|
251 |
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
252 |
+
)
|
253 |
+
else:
|
254 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
255 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
256 |
+
|
257 |
+
return encoder_hidden_states, hidden_states
|
258 |
+
|
259 |
+
|
260 |
+
@maybe_allow_in_graph
|
261 |
+
class BasicTransformerBlock(nn.Module):
|
262 |
+
r"""
|
263 |
+
A basic Transformer block.
|
264 |
+
|
265 |
+
Parameters:
|
266 |
+
dim (`int`): The number of channels in the input and output.
|
267 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
268 |
+
attention_head_dim (`int`): The number of channels in each head.
|
269 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
270 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
271 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
272 |
+
num_embeds_ada_norm (:
|
273 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
274 |
+
attention_bias (:
|
275 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
276 |
+
only_cross_attention (`bool`, *optional*):
|
277 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
278 |
+
double_self_attention (`bool`, *optional*):
|
279 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
280 |
+
upcast_attention (`bool`, *optional*):
|
281 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
282 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
283 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
284 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
285 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
286 |
+
final_dropout (`bool` *optional*, defaults to False):
|
287 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
288 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
289 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
290 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
291 |
+
The type of positional embeddings to apply to.
|
292 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
293 |
+
The maximum number of positional embeddings to apply.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(
|
297 |
+
self,
|
298 |
+
dim: int,
|
299 |
+
num_attention_heads: int,
|
300 |
+
attention_head_dim: int,
|
301 |
+
dropout=0.0,
|
302 |
+
cross_attention_dim: Optional[int] = None,
|
303 |
+
activation_fn: str = "geglu",
|
304 |
+
num_embeds_ada_norm: Optional[int] = None,
|
305 |
+
attention_bias: bool = False,
|
306 |
+
only_cross_attention: bool = False,
|
307 |
+
double_self_attention: bool = False,
|
308 |
+
upcast_attention: bool = False,
|
309 |
+
norm_elementwise_affine: bool = True,
|
310 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
311 |
+
norm_eps: float = 1e-5,
|
312 |
+
final_dropout: bool = False,
|
313 |
+
attention_type: str = "default",
|
314 |
+
positional_embeddings: Optional[str] = None,
|
315 |
+
num_positional_embeddings: Optional[int] = None,
|
316 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
317 |
+
ada_norm_bias: Optional[int] = None,
|
318 |
+
ff_inner_dim: Optional[int] = None,
|
319 |
+
ff_bias: bool = True,
|
320 |
+
attention_out_bias: bool = True,
|
321 |
+
):
|
322 |
+
super().__init__()
|
323 |
+
self.dim = dim
|
324 |
+
self.num_attention_heads = num_attention_heads
|
325 |
+
self.attention_head_dim = attention_head_dim
|
326 |
+
self.dropout = dropout
|
327 |
+
self.cross_attention_dim = cross_attention_dim
|
328 |
+
self.activation_fn = activation_fn
|
329 |
+
self.attention_bias = attention_bias
|
330 |
+
self.double_self_attention = double_self_attention
|
331 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
332 |
+
self.positional_embeddings = positional_embeddings
|
333 |
+
self.num_positional_embeddings = num_positional_embeddings
|
334 |
+
self.only_cross_attention = only_cross_attention
|
335 |
+
|
336 |
+
# We keep these boolean flags for backward-compatibility.
|
337 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
338 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
339 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
340 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
341 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
342 |
+
|
343 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
344 |
+
raise ValueError(
|
345 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
346 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
347 |
+
)
|
348 |
+
|
349 |
+
self.norm_type = norm_type
|
350 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
351 |
+
|
352 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
353 |
+
raise ValueError(
|
354 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
355 |
+
)
|
356 |
+
|
357 |
+
if positional_embeddings == "sinusoidal":
|
358 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
359 |
+
else:
|
360 |
+
self.pos_embed = None
|
361 |
+
|
362 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
363 |
+
# 1. Self-Attn
|
364 |
+
if norm_type == "ada_norm":
|
365 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
366 |
+
elif norm_type == "ada_norm_zero":
|
367 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
368 |
+
elif norm_type == "ada_norm_continuous":
|
369 |
+
self.norm1 = AdaLayerNormContinuous(
|
370 |
+
dim,
|
371 |
+
ada_norm_continous_conditioning_embedding_dim,
|
372 |
+
norm_elementwise_affine,
|
373 |
+
norm_eps,
|
374 |
+
ada_norm_bias,
|
375 |
+
"rms_norm",
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
379 |
+
|
380 |
+
self.attn1 = Attention(
|
381 |
+
query_dim=dim,
|
382 |
+
heads=num_attention_heads,
|
383 |
+
dim_head=attention_head_dim,
|
384 |
+
dropout=dropout,
|
385 |
+
bias=attention_bias,
|
386 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
387 |
+
upcast_attention=upcast_attention,
|
388 |
+
out_bias=attention_out_bias,
|
389 |
+
)
|
390 |
+
|
391 |
+
# 2. Cross-Attn
|
392 |
+
if cross_attention_dim is not None or double_self_attention:
|
393 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
394 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
395 |
+
# the second cross attention block.
|
396 |
+
if norm_type == "ada_norm":
|
397 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
398 |
+
elif norm_type == "ada_norm_continuous":
|
399 |
+
self.norm2 = AdaLayerNormContinuous(
|
400 |
+
dim,
|
401 |
+
ada_norm_continous_conditioning_embedding_dim,
|
402 |
+
norm_elementwise_affine,
|
403 |
+
norm_eps,
|
404 |
+
ada_norm_bias,
|
405 |
+
"rms_norm",
|
406 |
+
)
|
407 |
+
else:
|
408 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
409 |
+
|
410 |
+
self.attn2 = Attention(
|
411 |
+
query_dim=dim,
|
412 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
413 |
+
heads=num_attention_heads,
|
414 |
+
dim_head=attention_head_dim,
|
415 |
+
dropout=dropout,
|
416 |
+
bias=attention_bias,
|
417 |
+
upcast_attention=upcast_attention,
|
418 |
+
out_bias=attention_out_bias,
|
419 |
+
) # is self-attn if encoder_hidden_states is none
|
420 |
+
else:
|
421 |
+
if norm_type == "ada_norm_single": # For Latte
|
422 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
423 |
+
else:
|
424 |
+
self.norm2 = None
|
425 |
+
self.attn2 = None
|
426 |
+
|
427 |
+
# 3. Feed-forward
|
428 |
+
if norm_type == "ada_norm_continuous":
|
429 |
+
self.norm3 = AdaLayerNormContinuous(
|
430 |
+
dim,
|
431 |
+
ada_norm_continous_conditioning_embedding_dim,
|
432 |
+
norm_elementwise_affine,
|
433 |
+
norm_eps,
|
434 |
+
ada_norm_bias,
|
435 |
+
"layer_norm",
|
436 |
+
)
|
437 |
+
|
438 |
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
|
439 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
440 |
+
elif norm_type == "layer_norm_i2vgen":
|
441 |
+
self.norm3 = None
|
442 |
+
|
443 |
+
self.ff = FeedForward(
|
444 |
+
dim,
|
445 |
+
dropout=dropout,
|
446 |
+
activation_fn=activation_fn,
|
447 |
+
final_dropout=final_dropout,
|
448 |
+
inner_dim=ff_inner_dim,
|
449 |
+
bias=ff_bias,
|
450 |
+
)
|
451 |
+
|
452 |
+
# 4. Fuser
|
453 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
454 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
455 |
+
|
456 |
+
# 5. Scale-shift for PixArt-Alpha.
|
457 |
+
if norm_type == "ada_norm_single":
|
458 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
459 |
+
|
460 |
+
# let chunk size default to None
|
461 |
+
self._chunk_size = None
|
462 |
+
self._chunk_dim = 0
|
463 |
+
|
464 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
465 |
+
# Sets chunk feed-forward
|
466 |
+
self._chunk_size = chunk_size
|
467 |
+
self._chunk_dim = dim
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
hidden_states: torch.Tensor,
|
472 |
+
attention_mask: Optional[torch.Tensor] = None,
|
473 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
474 |
+
encoder_lora_states: Optional[torch.Tensor] = None,
|
475 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
476 |
+
timestep: Optional[torch.LongTensor] = None,
|
477 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
478 |
+
class_labels: Optional[torch.LongTensor] = None,
|
479 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
480 |
+
) -> torch.Tensor:
|
481 |
+
if cross_attention_kwargs is not None:
|
482 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
483 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
484 |
+
|
485 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
486 |
+
# 0. Self-Attention
|
487 |
+
batch_size = hidden_states.shape[0]
|
488 |
+
|
489 |
+
if self.norm_type == "ada_norm":
|
490 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
491 |
+
elif self.norm_type == "ada_norm_zero":
|
492 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
493 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
494 |
+
)
|
495 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
496 |
+
norm_hidden_states = self.norm1(hidden_states)
|
497 |
+
elif self.norm_type == "ada_norm_continuous":
|
498 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
499 |
+
elif self.norm_type == "ada_norm_single":
|
500 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
501 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
502 |
+
).chunk(6, dim=1)
|
503 |
+
norm_hidden_states = self.norm1(hidden_states)
|
504 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
505 |
+
else:
|
506 |
+
raise ValueError("Incorrect norm used")
|
507 |
+
|
508 |
+
if self.pos_embed is not None:
|
509 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
510 |
+
|
511 |
+
# 1. Prepare GLIGEN inputs
|
512 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
513 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
514 |
+
|
515 |
+
attn_output = self.attn1(
|
516 |
+
norm_hidden_states,
|
517 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
518 |
+
attention_mask=attention_mask,
|
519 |
+
**cross_attention_kwargs,
|
520 |
+
)
|
521 |
+
|
522 |
+
if self.norm_type == "ada_norm_zero":
|
523 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
524 |
+
elif self.norm_type == "ada_norm_single":
|
525 |
+
attn_output = gate_msa * attn_output
|
526 |
+
|
527 |
+
hidden_states = attn_output + hidden_states
|
528 |
+
if hidden_states.ndim == 4:
|
529 |
+
hidden_states = hidden_states.squeeze(1)
|
530 |
+
|
531 |
+
# 1.2 GLIGEN Control
|
532 |
+
if gligen_kwargs is not None:
|
533 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
534 |
+
|
535 |
+
# 3. Cross-Attention
|
536 |
+
if self.attn2 is not None:
|
537 |
+
if self.norm_type == "ada_norm":
|
538 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
539 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
540 |
+
norm_hidden_states = self.norm2(hidden_states)
|
541 |
+
elif self.norm_type == "ada_norm_single":
|
542 |
+
# For PixArt norm2 isn't applied here:
|
543 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
544 |
+
norm_hidden_states = hidden_states
|
545 |
+
elif self.norm_type == "ada_norm_continuous":
|
546 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
547 |
+
else:
|
548 |
+
raise ValueError("Incorrect norm")
|
549 |
+
|
550 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
551 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
552 |
+
|
553 |
+
attn_output = self.attn2(
|
554 |
+
norm_hidden_states,
|
555 |
+
encoder_hidden_states=encoder_hidden_states,
|
556 |
+
encoder_lora_states=encoder_lora_states,
|
557 |
+
attention_mask=encoder_attention_mask,
|
558 |
+
**cross_attention_kwargs,
|
559 |
+
)
|
560 |
+
hidden_states = attn_output + hidden_states
|
561 |
+
|
562 |
+
# 4. Feed-forward
|
563 |
+
# i2vgen doesn't have this norm 🤷♂️
|
564 |
+
if self.norm_type == "ada_norm_continuous":
|
565 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
566 |
+
elif not self.norm_type == "ada_norm_single":
|
567 |
+
norm_hidden_states = self.norm3(hidden_states)
|
568 |
+
|
569 |
+
if self.norm_type == "ada_norm_zero":
|
570 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
571 |
+
|
572 |
+
if self.norm_type == "ada_norm_single":
|
573 |
+
norm_hidden_states = self.norm2(hidden_states)
|
574 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
575 |
+
|
576 |
+
if self._chunk_size is not None:
|
577 |
+
# "feed_forward_chunk_size" can be used to save memory
|
578 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
579 |
+
else:
|
580 |
+
ff_output = self.ff(norm_hidden_states)
|
581 |
+
|
582 |
+
if self.norm_type == "ada_norm_zero":
|
583 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
584 |
+
elif self.norm_type == "ada_norm_single":
|
585 |
+
ff_output = gate_mlp * ff_output
|
586 |
+
|
587 |
+
hidden_states = ff_output + hidden_states
|
588 |
+
if hidden_states.ndim == 4:
|
589 |
+
hidden_states = hidden_states.squeeze(1)
|
590 |
+
|
591 |
+
return hidden_states
|
592 |
+
|
593 |
+
|
594 |
+
class LuminaFeedForward(nn.Module):
|
595 |
+
r"""
|
596 |
+
A feed-forward layer.
|
597 |
+
|
598 |
+
Parameters:
|
599 |
+
hidden_size (`int`):
|
600 |
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
601 |
+
hidden representations.
|
602 |
+
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
|
603 |
+
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
|
604 |
+
of this value.
|
605 |
+
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
|
606 |
+
dimension. Defaults to None.
|
607 |
+
"""
|
608 |
+
|
609 |
+
def __init__(
|
610 |
+
self,
|
611 |
+
dim: int,
|
612 |
+
inner_dim: int,
|
613 |
+
multiple_of: Optional[int] = 256,
|
614 |
+
ffn_dim_multiplier: Optional[float] = None,
|
615 |
+
):
|
616 |
+
super().__init__()
|
617 |
+
inner_dim = int(2 * inner_dim / 3)
|
618 |
+
# custom hidden_size factor multiplier
|
619 |
+
if ffn_dim_multiplier is not None:
|
620 |
+
inner_dim = int(ffn_dim_multiplier * inner_dim)
|
621 |
+
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
622 |
+
|
623 |
+
self.linear_1 = nn.Linear(
|
624 |
+
dim,
|
625 |
+
inner_dim,
|
626 |
+
bias=False,
|
627 |
+
)
|
628 |
+
self.linear_2 = nn.Linear(
|
629 |
+
inner_dim,
|
630 |
+
dim,
|
631 |
+
bias=False,
|
632 |
+
)
|
633 |
+
self.linear_3 = nn.Linear(
|
634 |
+
dim,
|
635 |
+
inner_dim,
|
636 |
+
bias=False,
|
637 |
+
)
|
638 |
+
self.silu = FP32SiLU()
|
639 |
+
|
640 |
+
def forward(self, x):
|
641 |
+
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
|
642 |
+
|
643 |
+
|
644 |
+
@maybe_allow_in_graph
|
645 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
646 |
+
r"""
|
647 |
+
A basic Transformer block for video like data.
|
648 |
+
|
649 |
+
Parameters:
|
650 |
+
dim (`int`): The number of channels in the input and output.
|
651 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
652 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
653 |
+
attention_head_dim (`int`): The number of channels in each head.
|
654 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
655 |
+
"""
|
656 |
+
|
657 |
+
def __init__(
|
658 |
+
self,
|
659 |
+
dim: int,
|
660 |
+
time_mix_inner_dim: int,
|
661 |
+
num_attention_heads: int,
|
662 |
+
attention_head_dim: int,
|
663 |
+
cross_attention_dim: Optional[int] = None,
|
664 |
+
):
|
665 |
+
super().__init__()
|
666 |
+
self.is_res = dim == time_mix_inner_dim
|
667 |
+
|
668 |
+
self.norm_in = nn.LayerNorm(dim)
|
669 |
+
|
670 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
671 |
+
# 1. Self-Attn
|
672 |
+
self.ff_in = FeedForward(
|
673 |
+
dim,
|
674 |
+
dim_out=time_mix_inner_dim,
|
675 |
+
activation_fn="geglu",
|
676 |
+
)
|
677 |
+
|
678 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
679 |
+
self.attn1 = Attention(
|
680 |
+
query_dim=time_mix_inner_dim,
|
681 |
+
heads=num_attention_heads,
|
682 |
+
dim_head=attention_head_dim,
|
683 |
+
cross_attention_dim=None,
|
684 |
+
)
|
685 |
+
|
686 |
+
# 2. Cross-Attn
|
687 |
+
if cross_attention_dim is not None:
|
688 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
689 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
690 |
+
# the second cross attention block.
|
691 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
692 |
+
self.attn2 = Attention(
|
693 |
+
query_dim=time_mix_inner_dim,
|
694 |
+
cross_attention_dim=cross_attention_dim,
|
695 |
+
heads=num_attention_heads,
|
696 |
+
dim_head=attention_head_dim,
|
697 |
+
) # is self-attn if encoder_hidden_states is none
|
698 |
+
else:
|
699 |
+
self.norm2 = None
|
700 |
+
self.attn2 = None
|
701 |
+
|
702 |
+
# 3. Feed-forward
|
703 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
704 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
705 |
+
|
706 |
+
# let chunk size default to None
|
707 |
+
self._chunk_size = None
|
708 |
+
self._chunk_dim = None
|
709 |
+
|
710 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
711 |
+
# Sets chunk feed-forward
|
712 |
+
self._chunk_size = chunk_size
|
713 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
714 |
+
self._chunk_dim = 1
|
715 |
+
|
716 |
+
def forward(
|
717 |
+
self,
|
718 |
+
hidden_states: torch.Tensor,
|
719 |
+
num_frames: int,
|
720 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
721 |
+
) -> torch.Tensor:
|
722 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
723 |
+
# 0. Self-Attention
|
724 |
+
batch_size = hidden_states.shape[0]
|
725 |
+
|
726 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
727 |
+
batch_size = batch_frames // num_frames
|
728 |
+
|
729 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
730 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
731 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
732 |
+
|
733 |
+
residual = hidden_states
|
734 |
+
hidden_states = self.norm_in(hidden_states)
|
735 |
+
|
736 |
+
if self._chunk_size is not None:
|
737 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
738 |
+
else:
|
739 |
+
hidden_states = self.ff_in(hidden_states)
|
740 |
+
|
741 |
+
if self.is_res:
|
742 |
+
hidden_states = hidden_states + residual
|
743 |
+
|
744 |
+
norm_hidden_states = self.norm1(hidden_states)
|
745 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
746 |
+
hidden_states = attn_output + hidden_states
|
747 |
+
|
748 |
+
# 3. Cross-Attention
|
749 |
+
if self.attn2 is not None:
|
750 |
+
norm_hidden_states = self.norm2(hidden_states)
|
751 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
752 |
+
hidden_states = attn_output + hidden_states
|
753 |
+
|
754 |
+
# 4. Feed-forward
|
755 |
+
norm_hidden_states = self.norm3(hidden_states)
|
756 |
+
|
757 |
+
if self._chunk_size is not None:
|
758 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
759 |
+
else:
|
760 |
+
ff_output = self.ff(norm_hidden_states)
|
761 |
+
|
762 |
+
if self.is_res:
|
763 |
+
hidden_states = ff_output + hidden_states
|
764 |
+
else:
|
765 |
+
hidden_states = ff_output
|
766 |
+
|
767 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
768 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
769 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
770 |
+
|
771 |
+
return hidden_states
|
772 |
+
|
773 |
+
|
774 |
+
class SkipFFTransformerBlock(nn.Module):
|
775 |
+
def __init__(
|
776 |
+
self,
|
777 |
+
dim: int,
|
778 |
+
num_attention_heads: int,
|
779 |
+
attention_head_dim: int,
|
780 |
+
kv_input_dim: int,
|
781 |
+
kv_input_dim_proj_use_bias: bool,
|
782 |
+
dropout=0.0,
|
783 |
+
cross_attention_dim: Optional[int] = None,
|
784 |
+
attention_bias: bool = False,
|
785 |
+
attention_out_bias: bool = True,
|
786 |
+
):
|
787 |
+
super().__init__()
|
788 |
+
if kv_input_dim != dim:
|
789 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
790 |
+
else:
|
791 |
+
self.kv_mapper = None
|
792 |
+
|
793 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
794 |
+
|
795 |
+
self.attn1 = Attention(
|
796 |
+
query_dim=dim,
|
797 |
+
heads=num_attention_heads,
|
798 |
+
dim_head=attention_head_dim,
|
799 |
+
dropout=dropout,
|
800 |
+
bias=attention_bias,
|
801 |
+
cross_attention_dim=cross_attention_dim,
|
802 |
+
out_bias=attention_out_bias,
|
803 |
+
)
|
804 |
+
|
805 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
806 |
+
|
807 |
+
self.attn2 = Attention(
|
808 |
+
query_dim=dim,
|
809 |
+
cross_attention_dim=cross_attention_dim,
|
810 |
+
heads=num_attention_heads,
|
811 |
+
dim_head=attention_head_dim,
|
812 |
+
dropout=dropout,
|
813 |
+
bias=attention_bias,
|
814 |
+
out_bias=attention_out_bias,
|
815 |
+
)
|
816 |
+
|
817 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
818 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
819 |
+
|
820 |
+
if self.kv_mapper is not None:
|
821 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
822 |
+
|
823 |
+
norm_hidden_states = self.norm1(hidden_states)
|
824 |
+
|
825 |
+
attn_output = self.attn1(
|
826 |
+
norm_hidden_states,
|
827 |
+
encoder_hidden_states=encoder_hidden_states,
|
828 |
+
**cross_attention_kwargs,
|
829 |
+
)
|
830 |
+
|
831 |
+
hidden_states = attn_output + hidden_states
|
832 |
+
|
833 |
+
norm_hidden_states = self.norm2(hidden_states)
|
834 |
+
|
835 |
+
attn_output = self.attn2(
|
836 |
+
norm_hidden_states,
|
837 |
+
encoder_hidden_states=encoder_hidden_states,
|
838 |
+
**cross_attention_kwargs,
|
839 |
+
)
|
840 |
+
|
841 |
+
hidden_states = attn_output + hidden_states
|
842 |
+
|
843 |
+
return hidden_states
|
844 |
+
|
845 |
+
|
846 |
+
@maybe_allow_in_graph
|
847 |
+
class FreeNoiseTransformerBlock(nn.Module):
|
848 |
+
r"""
|
849 |
+
A FreeNoise Transformer block.
|
850 |
+
|
851 |
+
Parameters:
|
852 |
+
dim (`int`):
|
853 |
+
The number of channels in the input and output.
|
854 |
+
num_attention_heads (`int`):
|
855 |
+
The number of heads to use for multi-head attention.
|
856 |
+
attention_head_dim (`int`):
|
857 |
+
The number of channels in each head.
|
858 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
859 |
+
The dropout probability to use.
|
860 |
+
cross_attention_dim (`int`, *optional*):
|
861 |
+
The size of the encoder_hidden_states vector for cross attention.
|
862 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
863 |
+
Activation function to be used in feed-forward.
|
864 |
+
num_embeds_ada_norm (`int`, *optional*):
|
865 |
+
The number of diffusion steps used during training. See `Transformer2DModel`.
|
866 |
+
attention_bias (`bool`, defaults to `False`):
|
867 |
+
Configure if the attentions should contain a bias parameter.
|
868 |
+
only_cross_attention (`bool`, defaults to `False`):
|
869 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
870 |
+
double_self_attention (`bool`, defaults to `False`):
|
871 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
872 |
+
upcast_attention (`bool`, defaults to `False`):
|
873 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
874 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
875 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
876 |
+
norm_type (`str`, defaults to `"layer_norm"`):
|
877 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
878 |
+
final_dropout (`bool` defaults to `False`):
|
879 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
880 |
+
attention_type (`str`, defaults to `"default"`):
|
881 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
882 |
+
positional_embeddings (`str`, *optional*):
|
883 |
+
The type of positional embeddings to apply to.
|
884 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
885 |
+
The maximum number of positional embeddings to apply.
|
886 |
+
ff_inner_dim (`int`, *optional*):
|
887 |
+
Hidden dimension of feed-forward MLP.
|
888 |
+
ff_bias (`bool`, defaults to `True`):
|
889 |
+
Whether or not to use bias in feed-forward MLP.
|
890 |
+
attention_out_bias (`bool`, defaults to `True`):
|
891 |
+
Whether or not to use bias in attention output project layer.
|
892 |
+
context_length (`int`, defaults to `16`):
|
893 |
+
The maximum number of frames that the FreeNoise block processes at once.
|
894 |
+
context_stride (`int`, defaults to `4`):
|
895 |
+
The number of frames to be skipped before starting to process a new batch of `context_length` frames.
|
896 |
+
weighting_scheme (`str`, defaults to `"pyramid"`):
|
897 |
+
The weighting scheme to use for weighting averaging of processed latent frames. As described in the
|
898 |
+
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
|
899 |
+
used.
|
900 |
+
"""
|
901 |
+
|
902 |
+
def __init__(
|
903 |
+
self,
|
904 |
+
dim: int,
|
905 |
+
num_attention_heads: int,
|
906 |
+
attention_head_dim: int,
|
907 |
+
dropout: float = 0.0,
|
908 |
+
cross_attention_dim: Optional[int] = None,
|
909 |
+
activation_fn: str = "geglu",
|
910 |
+
num_embeds_ada_norm: Optional[int] = None,
|
911 |
+
attention_bias: bool = False,
|
912 |
+
only_cross_attention: bool = False,
|
913 |
+
double_self_attention: bool = False,
|
914 |
+
upcast_attention: bool = False,
|
915 |
+
norm_elementwise_affine: bool = True,
|
916 |
+
norm_type: str = "layer_norm",
|
917 |
+
norm_eps: float = 1e-5,
|
918 |
+
final_dropout: bool = False,
|
919 |
+
positional_embeddings: Optional[str] = None,
|
920 |
+
num_positional_embeddings: Optional[int] = None,
|
921 |
+
ff_inner_dim: Optional[int] = None,
|
922 |
+
ff_bias: bool = True,
|
923 |
+
attention_out_bias: bool = True,
|
924 |
+
context_length: int = 16,
|
925 |
+
context_stride: int = 4,
|
926 |
+
weighting_scheme: str = "pyramid",
|
927 |
+
):
|
928 |
+
super().__init__()
|
929 |
+
self.dim = dim
|
930 |
+
self.num_attention_heads = num_attention_heads
|
931 |
+
self.attention_head_dim = attention_head_dim
|
932 |
+
self.dropout = dropout
|
933 |
+
self.cross_attention_dim = cross_attention_dim
|
934 |
+
self.activation_fn = activation_fn
|
935 |
+
self.attention_bias = attention_bias
|
936 |
+
self.double_self_attention = double_self_attention
|
937 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
938 |
+
self.positional_embeddings = positional_embeddings
|
939 |
+
self.num_positional_embeddings = num_positional_embeddings
|
940 |
+
self.only_cross_attention = only_cross_attention
|
941 |
+
|
942 |
+
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
|
943 |
+
|
944 |
+
# We keep these boolean flags for backward-compatibility.
|
945 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
946 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
947 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
948 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
949 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
950 |
+
|
951 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
952 |
+
raise ValueError(
|
953 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
954 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
955 |
+
)
|
956 |
+
|
957 |
+
self.norm_type = norm_type
|
958 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
959 |
+
|
960 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
961 |
+
raise ValueError(
|
962 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
963 |
+
)
|
964 |
+
|
965 |
+
if positional_embeddings == "sinusoidal":
|
966 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
967 |
+
else:
|
968 |
+
self.pos_embed = None
|
969 |
+
|
970 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
971 |
+
# 1. Self-Attn
|
972 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
973 |
+
|
974 |
+
self.attn1 = Attention(
|
975 |
+
query_dim=dim,
|
976 |
+
heads=num_attention_heads,
|
977 |
+
dim_head=attention_head_dim,
|
978 |
+
dropout=dropout,
|
979 |
+
bias=attention_bias,
|
980 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
981 |
+
upcast_attention=upcast_attention,
|
982 |
+
out_bias=attention_out_bias,
|
983 |
+
)
|
984 |
+
|
985 |
+
# 2. Cross-Attn
|
986 |
+
if cross_attention_dim is not None or double_self_attention:
|
987 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
988 |
+
|
989 |
+
self.attn2 = Attention(
|
990 |
+
query_dim=dim,
|
991 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
992 |
+
heads=num_attention_heads,
|
993 |
+
dim_head=attention_head_dim,
|
994 |
+
dropout=dropout,
|
995 |
+
bias=attention_bias,
|
996 |
+
upcast_attention=upcast_attention,
|
997 |
+
out_bias=attention_out_bias,
|
998 |
+
) # is self-attn if encoder_hidden_states is none
|
999 |
+
|
1000 |
+
# 3. Feed-forward
|
1001 |
+
self.ff = FeedForward(
|
1002 |
+
dim,
|
1003 |
+
dropout=dropout,
|
1004 |
+
activation_fn=activation_fn,
|
1005 |
+
final_dropout=final_dropout,
|
1006 |
+
inner_dim=ff_inner_dim,
|
1007 |
+
bias=ff_bias,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
1011 |
+
|
1012 |
+
# let chunk size default to None
|
1013 |
+
self._chunk_size = None
|
1014 |
+
self._chunk_dim = 0
|
1015 |
+
|
1016 |
+
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
|
1017 |
+
frame_indices = []
|
1018 |
+
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
|
1019 |
+
window_start = i
|
1020 |
+
window_end = min(num_frames, i + self.context_length)
|
1021 |
+
frame_indices.append((window_start, window_end))
|
1022 |
+
return frame_indices
|
1023 |
+
|
1024 |
+
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
1025 |
+
if weighting_scheme == "flat":
|
1026 |
+
weights = [1.0] * num_frames
|
1027 |
+
|
1028 |
+
elif weighting_scheme == "pyramid":
|
1029 |
+
if num_frames % 2 == 0:
|
1030 |
+
# num_frames = 4 => [1, 2, 2, 1]
|
1031 |
+
mid = num_frames // 2
|
1032 |
+
weights = list(range(1, mid + 1))
|
1033 |
+
weights = weights + weights[::-1]
|
1034 |
+
else:
|
1035 |
+
# num_frames = 5 => [1, 2, 3, 2, 1]
|
1036 |
+
mid = (num_frames + 1) // 2
|
1037 |
+
weights = list(range(1, mid))
|
1038 |
+
weights = weights + [mid] + weights[::-1]
|
1039 |
+
|
1040 |
+
elif weighting_scheme == "delayed_reverse_sawtooth":
|
1041 |
+
if num_frames % 2 == 0:
|
1042 |
+
# num_frames = 4 => [0.01, 2, 2, 1]
|
1043 |
+
mid = num_frames // 2
|
1044 |
+
weights = [0.01] * (mid - 1) + [mid]
|
1045 |
+
weights = weights + list(range(mid, 0, -1))
|
1046 |
+
else:
|
1047 |
+
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
|
1048 |
+
mid = (num_frames + 1) // 2
|
1049 |
+
weights = [0.01] * mid
|
1050 |
+
weights = weights + list(range(mid, 0, -1))
|
1051 |
+
else:
|
1052 |
+
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
1053 |
+
|
1054 |
+
return weights
|
1055 |
+
|
1056 |
+
def set_free_noise_properties(
|
1057 |
+
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
|
1058 |
+
) -> None:
|
1059 |
+
self.context_length = context_length
|
1060 |
+
self.context_stride = context_stride
|
1061 |
+
self.weighting_scheme = weighting_scheme
|
1062 |
+
|
1063 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
|
1064 |
+
# Sets chunk feed-forward
|
1065 |
+
self._chunk_size = chunk_size
|
1066 |
+
self._chunk_dim = dim
|
1067 |
+
|
1068 |
+
def forward(
|
1069 |
+
self,
|
1070 |
+
hidden_states: torch.Tensor,
|
1071 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1072 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1073 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1074 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1075 |
+
*args,
|
1076 |
+
**kwargs,
|
1077 |
+
) -> torch.Tensor:
|
1078 |
+
if cross_attention_kwargs is not None:
|
1079 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
1080 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
1081 |
+
|
1082 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
1083 |
+
|
1084 |
+
# hidden_states: [B x H x W, F, C]
|
1085 |
+
device = hidden_states.device
|
1086 |
+
dtype = hidden_states.dtype
|
1087 |
+
|
1088 |
+
num_frames = hidden_states.size(1)
|
1089 |
+
frame_indices = self._get_frame_indices(num_frames)
|
1090 |
+
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
|
1091 |
+
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
|
1092 |
+
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
|
1093 |
+
|
1094 |
+
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
|
1095 |
+
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
|
1096 |
+
# [(0, 16), (4, 20), (8, 24), (10, 26)]
|
1097 |
+
if not is_last_frame_batch_complete:
|
1098 |
+
if num_frames < self.context_length:
|
1099 |
+
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
|
1100 |
+
last_frame_batch_length = num_frames - frame_indices[-1][1]
|
1101 |
+
frame_indices.append((num_frames - self.context_length, num_frames))
|
1102 |
+
|
1103 |
+
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
|
1104 |
+
accumulated_values = torch.zeros_like(hidden_states)
|
1105 |
+
|
1106 |
+
for i, (frame_start, frame_end) in enumerate(frame_indices):
|
1107 |
+
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
|
1108 |
+
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
|
1109 |
+
# essentially a non-multiple of `context_length`.
|
1110 |
+
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
|
1111 |
+
weights *= frame_weights
|
1112 |
+
|
1113 |
+
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
|
1114 |
+
|
1115 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1116 |
+
# 1. Self-Attention
|
1117 |
+
norm_hidden_states = self.norm1(hidden_states_chunk)
|
1118 |
+
|
1119 |
+
if self.pos_embed is not None:
|
1120 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1121 |
+
|
1122 |
+
attn_output = self.attn1(
|
1123 |
+
norm_hidden_states,
|
1124 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1125 |
+
attention_mask=attention_mask,
|
1126 |
+
**cross_attention_kwargs,
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1130 |
+
if hidden_states_chunk.ndim == 4:
|
1131 |
+
hidden_states_chunk = hidden_states_chunk.squeeze(1)
|
1132 |
+
|
1133 |
+
# 2. Cross-Attention
|
1134 |
+
if self.attn2 is not None:
|
1135 |
+
norm_hidden_states = self.norm2(hidden_states_chunk)
|
1136 |
+
|
1137 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
1138 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1139 |
+
|
1140 |
+
attn_output = self.attn2(
|
1141 |
+
norm_hidden_states,
|
1142 |
+
encoder_hidden_states=encoder_hidden_states,
|
1143 |
+
attention_mask=encoder_attention_mask,
|
1144 |
+
**cross_attention_kwargs,
|
1145 |
+
)
|
1146 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1147 |
+
|
1148 |
+
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
|
1149 |
+
accumulated_values[:, -last_frame_batch_length:] += (
|
1150 |
+
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
|
1151 |
+
)
|
1152 |
+
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
|
1153 |
+
else:
|
1154 |
+
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
|
1155 |
+
num_times_accumulated[:, frame_start:frame_end] += weights
|
1156 |
+
|
1157 |
+
# TODO(aryan): Maybe this could be done in a better way.
|
1158 |
+
#
|
1159 |
+
# Previously, this was:
|
1160 |
+
# hidden_states = torch.where(
|
1161 |
+
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
|
1162 |
+
# )
|
1163 |
+
#
|
1164 |
+
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
|
1165 |
+
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
|
1166 |
+
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
|
1167 |
+
# looked into this deeply because other memory optimizations led to more pronounced reductions.
|
1168 |
+
hidden_states = torch.cat(
|
1169 |
+
[
|
1170 |
+
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
|
1171 |
+
for accumulated_split, num_times_split in zip(
|
1172 |
+
accumulated_values.split(self.context_length, dim=1),
|
1173 |
+
num_times_accumulated.split(self.context_length, dim=1),
|
1174 |
+
)
|
1175 |
+
],
|
1176 |
+
dim=1,
|
1177 |
+
).to(dtype)
|
1178 |
+
|
1179 |
+
# 3. Feed-forward
|
1180 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1181 |
+
|
1182 |
+
if self._chunk_size is not None:
|
1183 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
1184 |
+
else:
|
1185 |
+
ff_output = self.ff(norm_hidden_states)
|
1186 |
+
|
1187 |
+
hidden_states = ff_output + hidden_states
|
1188 |
+
if hidden_states.ndim == 4:
|
1189 |
+
hidden_states = hidden_states.squeeze(1)
|
1190 |
+
|
1191 |
+
return hidden_states
|
1192 |
+
|
1193 |
+
|
1194 |
+
class FeedForward(nn.Module):
|
1195 |
+
r"""
|
1196 |
+
A feed-forward layer.
|
1197 |
+
|
1198 |
+
Parameters:
|
1199 |
+
dim (`int`): The number of channels in the input.
|
1200 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
1201 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
1202 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1203 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
1204 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
1205 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
1206 |
+
"""
|
1207 |
+
|
1208 |
+
def __init__(
|
1209 |
+
self,
|
1210 |
+
dim: int,
|
1211 |
+
dim_out: Optional[int] = None,
|
1212 |
+
mult: int = 4,
|
1213 |
+
dropout: float = 0.0,
|
1214 |
+
activation_fn: str = "geglu",
|
1215 |
+
final_dropout: bool = False,
|
1216 |
+
inner_dim=None,
|
1217 |
+
bias: bool = True,
|
1218 |
+
):
|
1219 |
+
super().__init__()
|
1220 |
+
if inner_dim is None:
|
1221 |
+
inner_dim = int(dim * mult)
|
1222 |
+
dim_out = dim_out if dim_out is not None else dim
|
1223 |
+
|
1224 |
+
if activation_fn == "gelu":
|
1225 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
1226 |
+
if activation_fn == "gelu-approximate":
|
1227 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
1228 |
+
elif activation_fn == "geglu":
|
1229 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
1230 |
+
elif activation_fn == "geglu-approximate":
|
1231 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
1232 |
+
elif activation_fn == "swiglu":
|
1233 |
+
act_fn = SwiGLU(dim, inner_dim, bias=bias)
|
1234 |
+
elif activation_fn == "linear-silu":
|
1235 |
+
act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
|
1236 |
+
|
1237 |
+
self.net = nn.ModuleList([])
|
1238 |
+
# project in
|
1239 |
+
self.net.append(act_fn)
|
1240 |
+
# project dropout
|
1241 |
+
self.net.append(nn.Dropout(dropout))
|
1242 |
+
# project out
|
1243 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
1244 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
1245 |
+
if final_dropout:
|
1246 |
+
self.net.append(nn.Dropout(dropout))
|
1247 |
+
|
1248 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
1249 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1250 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1251 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
1252 |
+
for module in self.net:
|
1253 |
+
hidden_states = module(hidden_states)
|
1254 |
+
return hidden_states
|
models/transformers_2d.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.configuration_utils import LegacyConfigMixin, register_to_config
|
21 |
+
from diffusers.utils import deprecate, is_torch_version, logging
|
22 |
+
from models.mm_attention import BasicTransformerBlock
|
23 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
|
24 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
25 |
+
from diffusers.models.modeling_utils import LegacyModelMixin
|
26 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
class Transformer2DModelOutput(Transformer2DModelOutput):
|
33 |
+
def __init__(self, *args, **kwargs):
|
34 |
+
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
|
35 |
+
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
|
36 |
+
super().__init__(*args, **kwargs)
|
37 |
+
|
38 |
+
|
39 |
+
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
|
40 |
+
"""
|
41 |
+
A 2D Transformer model for image-like data.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
45 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
46 |
+
in_channels (`int`, *optional*):
|
47 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
48 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
50 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
51 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
52 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
53 |
+
num_vector_embeds (`int`, *optional*):
|
54 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
55 |
+
Includes the class for the masked latent pixel.
|
56 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
57 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
58 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
59 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
60 |
+
added to the hidden states.
|
61 |
+
|
62 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
63 |
+
attention_bias (`bool`, *optional*):
|
64 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
65 |
+
"""
|
66 |
+
|
67 |
+
_supports_gradient_checkpointing = True
|
68 |
+
_no_split_modules = ["BasicTransformerBlock"]
|
69 |
+
|
70 |
+
@register_to_config
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
num_attention_heads: int = 16,
|
74 |
+
attention_head_dim: int = 88,
|
75 |
+
in_channels: Optional[int] = None,
|
76 |
+
out_channels: Optional[int] = None,
|
77 |
+
num_layers: int = 1,
|
78 |
+
dropout: float = 0.0,
|
79 |
+
norm_num_groups: int = 32,
|
80 |
+
cross_attention_dim: Optional[int] = None,
|
81 |
+
attention_bias: bool = False,
|
82 |
+
sample_size: Optional[int] = None,
|
83 |
+
num_vector_embeds: Optional[int] = None,
|
84 |
+
patch_size: Optional[int] = None,
|
85 |
+
activation_fn: str = "geglu",
|
86 |
+
num_embeds_ada_norm: Optional[int] = None,
|
87 |
+
use_linear_projection: bool = False,
|
88 |
+
only_cross_attention: bool = False,
|
89 |
+
double_self_attention: bool = False,
|
90 |
+
upcast_attention: bool = False,
|
91 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
92 |
+
norm_elementwise_affine: bool = True,
|
93 |
+
norm_eps: float = 1e-5,
|
94 |
+
attention_type: str = "default",
|
95 |
+
caption_channels: int = None,
|
96 |
+
interpolation_scale: float = None,
|
97 |
+
use_additional_conditions: Optional[bool] = None,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
# Validate inputs.
|
102 |
+
if patch_size is not None:
|
103 |
+
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
|
104 |
+
raise NotImplementedError(
|
105 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
106 |
+
)
|
107 |
+
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
|
108 |
+
raise ValueError(
|
109 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
110 |
+
)
|
111 |
+
|
112 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
113 |
+
# Define whether input is continuous or discrete depending on configuration
|
114 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
115 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
116 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
117 |
+
|
118 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
119 |
+
raise ValueError(
|
120 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
121 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
122 |
+
)
|
123 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
124 |
+
raise ValueError(
|
125 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
126 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
127 |
+
)
|
128 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
129 |
+
raise ValueError(
|
130 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
131 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
132 |
+
)
|
133 |
+
|
134 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
135 |
+
deprecation_message = (
|
136 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
137 |
+
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
|
138 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
139 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
140 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
141 |
+
)
|
142 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
143 |
+
norm_type = "ada_norm"
|
144 |
+
|
145 |
+
# Set some common variables used across the board.
|
146 |
+
self.use_linear_projection = use_linear_projection
|
147 |
+
self.interpolation_scale = interpolation_scale
|
148 |
+
self.caption_channels = caption_channels
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
self.attention_head_dim = attention_head_dim
|
151 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
152 |
+
self.in_channels = in_channels
|
153 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
154 |
+
self.gradient_checkpointing = False
|
155 |
+
|
156 |
+
if use_additional_conditions is None:
|
157 |
+
if norm_type == "ada_norm_single" and sample_size == 128:
|
158 |
+
use_additional_conditions = True
|
159 |
+
else:
|
160 |
+
use_additional_conditions = False
|
161 |
+
self.use_additional_conditions = use_additional_conditions
|
162 |
+
|
163 |
+
# 2. Initialize the right blocks.
|
164 |
+
# These functions follow a common structure:
|
165 |
+
# a. Initialize the input blocks. b. Initialize the transformer blocks.
|
166 |
+
# c. Initialize the output blocks and other projection blocks when necessary.
|
167 |
+
if self.is_input_continuous:
|
168 |
+
self._init_continuous_input(norm_type=norm_type)
|
169 |
+
elif self.is_input_vectorized:
|
170 |
+
self._init_vectorized_inputs(norm_type=norm_type)
|
171 |
+
elif self.is_input_patches:
|
172 |
+
self._init_patched_inputs(norm_type=norm_type)
|
173 |
+
|
174 |
+
def _init_continuous_input(self, norm_type):
|
175 |
+
self.norm = torch.nn.GroupNorm(
|
176 |
+
num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
|
177 |
+
)
|
178 |
+
if self.use_linear_projection:
|
179 |
+
self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
|
180 |
+
else:
|
181 |
+
self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
|
182 |
+
|
183 |
+
self.transformer_blocks = nn.ModuleList(
|
184 |
+
[
|
185 |
+
BasicTransformerBlock(
|
186 |
+
self.inner_dim,
|
187 |
+
self.config.num_attention_heads,
|
188 |
+
self.config.attention_head_dim,
|
189 |
+
dropout=self.config.dropout,
|
190 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
191 |
+
activation_fn=self.config.activation_fn,
|
192 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
193 |
+
attention_bias=self.config.attention_bias,
|
194 |
+
only_cross_attention=self.config.only_cross_attention,
|
195 |
+
double_self_attention=self.config.double_self_attention,
|
196 |
+
upcast_attention=self.config.upcast_attention,
|
197 |
+
norm_type=norm_type,
|
198 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
199 |
+
norm_eps=self.config.norm_eps,
|
200 |
+
attention_type=self.config.attention_type,
|
201 |
+
)
|
202 |
+
for _ in range(self.config.num_layers)
|
203 |
+
]
|
204 |
+
)
|
205 |
+
|
206 |
+
if self.use_linear_projection:
|
207 |
+
self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
|
208 |
+
else:
|
209 |
+
self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
|
210 |
+
|
211 |
+
def _init_vectorized_inputs(self, norm_type):
|
212 |
+
assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
213 |
+
assert (
|
214 |
+
self.config.num_vector_embeds is not None
|
215 |
+
), "Transformer2DModel over discrete input must provide num_embed"
|
216 |
+
|
217 |
+
self.height = self.config.sample_size
|
218 |
+
self.width = self.config.sample_size
|
219 |
+
self.num_latent_pixels = self.height * self.width
|
220 |
+
|
221 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
222 |
+
num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
|
223 |
+
)
|
224 |
+
|
225 |
+
self.transformer_blocks = nn.ModuleList(
|
226 |
+
[
|
227 |
+
BasicTransformerBlock(
|
228 |
+
self.inner_dim,
|
229 |
+
self.config.num_attention_heads,
|
230 |
+
self.config.attention_head_dim,
|
231 |
+
dropout=self.config.dropout,
|
232 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
233 |
+
activation_fn=self.config.activation_fn,
|
234 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
235 |
+
attention_bias=self.config.attention_bias,
|
236 |
+
only_cross_attention=self.config.only_cross_attention,
|
237 |
+
double_self_attention=self.config.double_self_attention,
|
238 |
+
upcast_attention=self.config.upcast_attention,
|
239 |
+
norm_type=norm_type,
|
240 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
241 |
+
norm_eps=self.config.norm_eps,
|
242 |
+
attention_type=self.config.attention_type,
|
243 |
+
)
|
244 |
+
for _ in range(self.config.num_layers)
|
245 |
+
]
|
246 |
+
)
|
247 |
+
|
248 |
+
self.norm_out = nn.LayerNorm(self.inner_dim)
|
249 |
+
self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
|
250 |
+
|
251 |
+
def _init_patched_inputs(self, norm_type):
|
252 |
+
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
253 |
+
|
254 |
+
self.height = self.config.sample_size
|
255 |
+
self.width = self.config.sample_size
|
256 |
+
|
257 |
+
self.patch_size = self.config.patch_size
|
258 |
+
interpolation_scale = (
|
259 |
+
self.config.interpolation_scale
|
260 |
+
if self.config.interpolation_scale is not None
|
261 |
+
else max(self.config.sample_size // 64, 1)
|
262 |
+
)
|
263 |
+
self.pos_embed = PatchEmbed(
|
264 |
+
height=self.config.sample_size,
|
265 |
+
width=self.config.sample_size,
|
266 |
+
patch_size=self.config.patch_size,
|
267 |
+
in_channels=self.in_channels,
|
268 |
+
embed_dim=self.inner_dim,
|
269 |
+
interpolation_scale=interpolation_scale,
|
270 |
+
)
|
271 |
+
|
272 |
+
self.transformer_blocks = nn.ModuleList(
|
273 |
+
[
|
274 |
+
BasicTransformerBlock(
|
275 |
+
self.inner_dim,
|
276 |
+
self.config.num_attention_heads,
|
277 |
+
self.config.attention_head_dim,
|
278 |
+
dropout=self.config.dropout,
|
279 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
280 |
+
activation_fn=self.config.activation_fn,
|
281 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
282 |
+
attention_bias=self.config.attention_bias,
|
283 |
+
only_cross_attention=self.config.only_cross_attention,
|
284 |
+
double_self_attention=self.config.double_self_attention,
|
285 |
+
upcast_attention=self.config.upcast_attention,
|
286 |
+
norm_type=norm_type,
|
287 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
288 |
+
norm_eps=self.config.norm_eps,
|
289 |
+
attention_type=self.config.attention_type,
|
290 |
+
)
|
291 |
+
for _ in range(self.config.num_layers)
|
292 |
+
]
|
293 |
+
)
|
294 |
+
|
295 |
+
if self.config.norm_type != "ada_norm_single":
|
296 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
297 |
+
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
298 |
+
self.proj_out_2 = nn.Linear(
|
299 |
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
300 |
+
)
|
301 |
+
elif self.config.norm_type == "ada_norm_single":
|
302 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
303 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
304 |
+
self.proj_out = nn.Linear(
|
305 |
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
306 |
+
)
|
307 |
+
|
308 |
+
# PixArt-Alpha blocks.
|
309 |
+
self.adaln_single = None
|
310 |
+
if self.config.norm_type == "ada_norm_single":
|
311 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
312 |
+
# additional conditions until we find better name
|
313 |
+
self.adaln_single = AdaLayerNormSingle(
|
314 |
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
315 |
+
)
|
316 |
+
|
317 |
+
self.caption_projection = None
|
318 |
+
if self.caption_channels is not None:
|
319 |
+
self.caption_projection = PixArtAlphaTextProjection(
|
320 |
+
in_features=self.caption_channels, hidden_size=self.inner_dim
|
321 |
+
)
|
322 |
+
|
323 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
324 |
+
if hasattr(module, "gradient_checkpointing"):
|
325 |
+
module.gradient_checkpointing = value
|
326 |
+
|
327 |
+
def forward(
|
328 |
+
self,
|
329 |
+
hidden_states: torch.Tensor,
|
330 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
331 |
+
encoder_lora_states: Optional[torch.Tensor] = None,
|
332 |
+
timestep: Optional[torch.LongTensor] = None,
|
333 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
334 |
+
class_labels: Optional[torch.LongTensor] = None,
|
335 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
336 |
+
attention_mask: Optional[torch.Tensor] = None,
|
337 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
338 |
+
return_dict: bool = True,
|
339 |
+
):
|
340 |
+
"""
|
341 |
+
The [`Transformer2DModel`] forward method.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
|
345 |
+
Input `hidden_states`.
|
346 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
347 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
348 |
+
self-attention.
|
349 |
+
timestep ( `torch.LongTensor`, *optional*):
|
350 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
351 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
352 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
353 |
+
`AdaLayerZeroNorm`.
|
354 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
355 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
356 |
+
`self.processor` in
|
357 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
358 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
359 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
360 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
361 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
362 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
363 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
364 |
+
|
365 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
366 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
367 |
+
|
368 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
369 |
+
above. This bias will be added to the cross-attention scores.
|
370 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
371 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
372 |
+
tuple.
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
|
376 |
+
otherwise a `tuple` where the first element is the sample tensor.
|
377 |
+
"""
|
378 |
+
if cross_attention_kwargs is not None:
|
379 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
380 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
381 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
382 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
383 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
384 |
+
# expects mask of shape:
|
385 |
+
# [batch, key_tokens]
|
386 |
+
# adds singleton query_tokens dimension:
|
387 |
+
# [batch, 1, key_tokens]
|
388 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
389 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
390 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
391 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
392 |
+
# assume that mask is expressed as:
|
393 |
+
# (1 = keep, 0 = discard)
|
394 |
+
# convert mask into a bias that can be added to attention scores:
|
395 |
+
# (keep = +0, discard = -10000.0)
|
396 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
397 |
+
attention_mask = attention_mask.unsqueeze(1)
|
398 |
+
|
399 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
400 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
401 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
402 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
403 |
+
|
404 |
+
# 1. Input
|
405 |
+
if self.is_input_continuous:
|
406 |
+
batch_size, _, height, width = hidden_states.shape
|
407 |
+
residual = hidden_states
|
408 |
+
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
|
409 |
+
elif self.is_input_vectorized:
|
410 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
411 |
+
elif self.is_input_patches:
|
412 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
413 |
+
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
|
414 |
+
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
|
415 |
+
)
|
416 |
+
|
417 |
+
# 2. Blocks
|
418 |
+
for block in self.transformer_blocks:
|
419 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
420 |
+
|
421 |
+
def create_custom_forward(module, return_dict=None):
|
422 |
+
def custom_forward(*inputs):
|
423 |
+
if return_dict is not None:
|
424 |
+
return module(*inputs, return_dict=return_dict)
|
425 |
+
else:
|
426 |
+
return module(*inputs)
|
427 |
+
|
428 |
+
return custom_forward
|
429 |
+
|
430 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
431 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
432 |
+
create_custom_forward(block),
|
433 |
+
hidden_states,
|
434 |
+
attention_mask,
|
435 |
+
encoder_hidden_states,
|
436 |
+
encoder_lora_states,
|
437 |
+
encoder_attention_mask,
|
438 |
+
timestep,
|
439 |
+
cross_attention_kwargs,
|
440 |
+
class_labels,
|
441 |
+
**ckpt_kwargs,
|
442 |
+
)
|
443 |
+
else:
|
444 |
+
hidden_states = block(
|
445 |
+
hidden_states,
|
446 |
+
attention_mask=attention_mask,
|
447 |
+
encoder_hidden_states=encoder_hidden_states,
|
448 |
+
encoder_lora_states=encoder_lora_states,
|
449 |
+
encoder_attention_mask=encoder_attention_mask,
|
450 |
+
timestep=timestep,
|
451 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
452 |
+
class_labels=class_labels,
|
453 |
+
)
|
454 |
+
|
455 |
+
# 3. Output
|
456 |
+
if self.is_input_continuous:
|
457 |
+
output = self._get_output_for_continuous_inputs(
|
458 |
+
hidden_states=hidden_states,
|
459 |
+
residual=residual,
|
460 |
+
batch_size=batch_size,
|
461 |
+
height=height,
|
462 |
+
width=width,
|
463 |
+
inner_dim=inner_dim,
|
464 |
+
)
|
465 |
+
elif self.is_input_vectorized:
|
466 |
+
output = self._get_output_for_vectorized_inputs(hidden_states)
|
467 |
+
elif self.is_input_patches:
|
468 |
+
output = self._get_output_for_patched_inputs(
|
469 |
+
hidden_states=hidden_states,
|
470 |
+
timestep=timestep,
|
471 |
+
class_labels=class_labels,
|
472 |
+
embedded_timestep=embedded_timestep,
|
473 |
+
height=height,
|
474 |
+
width=width,
|
475 |
+
)
|
476 |
+
|
477 |
+
if not return_dict:
|
478 |
+
return (output,)
|
479 |
+
|
480 |
+
return Transformer2DModelOutput(sample=output)
|
481 |
+
|
482 |
+
def _operate_on_continuous_inputs(self, hidden_states):
|
483 |
+
batch, _, height, width = hidden_states.shape
|
484 |
+
hidden_states = self.norm(hidden_states)
|
485 |
+
|
486 |
+
if not self.use_linear_projection:
|
487 |
+
hidden_states = self.proj_in(hidden_states)
|
488 |
+
inner_dim = hidden_states.shape[1]
|
489 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
490 |
+
else:
|
491 |
+
inner_dim = hidden_states.shape[1]
|
492 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
493 |
+
hidden_states = self.proj_in(hidden_states)
|
494 |
+
|
495 |
+
return hidden_states, inner_dim
|
496 |
+
|
497 |
+
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
|
498 |
+
batch_size = hidden_states.shape[0]
|
499 |
+
hidden_states = self.pos_embed(hidden_states)
|
500 |
+
embedded_timestep = None
|
501 |
+
|
502 |
+
if self.adaln_single is not None:
|
503 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
504 |
+
raise ValueError(
|
505 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
506 |
+
)
|
507 |
+
timestep, embedded_timestep = self.adaln_single(
|
508 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
509 |
+
)
|
510 |
+
|
511 |
+
if self.caption_projection is not None:
|
512 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
513 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
514 |
+
|
515 |
+
return hidden_states, encoder_hidden_states, timestep, embedded_timestep
|
516 |
+
|
517 |
+
def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
|
518 |
+
if not self.use_linear_projection:
|
519 |
+
hidden_states = (
|
520 |
+
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
521 |
+
)
|
522 |
+
hidden_states = self.proj_out(hidden_states)
|
523 |
+
else:
|
524 |
+
hidden_states = self.proj_out(hidden_states)
|
525 |
+
hidden_states = (
|
526 |
+
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
527 |
+
)
|
528 |
+
|
529 |
+
output = hidden_states + residual
|
530 |
+
return output
|
531 |
+
|
532 |
+
def _get_output_for_vectorized_inputs(self, hidden_states):
|
533 |
+
hidden_states = self.norm_out(hidden_states)
|
534 |
+
logits = self.out(hidden_states)
|
535 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
536 |
+
logits = logits.permute(0, 2, 1)
|
537 |
+
# log(p(x_0))
|
538 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
539 |
+
return output
|
540 |
+
|
541 |
+
def _get_output_for_patched_inputs(
|
542 |
+
self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
|
543 |
+
):
|
544 |
+
if self.config.norm_type != "ada_norm_single":
|
545 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
546 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
547 |
+
)
|
548 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
549 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
550 |
+
hidden_states = self.proj_out_2(hidden_states)
|
551 |
+
elif self.config.norm_type == "ada_norm_single":
|
552 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
553 |
+
hidden_states = self.norm_out(hidden_states)
|
554 |
+
# Modulation
|
555 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
556 |
+
hidden_states = self.proj_out(hidden_states)
|
557 |
+
hidden_states = hidden_states.squeeze(1)
|
558 |
+
|
559 |
+
# unpatchify
|
560 |
+
if self.adaln_single is None:
|
561 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
562 |
+
hidden_states = hidden_states.reshape(
|
563 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
564 |
+
)
|
565 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
566 |
+
output = hidden_states.reshape(
|
567 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
568 |
+
)
|
569 |
+
return output
|
models/unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
24 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
28 |
+
CROSS_ATTENTION_PROCESSORS,
|
29 |
+
Attention,
|
30 |
+
AttentionProcessor,
|
31 |
+
AttnAddedKVProcessor,
|
32 |
+
AttnProcessor,
|
33 |
+
FusedAttnProcessor2_0,
|
34 |
+
)
|
35 |
+
from diffusers.models.embeddings import (
|
36 |
+
GaussianFourierProjection,
|
37 |
+
GLIGENTextBoundingboxProjection,
|
38 |
+
ImageHintTimeEmbedding,
|
39 |
+
ImageProjection,
|
40 |
+
ImageTimeEmbedding,
|
41 |
+
TextImageProjection,
|
42 |
+
TextImageTimeEmbedding,
|
43 |
+
TextTimeEmbedding,
|
44 |
+
TimestepEmbedding,
|
45 |
+
Timesteps,
|
46 |
+
)
|
47 |
+
from diffusers.models.modeling_utils import ModelMixin
|
48 |
+
from models.unet_2d_blocks import (
|
49 |
+
get_down_block,
|
50 |
+
get_mid_block,
|
51 |
+
get_up_block,
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
@dataclass
|
59 |
+
class UNet2DConditionOutput(BaseOutput):
|
60 |
+
"""
|
61 |
+
The output of [`UNet2DConditionModel`].
|
62 |
+
|
63 |
+
Args:
|
64 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
65 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
66 |
+
"""
|
67 |
+
|
68 |
+
sample: torch.Tensor = None
|
69 |
+
|
70 |
+
|
71 |
+
class UNet2DLoRAConditionModel(
|
72 |
+
ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
|
73 |
+
):
|
74 |
+
r"""
|
75 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
76 |
+
shaped output.
|
77 |
+
|
78 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
79 |
+
for all models (such as downloading or saving).
|
80 |
+
|
81 |
+
Parameters:
|
82 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
83 |
+
Height and width of input/output sample.
|
84 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
85 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
86 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
87 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to flip the sin to cos in the time embedding.
|
89 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
90 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
91 |
+
The tuple of downsample blocks to use.
|
92 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
93 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
94 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
95 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
96 |
+
The tuple of upsample blocks to use.
|
97 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
98 |
+
Whether to include self-attention in the basic transformer blocks, see
|
99 |
+
[`~models.attention.BasicTransformerBlock`].
|
100 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
101 |
+
The tuple of output channels for each block.
|
102 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
103 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
104 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
105 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
106 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
107 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
108 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
109 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
110 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
111 |
+
The dimension of the cross attention features.
|
112 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
113 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
114 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
115 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
116 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
117 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
118 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
119 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
120 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
121 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
122 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
123 |
+
dimension to `cross_attention_dim`.
|
124 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
125 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
126 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
127 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
128 |
+
num_attention_heads (`int`, *optional*):
|
129 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
130 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
131 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
132 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
133 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
134 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
135 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
136 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
137 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
138 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
139 |
+
Dimension for the timestep embeddings.
|
140 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
141 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
142 |
+
class conditioning with `class_embed_type` equal to `None`.
|
143 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
144 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
145 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
146 |
+
An optional override for the dimension of the projected time embedding.
|
147 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
148 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
149 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
150 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
151 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
152 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
153 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
154 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
155 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
156 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
157 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
158 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
159 |
+
embeddings with the class embeddings.
|
160 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
161 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
162 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
163 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
164 |
+
otherwise.
|
165 |
+
"""
|
166 |
+
|
167 |
+
_supports_gradient_checkpointing = True
|
168 |
+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
169 |
+
|
170 |
+
@register_to_config
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
|
174 |
+
in_channels: int = 4,
|
175 |
+
out_channels: int = 4,
|
176 |
+
center_input_sample: bool = False,
|
177 |
+
flip_sin_to_cos: bool = True,
|
178 |
+
freq_shift: int = 0,
|
179 |
+
down_block_types: Tuple[str] = (
|
180 |
+
"CrossAttnDownBlock2D",
|
181 |
+
"CrossAttnDownBlock2D",
|
182 |
+
"CrossAttnDownBlock2D",
|
183 |
+
"DownBlock2D",
|
184 |
+
),
|
185 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
186 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
187 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
188 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
189 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
190 |
+
downsample_padding: int = 1,
|
191 |
+
mid_block_scale_factor: float = 1,
|
192 |
+
dropout: float = 0.0,
|
193 |
+
act_fn: str = "silu",
|
194 |
+
norm_num_groups: Optional[int] = 32,
|
195 |
+
norm_eps: float = 1e-5,
|
196 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
197 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
198 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
199 |
+
encoder_hid_dim: Optional[int] = None,
|
200 |
+
encoder_hid_dim_type: Optional[str] = None,
|
201 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
202 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
203 |
+
dual_cross_attention: bool = False,
|
204 |
+
use_linear_projection: bool = False,
|
205 |
+
class_embed_type: Optional[str] = None,
|
206 |
+
addition_embed_type: Optional[str] = None,
|
207 |
+
addition_time_embed_dim: Optional[int] = None,
|
208 |
+
num_class_embeds: Optional[int] = None,
|
209 |
+
upcast_attention: bool = False,
|
210 |
+
resnet_time_scale_shift: str = "default",
|
211 |
+
resnet_skip_time_act: bool = False,
|
212 |
+
resnet_out_scale_factor: float = 1.0,
|
213 |
+
time_embedding_type: str = "positional",
|
214 |
+
time_embedding_dim: Optional[int] = None,
|
215 |
+
time_embedding_act_fn: Optional[str] = None,
|
216 |
+
timestep_post_act: Optional[str] = None,
|
217 |
+
time_cond_proj_dim: Optional[int] = None,
|
218 |
+
conv_in_kernel: int = 3,
|
219 |
+
conv_out_kernel: int = 3,
|
220 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
221 |
+
attention_type: str = "default",
|
222 |
+
class_embeddings_concat: bool = False,
|
223 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
224 |
+
cross_attention_norm: Optional[str] = None,
|
225 |
+
addition_embed_type_num_heads: int = 64,
|
226 |
+
):
|
227 |
+
super().__init__()
|
228 |
+
|
229 |
+
self.sample_size = sample_size
|
230 |
+
|
231 |
+
if num_attention_heads is not None:
|
232 |
+
raise ValueError(
|
233 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
234 |
+
)
|
235 |
+
|
236 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
237 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
238 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
239 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
240 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
241 |
+
# which is why we correct for the naming here.
|
242 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
243 |
+
|
244 |
+
# Check inputs
|
245 |
+
self._check_config(
|
246 |
+
down_block_types=down_block_types,
|
247 |
+
up_block_types=up_block_types,
|
248 |
+
only_cross_attention=only_cross_attention,
|
249 |
+
block_out_channels=block_out_channels,
|
250 |
+
layers_per_block=layers_per_block,
|
251 |
+
cross_attention_dim=cross_attention_dim,
|
252 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
253 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
254 |
+
attention_head_dim=attention_head_dim,
|
255 |
+
num_attention_heads=num_attention_heads,
|
256 |
+
)
|
257 |
+
|
258 |
+
# input
|
259 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
260 |
+
self.conv_in = nn.Conv2d(
|
261 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
262 |
+
)
|
263 |
+
|
264 |
+
# time
|
265 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
266 |
+
time_embedding_type,
|
267 |
+
block_out_channels=block_out_channels,
|
268 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
269 |
+
freq_shift=freq_shift,
|
270 |
+
time_embedding_dim=time_embedding_dim,
|
271 |
+
)
|
272 |
+
|
273 |
+
self.time_embedding = TimestepEmbedding(
|
274 |
+
timestep_input_dim,
|
275 |
+
time_embed_dim,
|
276 |
+
act_fn=act_fn,
|
277 |
+
post_act_fn=timestep_post_act,
|
278 |
+
cond_proj_dim=time_cond_proj_dim,
|
279 |
+
)
|
280 |
+
|
281 |
+
self._set_encoder_hid_proj(
|
282 |
+
encoder_hid_dim_type,
|
283 |
+
cross_attention_dim=cross_attention_dim,
|
284 |
+
encoder_hid_dim=encoder_hid_dim,
|
285 |
+
)
|
286 |
+
|
287 |
+
# class embedding
|
288 |
+
self._set_class_embedding(
|
289 |
+
class_embed_type,
|
290 |
+
act_fn=act_fn,
|
291 |
+
num_class_embeds=num_class_embeds,
|
292 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
293 |
+
time_embed_dim=time_embed_dim,
|
294 |
+
timestep_input_dim=timestep_input_dim,
|
295 |
+
)
|
296 |
+
|
297 |
+
self._set_add_embedding(
|
298 |
+
addition_embed_type,
|
299 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
300 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
301 |
+
cross_attention_dim=cross_attention_dim,
|
302 |
+
encoder_hid_dim=encoder_hid_dim,
|
303 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
304 |
+
freq_shift=freq_shift,
|
305 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
306 |
+
time_embed_dim=time_embed_dim,
|
307 |
+
)
|
308 |
+
|
309 |
+
if time_embedding_act_fn is None:
|
310 |
+
self.time_embed_act = None
|
311 |
+
else:
|
312 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
313 |
+
|
314 |
+
self.down_blocks = nn.ModuleList([])
|
315 |
+
self.up_blocks = nn.ModuleList([])
|
316 |
+
|
317 |
+
if isinstance(only_cross_attention, bool):
|
318 |
+
if mid_block_only_cross_attention is None:
|
319 |
+
mid_block_only_cross_attention = only_cross_attention
|
320 |
+
|
321 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
322 |
+
|
323 |
+
if mid_block_only_cross_attention is None:
|
324 |
+
mid_block_only_cross_attention = False
|
325 |
+
|
326 |
+
if isinstance(num_attention_heads, int):
|
327 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
328 |
+
|
329 |
+
if isinstance(attention_head_dim, int):
|
330 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
331 |
+
|
332 |
+
if isinstance(cross_attention_dim, int):
|
333 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
334 |
+
|
335 |
+
if isinstance(layers_per_block, int):
|
336 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
337 |
+
|
338 |
+
if isinstance(transformer_layers_per_block, int):
|
339 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
340 |
+
|
341 |
+
if class_embeddings_concat:
|
342 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
343 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
344 |
+
# regular time embeddings
|
345 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
346 |
+
else:
|
347 |
+
blocks_time_embed_dim = time_embed_dim
|
348 |
+
|
349 |
+
# down
|
350 |
+
output_channel = block_out_channels[0]
|
351 |
+
for i, down_block_type in enumerate(down_block_types):
|
352 |
+
input_channel = output_channel
|
353 |
+
output_channel = block_out_channels[i]
|
354 |
+
is_final_block = i == len(block_out_channels) - 1
|
355 |
+
|
356 |
+
down_block = get_down_block(
|
357 |
+
down_block_type,
|
358 |
+
num_layers=layers_per_block[i],
|
359 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
360 |
+
in_channels=input_channel,
|
361 |
+
out_channels=output_channel,
|
362 |
+
temb_channels=blocks_time_embed_dim,
|
363 |
+
add_downsample=not is_final_block,
|
364 |
+
resnet_eps=norm_eps,
|
365 |
+
resnet_act_fn=act_fn,
|
366 |
+
resnet_groups=norm_num_groups,
|
367 |
+
cross_attention_dim=cross_attention_dim[i],
|
368 |
+
num_attention_heads=num_attention_heads[i],
|
369 |
+
downsample_padding=downsample_padding,
|
370 |
+
dual_cross_attention=dual_cross_attention,
|
371 |
+
use_linear_projection=use_linear_projection,
|
372 |
+
only_cross_attention=only_cross_attention[i],
|
373 |
+
upcast_attention=upcast_attention,
|
374 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
375 |
+
attention_type=attention_type,
|
376 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
377 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
378 |
+
cross_attention_norm=cross_attention_norm,
|
379 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
380 |
+
dropout=dropout,
|
381 |
+
)
|
382 |
+
self.down_blocks.append(down_block)
|
383 |
+
|
384 |
+
# mid
|
385 |
+
self.mid_block = get_mid_block(
|
386 |
+
mid_block_type,
|
387 |
+
temb_channels=blocks_time_embed_dim,
|
388 |
+
in_channels=block_out_channels[-1],
|
389 |
+
resnet_eps=norm_eps,
|
390 |
+
resnet_act_fn=act_fn,
|
391 |
+
resnet_groups=norm_num_groups,
|
392 |
+
output_scale_factor=mid_block_scale_factor,
|
393 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
394 |
+
num_attention_heads=num_attention_heads[-1],
|
395 |
+
cross_attention_dim=cross_attention_dim[-1],
|
396 |
+
dual_cross_attention=dual_cross_attention,
|
397 |
+
use_linear_projection=use_linear_projection,
|
398 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
399 |
+
upcast_attention=upcast_attention,
|
400 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
401 |
+
attention_type=attention_type,
|
402 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
403 |
+
cross_attention_norm=cross_attention_norm,
|
404 |
+
attention_head_dim=attention_head_dim[-1],
|
405 |
+
dropout=dropout,
|
406 |
+
)
|
407 |
+
|
408 |
+
# count how many layers upsample the images
|
409 |
+
self.num_upsamplers = 0
|
410 |
+
|
411 |
+
# up
|
412 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
413 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
414 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
415 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
416 |
+
reversed_transformer_layers_per_block = (
|
417 |
+
list(reversed(transformer_layers_per_block))
|
418 |
+
if reverse_transformer_layers_per_block is None
|
419 |
+
else reverse_transformer_layers_per_block
|
420 |
+
)
|
421 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
422 |
+
|
423 |
+
output_channel = reversed_block_out_channels[0]
|
424 |
+
for i, up_block_type in enumerate(up_block_types):
|
425 |
+
is_final_block = i == len(block_out_channels) - 1
|
426 |
+
|
427 |
+
prev_output_channel = output_channel
|
428 |
+
output_channel = reversed_block_out_channels[i]
|
429 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
430 |
+
|
431 |
+
# add upsample block for all BUT final layer
|
432 |
+
if not is_final_block:
|
433 |
+
add_upsample = True
|
434 |
+
self.num_upsamplers += 1
|
435 |
+
else:
|
436 |
+
add_upsample = False
|
437 |
+
|
438 |
+
up_block = get_up_block(
|
439 |
+
up_block_type,
|
440 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
441 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
442 |
+
in_channels=input_channel,
|
443 |
+
out_channels=output_channel,
|
444 |
+
prev_output_channel=prev_output_channel,
|
445 |
+
temb_channels=blocks_time_embed_dim,
|
446 |
+
add_upsample=add_upsample,
|
447 |
+
resnet_eps=norm_eps,
|
448 |
+
resnet_act_fn=act_fn,
|
449 |
+
resolution_idx=i,
|
450 |
+
resnet_groups=norm_num_groups,
|
451 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
452 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
453 |
+
dual_cross_attention=dual_cross_attention,
|
454 |
+
use_linear_projection=use_linear_projection,
|
455 |
+
only_cross_attention=only_cross_attention[i],
|
456 |
+
upcast_attention=upcast_attention,
|
457 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
458 |
+
attention_type=attention_type,
|
459 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
460 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
461 |
+
cross_attention_norm=cross_attention_norm,
|
462 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
463 |
+
dropout=dropout,
|
464 |
+
)
|
465 |
+
self.up_blocks.append(up_block)
|
466 |
+
|
467 |
+
# out
|
468 |
+
if norm_num_groups is not None:
|
469 |
+
self.conv_norm_out = nn.GroupNorm(
|
470 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
471 |
+
)
|
472 |
+
|
473 |
+
self.conv_act = get_activation(act_fn)
|
474 |
+
|
475 |
+
else:
|
476 |
+
self.conv_norm_out = None
|
477 |
+
self.conv_act = None
|
478 |
+
|
479 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
480 |
+
self.conv_out = nn.Conv2d(
|
481 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
482 |
+
)
|
483 |
+
|
484 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
485 |
+
|
486 |
+
def _check_config(
|
487 |
+
self,
|
488 |
+
down_block_types: Tuple[str],
|
489 |
+
up_block_types: Tuple[str],
|
490 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
491 |
+
block_out_channels: Tuple[int],
|
492 |
+
layers_per_block: Union[int, Tuple[int]],
|
493 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
494 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
495 |
+
reverse_transformer_layers_per_block: bool,
|
496 |
+
attention_head_dim: int,
|
497 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
498 |
+
):
|
499 |
+
if len(down_block_types) != len(up_block_types):
|
500 |
+
raise ValueError(
|
501 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
502 |
+
)
|
503 |
+
|
504 |
+
if len(block_out_channels) != len(down_block_types):
|
505 |
+
raise ValueError(
|
506 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
507 |
+
)
|
508 |
+
|
509 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
510 |
+
raise ValueError(
|
511 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
512 |
+
)
|
513 |
+
|
514 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
515 |
+
raise ValueError(
|
516 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
517 |
+
)
|
518 |
+
|
519 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
520 |
+
raise ValueError(
|
521 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
522 |
+
)
|
523 |
+
|
524 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
525 |
+
raise ValueError(
|
526 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
527 |
+
)
|
528 |
+
|
529 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
530 |
+
raise ValueError(
|
531 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
532 |
+
)
|
533 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
534 |
+
for layer_number_per_block in transformer_layers_per_block:
|
535 |
+
if isinstance(layer_number_per_block, list):
|
536 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
537 |
+
|
538 |
+
def _set_time_proj(
|
539 |
+
self,
|
540 |
+
time_embedding_type: str,
|
541 |
+
block_out_channels: int,
|
542 |
+
flip_sin_to_cos: bool,
|
543 |
+
freq_shift: float,
|
544 |
+
time_embedding_dim: int,
|
545 |
+
) -> Tuple[int, int]:
|
546 |
+
if time_embedding_type == "fourier":
|
547 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
548 |
+
if time_embed_dim % 2 != 0:
|
549 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
550 |
+
self.time_proj = GaussianFourierProjection(
|
551 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
552 |
+
)
|
553 |
+
timestep_input_dim = time_embed_dim
|
554 |
+
elif time_embedding_type == "positional":
|
555 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
556 |
+
|
557 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
558 |
+
timestep_input_dim = block_out_channels[0]
|
559 |
+
else:
|
560 |
+
raise ValueError(
|
561 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
562 |
+
)
|
563 |
+
|
564 |
+
return time_embed_dim, timestep_input_dim
|
565 |
+
|
566 |
+
def _set_encoder_hid_proj(
|
567 |
+
self,
|
568 |
+
encoder_hid_dim_type: Optional[str],
|
569 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
570 |
+
encoder_hid_dim: Optional[int],
|
571 |
+
):
|
572 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
573 |
+
encoder_hid_dim_type = "text_proj"
|
574 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
575 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
576 |
+
|
577 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
578 |
+
raise ValueError(
|
579 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
580 |
+
)
|
581 |
+
|
582 |
+
if encoder_hid_dim_type == "text_proj":
|
583 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
584 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
585 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
586 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
587 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
588 |
+
self.encoder_hid_proj = TextImageProjection(
|
589 |
+
text_embed_dim=encoder_hid_dim,
|
590 |
+
image_embed_dim=cross_attention_dim,
|
591 |
+
cross_attention_dim=cross_attention_dim,
|
592 |
+
)
|
593 |
+
elif encoder_hid_dim_type == "image_proj":
|
594 |
+
# Kandinsky 2.2
|
595 |
+
self.encoder_hid_proj = ImageProjection(
|
596 |
+
image_embed_dim=encoder_hid_dim,
|
597 |
+
cross_attention_dim=cross_attention_dim,
|
598 |
+
)
|
599 |
+
elif encoder_hid_dim_type is not None:
|
600 |
+
raise ValueError(
|
601 |
+
f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj', or 'image_proj'."
|
602 |
+
)
|
603 |
+
else:
|
604 |
+
self.encoder_hid_proj = None
|
605 |
+
|
606 |
+
def _set_class_embedding(
|
607 |
+
self,
|
608 |
+
class_embed_type: Optional[str],
|
609 |
+
act_fn: str,
|
610 |
+
num_class_embeds: Optional[int],
|
611 |
+
projection_class_embeddings_input_dim: Optional[int],
|
612 |
+
time_embed_dim: int,
|
613 |
+
timestep_input_dim: int,
|
614 |
+
):
|
615 |
+
if class_embed_type is None and num_class_embeds is not None:
|
616 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
617 |
+
elif class_embed_type == "timestep":
|
618 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
619 |
+
elif class_embed_type == "identity":
|
620 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
621 |
+
elif class_embed_type == "projection":
|
622 |
+
if projection_class_embeddings_input_dim is None:
|
623 |
+
raise ValueError(
|
624 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
625 |
+
)
|
626 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
627 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
628 |
+
# 2. it projects from an arbitrary input dimension.
|
629 |
+
#
|
630 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
631 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
632 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
633 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
634 |
+
elif class_embed_type == "simple_projection":
|
635 |
+
if projection_class_embeddings_input_dim is None:
|
636 |
+
raise ValueError(
|
637 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
638 |
+
)
|
639 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
640 |
+
else:
|
641 |
+
self.class_embedding = None
|
642 |
+
|
643 |
+
def _set_add_embedding(
|
644 |
+
self,
|
645 |
+
addition_embed_type: str,
|
646 |
+
addition_embed_type_num_heads: int,
|
647 |
+
addition_time_embed_dim: Optional[int],
|
648 |
+
flip_sin_to_cos: bool,
|
649 |
+
freq_shift: float,
|
650 |
+
cross_attention_dim: Optional[int],
|
651 |
+
encoder_hid_dim: Optional[int],
|
652 |
+
projection_class_embeddings_input_dim: Optional[int],
|
653 |
+
time_embed_dim: int,
|
654 |
+
):
|
655 |
+
if addition_embed_type == "text":
|
656 |
+
if encoder_hid_dim is not None:
|
657 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
658 |
+
else:
|
659 |
+
text_time_embedding_from_dim = cross_attention_dim
|
660 |
+
|
661 |
+
self.add_embedding = TextTimeEmbedding(
|
662 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
663 |
+
)
|
664 |
+
elif addition_embed_type == "text_image":
|
665 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
666 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
667 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
668 |
+
self.add_embedding = TextImageTimeEmbedding(
|
669 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
670 |
+
)
|
671 |
+
elif addition_embed_type == "text_time":
|
672 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
673 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
674 |
+
elif addition_embed_type == "image":
|
675 |
+
# Kandinsky 2.2
|
676 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
677 |
+
elif addition_embed_type == "image_hint":
|
678 |
+
# Kandinsky 2.2 ControlNet
|
679 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
680 |
+
elif addition_embed_type is not None:
|
681 |
+
raise ValueError(
|
682 |
+
f"`addition_embed_type`: {addition_embed_type} must be None, 'text', 'text_image', 'text_time', 'image', or 'image_hint'."
|
683 |
+
)
|
684 |
+
|
685 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
686 |
+
if attention_type in ["gated", "gated-text-image"]:
|
687 |
+
positive_len = 768
|
688 |
+
if isinstance(cross_attention_dim, int):
|
689 |
+
positive_len = cross_attention_dim
|
690 |
+
elif isinstance(cross_attention_dim, (list, tuple)):
|
691 |
+
positive_len = cross_attention_dim[0]
|
692 |
+
|
693 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
694 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
695 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
696 |
+
)
|
697 |
+
|
698 |
+
@property
|
699 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
700 |
+
r"""
|
701 |
+
Returns:
|
702 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
703 |
+
indexed by its weight name.
|
704 |
+
"""
|
705 |
+
# set recursively
|
706 |
+
processors = {}
|
707 |
+
|
708 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
709 |
+
if hasattr(module, "get_processor"):
|
710 |
+
processors[f"{name}.processor"] = module.get_processor()
|
711 |
+
|
712 |
+
for sub_name, child in module.named_children():
|
713 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
714 |
+
|
715 |
+
return processors
|
716 |
+
|
717 |
+
for name, module in self.named_children():
|
718 |
+
fn_recursive_add_processors(name, module, processors)
|
719 |
+
|
720 |
+
return processors
|
721 |
+
|
722 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
723 |
+
r"""
|
724 |
+
Sets the attention processor to use to compute attention.
|
725 |
+
|
726 |
+
Parameters:
|
727 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
728 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
729 |
+
for **all** `Attention` layers.
|
730 |
+
|
731 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
732 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
733 |
+
|
734 |
+
"""
|
735 |
+
count = len(self.attn_processors.keys())
|
736 |
+
|
737 |
+
if isinstance(processor, dict) and len(processor) != count:
|
738 |
+
raise ValueError(
|
739 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
740 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
741 |
+
)
|
742 |
+
|
743 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
744 |
+
if hasattr(module, "set_processor"):
|
745 |
+
if not isinstance(processor, dict):
|
746 |
+
module.set_processor(processor)
|
747 |
+
else:
|
748 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
749 |
+
|
750 |
+
for sub_name, child in module.named_children():
|
751 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
752 |
+
|
753 |
+
for name, module in self.named_children():
|
754 |
+
fn_recursive_attn_processor(name, module, processor)
|
755 |
+
|
756 |
+
def set_default_attn_processor(self):
|
757 |
+
"""
|
758 |
+
Disables custom attention processors and sets the default attention implementation.
|
759 |
+
"""
|
760 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
761 |
+
processor = AttnAddedKVProcessor()
|
762 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
763 |
+
processor = AttnProcessor()
|
764 |
+
else:
|
765 |
+
raise ValueError(
|
766 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
767 |
+
)
|
768 |
+
|
769 |
+
self.set_attn_processor(processor)
|
770 |
+
|
771 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
772 |
+
r"""
|
773 |
+
Enable sliced attention computation.
|
774 |
+
|
775 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
776 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
780 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
781 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
782 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
783 |
+
must be a multiple of `slice_size`.
|
784 |
+
"""
|
785 |
+
sliceable_head_dims = []
|
786 |
+
|
787 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
788 |
+
if hasattr(module, "set_attention_slice"):
|
789 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
790 |
+
|
791 |
+
for child in module.children():
|
792 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
793 |
+
|
794 |
+
# retrieve number of attention layers
|
795 |
+
for module in self.children():
|
796 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
797 |
+
|
798 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
799 |
+
|
800 |
+
if slice_size == "auto":
|
801 |
+
# half the attention head size is usually a good trade-off between
|
802 |
+
# speed and memory
|
803 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
804 |
+
elif slice_size == "max":
|
805 |
+
# make smallest slice possible
|
806 |
+
slice_size = num_sliceable_layers * [1]
|
807 |
+
|
808 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
809 |
+
|
810 |
+
if len(slice_size) != len(sliceable_head_dims):
|
811 |
+
raise ValueError(
|
812 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
813 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
814 |
+
)
|
815 |
+
|
816 |
+
for i in range(len(slice_size)):
|
817 |
+
size = slice_size[i]
|
818 |
+
dim = sliceable_head_dims[i]
|
819 |
+
if size is not None and size > dim:
|
820 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
821 |
+
|
822 |
+
# Recursively walk through all the children.
|
823 |
+
# Any children which exposes the set_attention_slice method
|
824 |
+
# gets the message
|
825 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
826 |
+
if hasattr(module, "set_attention_slice"):
|
827 |
+
module.set_attention_slice(slice_size.pop())
|
828 |
+
|
829 |
+
for child in module.children():
|
830 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
831 |
+
|
832 |
+
reversed_slice_size = list(reversed(slice_size))
|
833 |
+
for module in self.children():
|
834 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
835 |
+
|
836 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
837 |
+
if hasattr(module, "gradient_checkpointing"):
|
838 |
+
module.gradient_checkpointing = value
|
839 |
+
|
840 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
841 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
842 |
+
|
843 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
844 |
+
|
845 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
846 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
847 |
+
|
848 |
+
Args:
|
849 |
+
s1 (`float`):
|
850 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
851 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
852 |
+
s2 (`float`):
|
853 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
854 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
855 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
856 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
857 |
+
"""
|
858 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
859 |
+
setattr(upsample_block, "s1", s1)
|
860 |
+
setattr(upsample_block, "s2", s2)
|
861 |
+
setattr(upsample_block, "b1", b1)
|
862 |
+
setattr(upsample_block, "b2", b2)
|
863 |
+
|
864 |
+
def disable_freeu(self):
|
865 |
+
"""Disables the FreeU mechanism."""
|
866 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
867 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
868 |
+
for k in freeu_keys:
|
869 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
870 |
+
setattr(upsample_block, k, None)
|
871 |
+
|
872 |
+
def fuse_qkv_projections(self):
|
873 |
+
"""
|
874 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
875 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
876 |
+
|
877 |
+
<Tip warning={true}>
|
878 |
+
|
879 |
+
This API is 🧪 experimental.
|
880 |
+
|
881 |
+
</Tip>
|
882 |
+
"""
|
883 |
+
self.original_attn_processors = None
|
884 |
+
|
885 |
+
for _, attn_processor in self.attn_processors.items():
|
886 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
887 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
888 |
+
|
889 |
+
self.original_attn_processors = self.attn_processors
|
890 |
+
|
891 |
+
for module in self.modules():
|
892 |
+
if isinstance(module, Attention):
|
893 |
+
module.fuse_projections(fuse=True)
|
894 |
+
|
895 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
896 |
+
|
897 |
+
def unfuse_qkv_projections(self):
|
898 |
+
"""Disables the fused QKV projection if enabled.
|
899 |
+
|
900 |
+
<Tip warning={true}>
|
901 |
+
|
902 |
+
This API is 🧪 experimental.
|
903 |
+
|
904 |
+
</Tip>
|
905 |
+
|
906 |
+
"""
|
907 |
+
if self.original_attn_processors is not None:
|
908 |
+
self.set_attn_processor(self.original_attn_processors)
|
909 |
+
|
910 |
+
def get_time_embed(
|
911 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
912 |
+
) -> Optional[torch.Tensor]:
|
913 |
+
timesteps = timestep
|
914 |
+
if not torch.is_tensor(timesteps):
|
915 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
916 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
917 |
+
is_mps = sample.device.type == "mps"
|
918 |
+
if isinstance(timestep, float):
|
919 |
+
dtype = torch.float32 if is_mps else torch.float64
|
920 |
+
else:
|
921 |
+
dtype = torch.int32 if is_mps else torch.int64
|
922 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
923 |
+
elif len(timesteps.shape) == 0:
|
924 |
+
timesteps = timesteps[None].to(sample.device)
|
925 |
+
|
926 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
927 |
+
timesteps = timesteps.expand(sample.shape[0])
|
928 |
+
|
929 |
+
t_emb = self.time_proj(timesteps)
|
930 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
931 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
932 |
+
# there might be better ways to encapsulate this.
|
933 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
934 |
+
return t_emb
|
935 |
+
|
936 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
937 |
+
class_emb = None
|
938 |
+
if self.class_embedding is not None:
|
939 |
+
if class_labels is None:
|
940 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
941 |
+
|
942 |
+
if self.config.class_embed_type == "timestep":
|
943 |
+
class_labels = self.time_proj(class_labels)
|
944 |
+
|
945 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
946 |
+
# there might be better ways to encapsulate this.
|
947 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
948 |
+
|
949 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
950 |
+
return class_emb
|
951 |
+
|
952 |
+
def get_aug_embed(
|
953 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
954 |
+
) -> Optional[torch.Tensor]:
|
955 |
+
aug_emb = None
|
956 |
+
if self.config.addition_embed_type == "text":
|
957 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
958 |
+
elif self.config.addition_embed_type == "text_image":
|
959 |
+
# Kandinsky 2.1 - style
|
960 |
+
if "image_embeds" not in added_cond_kwargs:
|
961 |
+
raise ValueError(
|
962 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
963 |
+
)
|
964 |
+
|
965 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
966 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
967 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
968 |
+
elif self.config.addition_embed_type == "text_time":
|
969 |
+
# SDXL - style
|
970 |
+
if "text_embeds" not in added_cond_kwargs:
|
971 |
+
raise ValueError(
|
972 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
973 |
+
)
|
974 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
975 |
+
if "time_ids" not in added_cond_kwargs:
|
976 |
+
raise ValueError(
|
977 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
978 |
+
)
|
979 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
980 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
981 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
982 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
983 |
+
add_embeds = add_embeds.to(emb.dtype)
|
984 |
+
aug_emb = self.add_embedding(add_embeds)
|
985 |
+
elif self.config.addition_embed_type == "image":
|
986 |
+
# Kandinsky 2.2 - style
|
987 |
+
if "image_embeds" not in added_cond_kwargs:
|
988 |
+
raise ValueError(
|
989 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
990 |
+
)
|
991 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
992 |
+
aug_emb = self.add_embedding(image_embs)
|
993 |
+
elif self.config.addition_embed_type == "image_hint":
|
994 |
+
# Kandinsky 2.2 ControlNet - style
|
995 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
996 |
+
raise ValueError(
|
997 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
998 |
+
)
|
999 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1000 |
+
hint = added_cond_kwargs.get("hint")
|
1001 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1002 |
+
return aug_emb
|
1003 |
+
|
1004 |
+
def process_encoder_hidden_states(
|
1005 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1006 |
+
) -> torch.Tensor:
|
1007 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1008 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1009 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1010 |
+
# Kandinsky 2.1 - style
|
1011 |
+
if "image_embeds" not in added_cond_kwargs:
|
1012 |
+
raise ValueError(
|
1013 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1017 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1018 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1019 |
+
# Kandinsky 2.2 - style
|
1020 |
+
if "image_embeds" not in added_cond_kwargs:
|
1021 |
+
raise ValueError(
|
1022 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1023 |
+
)
|
1024 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1025 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1026 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1027 |
+
if "image_embeds" not in added_cond_kwargs:
|
1028 |
+
raise ValueError(
|
1029 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
if hasattr(self, "text_encoder_hid_proj") and self.text_encoder_hid_proj is not None:
|
1033 |
+
encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states)
|
1034 |
+
|
1035 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1036 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1037 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1038 |
+
return encoder_hidden_states
|
1039 |
+
|
1040 |
+
def forward(
|
1041 |
+
self,
|
1042 |
+
sample: torch.Tensor,
|
1043 |
+
timestep: Union[torch.Tensor, float, int],
|
1044 |
+
encoder_hidden_states: torch.Tensor,
|
1045 |
+
encoder_lora_states: torch.Tensor,
|
1046 |
+
class_labels: Optional[torch.Tensor] = None,
|
1047 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1048 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1049 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1050 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1051 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1052 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1053 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1054 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1055 |
+
return_dict: bool = True,
|
1056 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1057 |
+
r"""
|
1058 |
+
The [`UNet2DConditionModel`] forward method.
|
1059 |
+
|
1060 |
+
Args:
|
1061 |
+
sample (`torch.Tensor`):
|
1062 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1063 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1064 |
+
encoder_hidden_states (`torch.Tensor`):
|
1065 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1066 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1067 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1068 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1069 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1070 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1071 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1072 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1073 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1074 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1075 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1076 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1077 |
+
`self.processor` in
|
1078 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1079 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1080 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1081 |
+
are passed along to the UNet blocks.
|
1082 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1083 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1084 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1085 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1086 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1087 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1088 |
+
encoder_attention_mask (`torch.Tensor`):
|
1089 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1090 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1091 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1092 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1093 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1094 |
+
tuple.
|
1095 |
+
|
1096 |
+
Returns:
|
1097 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1098 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1099 |
+
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1100 |
+
"""
|
1101 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1102 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1103 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1104 |
+
# on the fly if necessary.
|
1105 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1106 |
+
|
1107 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1108 |
+
forward_upsample_size = False
|
1109 |
+
upsample_size = None
|
1110 |
+
|
1111 |
+
for dim in sample.shape[-2:]:
|
1112 |
+
if dim % default_overall_up_factor != 0:
|
1113 |
+
# Forward upsample size to force interpolation output size.
|
1114 |
+
forward_upsample_size = True
|
1115 |
+
break
|
1116 |
+
|
1117 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1118 |
+
# expects mask of shape:
|
1119 |
+
# [batch, key_tokens]
|
1120 |
+
# adds singleton query_tokens dimension:
|
1121 |
+
# [batch, 1, key_tokens]
|
1122 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1123 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1124 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1125 |
+
if attention_mask is not None:
|
1126 |
+
# assume that mask is expressed as:
|
1127 |
+
# (1 = keep, 0 = discard)
|
1128 |
+
# convert mask into a bias that can be added to attention scores:
|
1129 |
+
# (keep = +0, discard = -10000.0)
|
1130 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1131 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1132 |
+
|
1133 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1134 |
+
if encoder_attention_mask is not None:
|
1135 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1136 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1137 |
+
|
1138 |
+
# 0. center input if necessary
|
1139 |
+
if self.config.center_input_sample:
|
1140 |
+
sample = 2 * sample - 1.0
|
1141 |
+
|
1142 |
+
# 1. time
|
1143 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1144 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1145 |
+
|
1146 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1147 |
+
if class_emb is not None:
|
1148 |
+
if self.config.class_embeddings_concat:
|
1149 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1150 |
+
else:
|
1151 |
+
emb = emb + class_emb
|
1152 |
+
|
1153 |
+
aug_emb = self.get_aug_embed(
|
1154 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1155 |
+
)
|
1156 |
+
if self.config.addition_embed_type == "image_hint":
|
1157 |
+
aug_emb, hint = aug_emb
|
1158 |
+
sample = torch.cat([sample, hint], dim=1)
|
1159 |
+
|
1160 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1161 |
+
|
1162 |
+
if self.time_embed_act is not None:
|
1163 |
+
emb = self.time_embed_act(emb)
|
1164 |
+
|
1165 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1166 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
# 2. pre-process
|
1170 |
+
sample = self.conv_in(sample)
|
1171 |
+
|
1172 |
+
# 2.5 GLIGEN position net
|
1173 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1174 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1175 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1176 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1177 |
+
|
1178 |
+
# 3. down
|
1179 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1180 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1181 |
+
if cross_attention_kwargs is not None:
|
1182 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1183 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1184 |
+
else:
|
1185 |
+
lora_scale = 1.0
|
1186 |
+
|
1187 |
+
if USE_PEFT_BACKEND:
|
1188 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1189 |
+
scale_lora_layers(self, lora_scale)
|
1190 |
+
|
1191 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1192 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1193 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1194 |
+
# maintain backward compatibility for legacy usage, where
|
1195 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1196 |
+
# but can only use one or the other
|
1197 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1198 |
+
deprecate(
|
1199 |
+
"T2I should not use down_block_additional_residuals",
|
1200 |
+
"1.3.0",
|
1201 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1202 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1203 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1204 |
+
standard_warn=False,
|
1205 |
+
)
|
1206 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1207 |
+
is_adapter = True
|
1208 |
+
|
1209 |
+
down_block_res_samples = (sample,)
|
1210 |
+
for downsample_block in self.down_blocks:
|
1211 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1212 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1213 |
+
additional_residuals = {}
|
1214 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1215 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1216 |
+
|
1217 |
+
sample, res_samples = downsample_block(
|
1218 |
+
hidden_states=sample,
|
1219 |
+
temb=emb,
|
1220 |
+
encoder_hidden_states=encoder_hidden_states,
|
1221 |
+
encoder_lora_states=encoder_lora_states,
|
1222 |
+
attention_mask=attention_mask,
|
1223 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1224 |
+
encoder_attention_mask=encoder_attention_mask,
|
1225 |
+
**additional_residuals,
|
1226 |
+
)
|
1227 |
+
else:
|
1228 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1229 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1230 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1231 |
+
|
1232 |
+
down_block_res_samples += res_samples
|
1233 |
+
|
1234 |
+
if is_controlnet:
|
1235 |
+
new_down_block_res_samples = ()
|
1236 |
+
|
1237 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1238 |
+
down_block_res_samples, down_block_additional_residuals
|
1239 |
+
):
|
1240 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1241 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1242 |
+
|
1243 |
+
down_block_res_samples = new_down_block_res_samples
|
1244 |
+
|
1245 |
+
# 4. mid
|
1246 |
+
if self.mid_block is not None:
|
1247 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1248 |
+
sample = self.mid_block(
|
1249 |
+
sample,
|
1250 |
+
emb,
|
1251 |
+
encoder_hidden_states=encoder_hidden_states,
|
1252 |
+
encoder_lora_states=encoder_lora_states,
|
1253 |
+
attention_mask=attention_mask,
|
1254 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1255 |
+
encoder_attention_mask=encoder_attention_mask,
|
1256 |
+
)
|
1257 |
+
else:
|
1258 |
+
sample = self.mid_block(sample, emb)
|
1259 |
+
|
1260 |
+
# To support T2I-Adapter-XL
|
1261 |
+
if (
|
1262 |
+
is_adapter
|
1263 |
+
and len(down_intrablock_additional_residuals) > 0
|
1264 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1265 |
+
):
|
1266 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1267 |
+
|
1268 |
+
if is_controlnet:
|
1269 |
+
sample = sample + mid_block_additional_residual
|
1270 |
+
|
1271 |
+
# 5. up
|
1272 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1273 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1274 |
+
|
1275 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1276 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1277 |
+
|
1278 |
+
# if we have not reached the final block and need to forward the
|
1279 |
+
# upsample size, we do it here
|
1280 |
+
if not is_final_block and forward_upsample_size:
|
1281 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1282 |
+
|
1283 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1284 |
+
sample = upsample_block(
|
1285 |
+
hidden_states=sample,
|
1286 |
+
temb=emb,
|
1287 |
+
res_hidden_states_tuple=res_samples,
|
1288 |
+
encoder_hidden_states=encoder_hidden_states,
|
1289 |
+
encoder_lora_states=encoder_lora_states,
|
1290 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1291 |
+
upsample_size=upsample_size,
|
1292 |
+
attention_mask=attention_mask,
|
1293 |
+
encoder_attention_mask=encoder_attention_mask,
|
1294 |
+
)
|
1295 |
+
else:
|
1296 |
+
sample = upsample_block(
|
1297 |
+
hidden_states=sample,
|
1298 |
+
temb=emb,
|
1299 |
+
res_hidden_states_tuple=res_samples,
|
1300 |
+
upsample_size=upsample_size,
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
# 6. post-process
|
1304 |
+
if self.conv_norm_out:
|
1305 |
+
sample = self.conv_norm_out(sample)
|
1306 |
+
sample = self.conv_act(sample)
|
1307 |
+
sample = self.conv_out(sample)
|
1308 |
+
|
1309 |
+
if USE_PEFT_BACKEND:
|
1310 |
+
# remove `lora_scale` from each PEFT layer
|
1311 |
+
unscale_lora_layers(self, lora_scale)
|
1312 |
+
|
1313 |
+
if not return_dict:
|
1314 |
+
return (sample,)
|
1315 |
+
|
1316 |
+
return UNet2DConditionOutput(sample=sample)
|
models/visual_prompts.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
from diffusers.models.attention_processor import Attention
|
6 |
+
|
7 |
+
class VisualTokenSelfAttn(torch.nn.Module):
|
8 |
+
def __init__(self, in_dim=2792, out_dim=768, num_heads=8):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.meta_token_trans = nn.Sequential(
|
12 |
+
nn.Linear(in_dim, out_dim * 4),
|
13 |
+
nn.LayerNorm(out_dim * 4),
|
14 |
+
nn.GELU(),
|
15 |
+
nn.Linear(out_dim * 4, out_dim),
|
16 |
+
nn.LayerNorm(out_dim)
|
17 |
+
)
|
18 |
+
|
19 |
+
self.norm1 = nn.LayerNorm(out_dim, eps=1e-6) # important to avoid attention collapsing
|
20 |
+
self.attn = Attention(query_dim=out_dim, heads=num_heads)
|
21 |
+
self.norm2 = nn.LayerNorm(out_dim, eps=1e-6)
|
22 |
+
self.mlp = nn.Sequential(
|
23 |
+
nn.Linear(out_dim, out_dim * 4),
|
24 |
+
nn.GELU(),
|
25 |
+
nn.Linear(out_dim * 4, out_dim)
|
26 |
+
)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.meta_token_trans(x)
|
30 |
+
x = x + self.attn(self.norm1(x))
|
31 |
+
x = x + self.mlp(self.norm2(x))
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class EmotionEmbedding(nn.Module):
|
36 |
+
def __init__(self, emotions, prompts_dir, feature_names, output_dim, prompt_len=16):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
input_dim = self.get_input_dim(feature_names=feature_names)
|
40 |
+
self.self_attn = VisualTokenSelfAttn(in_dim=input_dim, out_dim=output_dim)
|
41 |
+
|
42 |
+
self.emotions = emotions
|
43 |
+
self.emotion2idx = {emotion: idx for idx, emotion in enumerate(emotions)}
|
44 |
+
self.emotion_params = nn.ParameterList()
|
45 |
+
|
46 |
+
self.emotion_init_features = self.get_features(emotions, prompts_dir, feature_names, prompt_len)
|
47 |
+
|
48 |
+
for emotion in self.emotions:
|
49 |
+
init_params = self.emotion_init_features[emotion]
|
50 |
+
# init_params = torch.from_numpy(init_params).float()
|
51 |
+
param = nn.Parameter(init_params)
|
52 |
+
self.emotion_params.append(param)
|
53 |
+
|
54 |
+
def get_features(self, emotions, prompts_dir, feature_names, prompt_len):
|
55 |
+
emotion_init_features = {}
|
56 |
+
for emotion in emotions:
|
57 |
+
emotion_features = []
|
58 |
+
for feature_name in feature_names:
|
59 |
+
features = np.load(os.path.join(prompts_dir, f'{emotion}_{feature_name}.npy'), allow_pickle=True)
|
60 |
+
emotion_features.append(features)
|
61 |
+
emotion_features = np.concatenate(emotion_features, axis=1)
|
62 |
+
|
63 |
+
from sklearn.cluster import KMeans
|
64 |
+
kmeans = KMeans(n_clusters=prompt_len, random_state=42)
|
65 |
+
kmeans.fit_predict(emotion_features)
|
66 |
+
token = torch.tensor(kmeans.cluster_centers_).unsqueeze(0)
|
67 |
+
# print(token.shape)
|
68 |
+
emotion_init_features[emotion] = token
|
69 |
+
return emotion_init_features
|
70 |
+
|
71 |
+
def get_input_dim(self, feature_names):
|
72 |
+
if feature_names == ["clip"]:
|
73 |
+
in_dim = 768
|
74 |
+
elif feature_names == ["vgg"]:
|
75 |
+
in_dim = 1000
|
76 |
+
elif feature_names == ["dinov2"]:
|
77 |
+
in_dim = 1024
|
78 |
+
elif feature_names == ["clip", "vgg"]:
|
79 |
+
in_dim = 1768
|
80 |
+
elif feature_names == ["clip", "dinov2"]:
|
81 |
+
in_dim = 1768
|
82 |
+
elif feature_names == ["vgg", "dinov2"]:
|
83 |
+
in_dim = 2024
|
84 |
+
elif feature_names == ["clip", "vgg", "dinov2"]:
|
85 |
+
in_dim = 2792
|
86 |
+
else:
|
87 |
+
raise ValueError("Invalid feature names")
|
88 |
+
return in_dim
|
89 |
+
|
90 |
+
def params_to_prompts(self):
|
91 |
+
self.emotion_prompts = {}
|
92 |
+
for emotion in self.emotions:
|
93 |
+
prompt = self.self_attn(self.emotion_params[self.emotion2idx[emotion]])
|
94 |
+
prompt = prompt.squeeze(0)
|
95 |
+
self.emotion_prompts[emotion] = prompt
|
96 |
+
|
97 |
+
def forward(self, emotion):
|
98 |
+
if isinstance(emotion, str):
|
99 |
+
emotions = [emotion]
|
100 |
+
else:
|
101 |
+
emotions = emotion
|
102 |
+
|
103 |
+
self.params_to_prompts()
|
104 |
+
selected_prompts = [self.emotion_prompts[emotion] for emotion in emotions]
|
105 |
+
prompts = torch.stack(selected_prompts, dim=0)
|
106 |
+
del self.emotion_prompts
|
107 |
+
|
108 |
+
return prompts
|
109 |
+
|
110 |
+
class EmotionEmbedding2(nn.Module):
|
111 |
+
def __init__(self, emotions, input_dim, output_dim):
|
112 |
+
super().__init__()
|
113 |
+
self.self_attn = VisualTokenSelfAttn(in_dim=input_dim, out_dim=output_dim)
|
114 |
+
self.emotions = emotions
|
115 |
+
self.emotion2idx = {emotion: idx for idx, emotion in enumerate(emotions)}
|
116 |
+
self.emotion_params = nn.Embedding(len(emotions), input_dim)
|
117 |
+
|
118 |
+
def forward(self, emotion):
|
119 |
+
if isinstance(emotion, str):
|
120 |
+
emotions = [emotion]
|
121 |
+
else:
|
122 |
+
emotions = emotion
|
123 |
+
|
124 |
+
emotions = [self.emotion2idx[emotion] for emotion in emotions]
|
125 |
+
emotions = torch.tensor(emotions, device=self.emotion_params.weight.device)
|
126 |
+
prompts = self.emotion_params(emotions).unsqueeze(1)
|
127 |
+
prompts = self.self_attn(prompts)
|
128 |
+
return prompts
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
# emotions = ["amusement", "anger", "awe", "contentment",
|
132 |
+
# "disgust", "excitement", "fear", "sadness"]
|
133 |
+
# feature_names = ["clip", "vgg", "dinov2"]
|
134 |
+
# prompts_dir = "features/origin"
|
135 |
+
# model = EmotionEmbedding(emotions, prompts_dir, feature_names, output_dim=2048, prompt_len=16).to("cuda")
|
136 |
+
# optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
137 |
+
# output = model('awe')
|
138 |
+
# target = torch.ones_like(output)
|
139 |
+
# loss = ((output - target) ** 2).mean()
|
140 |
+
# print(output)
|
141 |
+
|
142 |
+
emotions = ["amusement", "anger", "awe", "contentment",
|
143 |
+
"disgust", "excitement", "fear", "sadness"]
|
144 |
+
prompts_dir = "features/origin"
|
145 |
+
model = EmotionEmbedding2(emotions, input_dim=2048, output_dim=2048, prompt_len=16).to("cuda")
|
146 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
147 |
+
output = model('awe')
|
148 |
+
target = torch.ones_like(output)
|
149 |
+
loss = ((output - target) ** 2).mean()
|
150 |
+
print(output)
|
151 |
+
|
152 |
+
# 反向传播
|
153 |
+
loss.backward()
|
154 |
+
|
155 |
+
# 打印看看梯度
|
156 |
+
for name, param in model.named_parameters():
|
157 |
+
if param.grad is not None:
|
158 |
+
print(f"{name} has gradient ✅, grad mean: {param.grad.mean().item()}")
|
159 |
+
if name == "emotion_params.weight":
|
160 |
+
print(param.grad)
|
161 |
+
else:
|
162 |
+
print(f"{name} has NO gradient ❌")
|
163 |
+
|
164 |
+
# 更新一下参数
|
165 |
+
optimizer.step()
|
166 |
+
print(output)
|