{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e03a8b1cd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739790633318646464, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo47LybrLA/dik2vxCZwr4BZrE86qREPQAAAAAAAAAAM4MdO58wuT+7xlk84hYXvf0I/rwyzYq8AAAAAAAAAACaOdA69pRfulD4UjYON40x4jrAOkiNgrUAAIA/AACAPzNs4jwfLdO5z0++OhqhnjVnsJ26jT/guQAAgD8AAIA/bakzPrb8Frxl7HW7vAowOY8Ogr3kp5E6AACAPwAAgD+GyRm+yOaRPkKddD4Pibu+un5SvQjezT0AAAAAAAAAAIDGoT757GE/MCNrPu+BC7+mVJk+BZtKvgAAAAAAAAAATTEqPilmC7wC1dk6UlyeuC6Pfr1Jiwe6AACAPwAAgD+mKjy+bs6gvOaeUruMcaS5kRgKPsa1iToAAIA/AACAP2b3QT4KK3U6Su7rt5q5wbSn6Is8dnQHNwAAgD8AAIA/gF1bvqRZSD/ir3u+qUYQv/F9e74Km6i8AAAAAAAAAADNZW2+PCb6Pu7JLj6ByQC/cdgMvjdTRT4AAAAAAAAAANourT3sMNg8LQ7IvUyQQr4wnge9QrcHPAAAAAAAAAAAM0PrOmhJtD/BJTo+Ti7dvUHbB7snqSi9AAAAAAAAAADg+iM+KcAsvEIZyLqiaL84+7CSvRZeAToAAIA/AACAP0DwJz7hYYa8OpvDOSrEgrjNZfy95lk4uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDx+tCAtnSMAWyUS/eMAXSUR0CfkCqUNayKdX2UKGgGR0Byg/n7pFCtaAdL2mgIR0CfkJAgPmPpdX2UKGgGR0By7XPE87p3aAdLwmgIR0CfkVTA31jBdX2UKGgGR0BwpaxSpBHDaAdL5mgIR0CfksGc4HX3dX2UKGgGR0BxFPNt65XmaAdL02gIR0Cfk0vkili0dX2UKGgGR0BybyDUVi4KaAdLx2gIR0Cfk+6jWTX8dX2UKGgGR0BwSo0m+j/NaAdLyWgIR0CflBzBhx5tdX2UKGgGR0BwGxqi48U3aAdLxGgIR0CflHGS6lLwdX2UKGgGR0By4UAYHgP3aAdL1mgIR0CflTMVUModdX2UKGgGR0BxRxlEqlP8aAdL1GgIR0CflfHoX9BKdX2UKGgGR0BwgTLEDQqqaAdLyGgIR0Cflhzyz5XVdX2UKGgGR0Bxx1Pci4axaAdLwmgIR0CflspHZsbedX2UKGgGR0By8pAUtZmqaAdNEwFoCEdAn5dUn1Fpf3V9lChoBkdAcZ/r8iwB52gHTcgBaAhHQJ+XhtBOYY11fZQoaAZHQHItqKk2xY9oB0u6aAhHQJ+ZVK6Fuel1fZQoaAZHQHDc9f9gndBoB0uwaAhHQJ+ZmekHlfZ1fZQoaAZHQHEMdl2/zrhoB0vaaAhHQJ+ZqeYlY2d1fZQoaAZHQHKdSSeRPoFoB0vyaAhHQJ+Z0Q6IWP91fZQoaAZHQHKtaqwQlKNoB0vyaAhHQJ+bN2B8QZp1fZQoaAZHQHD7LxRVIZtoB0u8aAhHQJ+caU+s5n11fZQoaAZHQHIDWixmkFhoB0vzaAhHQJ+cZ8qnWJ91fZQoaAZHQHAM02xY7q9oB0vbaAhHQJ+cprxiG351fZQoaAZHQHJwBwEQoThoB00SAWgIR0CfnktZFG5MdX2UKGgGR0BwjCeEqUeNaAdL72gIR0Cfnr2TgVGkdX2UKGgGR0BjNt50KZ2IaAdN6ANoCEdAn6DZhOP/73V9lChoBkdAcnDsa86FNGgHS+FoCEdAn6EY6XBxgnV9lChoBkdAcn+PaL4ve2gHS+1oCEdAn6FizC1qnHV9lChoBkdAbQnO6/ZdwGgHS/toCEdAn6GGLYPGyXV9lChoBkdASk04JeE7GWgHS6RoCEdAn6H2p2ll9XV9lChoBkdAb6Kj0L+glGgHTdgCaAhHQJ+itwGW2PV1fZQoaAZHQHI1Yh6jWTZoB0vpaAhHQJ+i5tUGVzJ1fZQoaAZHQG5C5myxA0NoB0vVaAhHQJ+jdj3Ehq11fZQoaAZHQG69BwuM+/xoB0vOaAhHQJ+jfCtRvWJ1fZQoaAZHQHBoVenhsIpoB0vAaAhHQJ+ke15Sm651fZQoaAZHQHA1PAGjbi9oB0u3aAhHQJ+kmnm7rcF1fZQoaAZHQGTeVzhgmZ5oB03oA2gIR0CfpLFRYRukdX2UKGgGR0Bw/tv1lGwzaAdL0GgIR0CfpwmoBJZodX2UKGgGR0BxovrzGxUvaAdL2mgIR0Cfp44BFNL2dX2UKGgGR0BuqiEL6UJOaAdLxWgIR0Cfp7RUm2LHdX2UKGgGR0BxDQhNdqtYaAdLsmgIR0CfqAOktVaPdX2UKGgGR0BxMmViWmgraAdL5GgIR0CfqC+r2g3+dX2UKGgGR0ByqzTy8SPEaAdL9mgIR0CfqJEovzvrdX2UKGgGR0Bk5ZPdl/YraAdN6ANoCEdAn6jCWAwwkHV9lChoBkdAccZnfEXLvGgHS+VoCEdAn6k7NbC79XV9lChoBkdAc+hy1uzhP2gHS9VoCEdAn6l/n4fwJHV9lChoBkdAchySm65G0GgHS91oCEdAn6m074i5eHV9lChoBkdARnnv0AcT8GgHS7poCEdAn6noAjps43V9lChoBkdAcXAg/1QIlmgHS79oCEdAn6n0HdGiH3V9lChoBkdAY4+AiFCb+mgHTegDaAhHQJ+p+qebutx1fZQoaAZHQHIhvjGT9sJoB0vHaAhHQJ+qCTX8O091fZQoaAZHQHHVEWqLjxVoB0vGaAhHQJ+r7EDQqqh1fZQoaAZHQHDyDpkf9xZoB0vBaAhHQJ+sVkVeruJ1fZQoaAZHQHBnhBAv+OxoB0u9aAhHQJ+sgBIWgvl1fZQoaAZHQHG6lvVEuxtoB0vUaAhHQJ+srApKBd51fZQoaAZHQHBtNaQmu1ZoB0vCaAhHQJ+tGfseGPB1fZQoaAZHQHEkwmiQDFJoB0vraAhHQJ+tyj+Jgst1fZQoaAZHQHF8NvbXYlJoB0vNaAhHQJ+t/114gRt1fZQoaAZHQHBEmtMfzSVoB0vMaAhHQJ+uNOtW+491fZQoaAZHQHFEwmE4//xoB0vNaAhHQJ+usfozN2V1fZQoaAZHQG+X9HDrJKdoB0vKaAhHQJ+uuNOuaF51fZQoaAZHQHAZvdhy8z1oB0vVaAhHQJ+u7i6xxDN1fZQoaAZHQHJoti2DxsloB0v/aAhHQJ+vqpXIU8F1fZQoaAZHQHHIZzcRDkVoB00LAWgIR0CfsChAGB4EdX2UKGgGR0ByczdWQwK0aAdLtWgIR0CfsXYODrZ8dX2UKGgGR0BuMAYaYNRWaAdLz2gIR0CfsfUcn3L3dX2UKGgGR0BykL+S8rZraAdL02gIR0Cfsli6g/TtdX2UKGgGR0ByzT4Ju2qlaAdL7GgIR0CfsmG0/nnudX2UKGgGR0BwdRgeA/cGaAdLrGgIR0CfssvQ4S6EdX2UKGgGR0BxUVRBNVR2aAdLx2gIR0Cfssx20Re1dX2UKGgGR0BtX8MG5c1PaAdLtmgIR0Cfs7kWRA8kdX2UKGgGR0Bj6Nf9gnc+aAdN6ANoCEdAn7SPbO/tY3V9lChoBkdAcesqlxffGmgHS8JoCEdAn7S8cABDHHV9lChoBkdAccpiW3Sa3WgHS+9oCEdAn7U8jzI3i3V9lChoBkdAcaA/JeVs12gHS91oCEdAn7XJPhybQXV9lChoBkdAYy9qoqCpWGgHTegDaAhHQJ+2xlwtJ4B1fZQoaAZHQG8kxg7YChhoB0uyaAhHQJ+3cQ6IWP91fZQoaAZHQHLw5SzgMttoB0vsaAhHQJ+4FKUVzp51fZQoaAZHQHAsCr5qM3toB0u4aAhHQJ+4cUCaJAN1fZQoaAZHQHGGSAtnPE9oB0vOaAhHQJ+40zAN5MV1fZQoaAZHQHLi7utwJgNoB0vWaAhHQJ+5twdbPhR1fZQoaAZHQHEVVxffGdZoB0viaAhHQJ+5tvvSc9Z1fZQoaAZHQG+yNrKvFFVoB0vfaAhHQJ+568dxQzl1fZQoaAZHQHBn+mJm/WVoB0vHaAhHQJ+6AQOFxn51fZQoaAZHQG/8ByKekHloB0u+aAhHQJ+6ZGnXNC91fZQoaAZHQHKdKaLGaQVoB0vVaAhHQJ+7BiiItUZ1fZQoaAZHQHGkeoHcDbJoB0vDaAhHQJ+7aZjQRf51fZQoaAZHQHNO0RnOB19oB00GAWgIR0CfvI75mAbydX2UKGgGR0BwkC6TW5H3aAdLymgIR0CfvLlhPTG6dX2UKGgGR0BxXaVAzHjqaAdLvGgIR0CfvNIY3vQXdX2UKGgGR0Bxlrra/RE4aAdLr2gIR0CfvQtVaOghdX2UKGgGR0Bw5p48lolEaAdLzWgIR0CfvXmqo60ZdX2UKGgGR0BwE2+WWyC4aAdLrGgIR0CfvbNBWxQjdX2UKGgGR0BwbPApKBd2aAdLuGgIR0CfvfgccU/OdX2UKGgGR0BwebDWK/EgaAdL42gIR0Cfv0d7v5P/dX2UKGgGR0ByGjGbTc7AaAdL3mgIR0Cfv6mRvFWGdX2UKGgGR0BvAJIe5nUUaAdLyGgIR0CfwEmtQsPKdX2UKGgGR0BzB93qzJIUaAdL5WgIR0CfwJmY0EX+dX2UKGgGR0ByZJ8uzyBkaAdLxGgIR0CfwaJLM9r5dX2UKGgGR0Bym/ENvwVkaAdLwGgIR0Cfwd8GcFyJdX2UKGgGR0Bx3gBXCCSSaAdL1mgIR0Cfwe+WGATadWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}