Upload FAMA small model
Browse files- config.json +59 -0
- configuration_conformer.py +246 -0
- conformer_model.py +1106 -0
- generation_config.json +11 -0
- model.safetensors +3 -0
- preprocessor_config.json +13 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +6 -0
- tokenizer_config.json +55 -0
- vocab.json +0 -0
config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"activation_function": "relu",
|
4 |
+
"architectures": [
|
5 |
+
"ConformerEncoderDecoderForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_conformer.Speech2TextConformerConfig",
|
10 |
+
"AutoModelForSpeechSeq2Seq": "conformer_model.ConformerEncoderDecoderForConditionalGeneration"
|
11 |
+
},
|
12 |
+
"batch_unsafe_relative_shift": false,
|
13 |
+
"bos_token_id": 0,
|
14 |
+
"conformer_attention_dropout": 0.1,
|
15 |
+
"conformer_conv_dropout": 0.1,
|
16 |
+
"conformer_conv_kernel_size": 31,
|
17 |
+
"conformer_feedforward_dropout": 0.1,
|
18 |
+
"conformer_half_step_residual": true,
|
19 |
+
"conv_channels": 1024,
|
20 |
+
"conv_expansion_factor": 2,
|
21 |
+
"conv_kernel_sizes": [
|
22 |
+
5,
|
23 |
+
5
|
24 |
+
],
|
25 |
+
"ctc_compress_fixed_ratio": 4,
|
26 |
+
"ctc_compress_max_out_size": -1,
|
27 |
+
"ctc_compress_strategy": "none",
|
28 |
+
"d_model": 1024,
|
29 |
+
"decoder_attention_heads": 16,
|
30 |
+
"decoder_ffn_dim": 4096,
|
31 |
+
"decoder_layerdrop": 0.0,
|
32 |
+
"decoder_layers": 6,
|
33 |
+
"decoder_start_token_id": 2,
|
34 |
+
"dropout": 0.1,
|
35 |
+
"early_stopping": null,
|
36 |
+
"encoder_attention_heads": 16,
|
37 |
+
"encoder_layers": 12,
|
38 |
+
"eos_token_id": 2,
|
39 |
+
"feed_forward_expansion_factor": 4,
|
40 |
+
"init_std": 0.02,
|
41 |
+
"input_channels": 1,
|
42 |
+
"input_feat_per_channel": 80,
|
43 |
+
"is_encoder_decoder": true,
|
44 |
+
"max_length": null,
|
45 |
+
"max_source_positions": 6000,
|
46 |
+
"max_target_positions": 1024,
|
47 |
+
"model_type": "conformer_encoder_decoder",
|
48 |
+
"no_syncbatchnorm": false,
|
49 |
+
"num_beams": null,
|
50 |
+
"num_conv_layers": 2,
|
51 |
+
"num_hidden_layers": 12,
|
52 |
+
"pad_token_id": 1,
|
53 |
+
"scale_embedding": true,
|
54 |
+
"tie_word_embeddings": false,
|
55 |
+
"torch_dtype": "float32",
|
56 |
+
"transformers_version": "4.48.1",
|
57 |
+
"use_cache": true,
|
58 |
+
"vocab_size": 16004
|
59 |
+
}
|
configuration_conformer.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 FBK
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License
|
14 |
+
"""Conformer model configuration"""
|
15 |
+
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class Speech2TextConformerConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`ConformerEncoderDecoderModel`]. It is used to
|
26 |
+
instantiate a Conformer model according to the specified arguments, defining the model architecture. Instantiating a
|
27 |
+
configuration with the defaults will yield a similar configuration to that of the conformer base architecture
|
28 |
+
in https://github.com/hlt-mt/FBK-fairseq/.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 10000):
|
36 |
+
Vocabulary size of the Conformer model. Defines the number of different tokens that can be represented by
|
37 |
+
the `inputs_ids` passed when calling [`ConformerEncoderDecoderModel`]
|
38 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
39 |
+
Number of encoder layers.
|
40 |
+
feed_forward_expansion_factor (`int`, *optional*, defaults to 4):
|
41 |
+
Expansion factor that controls the size of the "intermediate" (often named feed-forward) layer in encoder.
|
42 |
+
conv_expansion_factor (`int`, *optional*, defaults to 2):
|
43 |
+
Expansion factor that controls the size of the intermediate convolution layers in the encoder.
|
44 |
+
conformer_feedforward_dropout (`float`, *optional*, defaults to 0.1):
|
45 |
+
Dropout probability of the Conformer FeedForward module.
|
46 |
+
conformer_attention_dropout (`float`, *optional*, defaults to 0.1):
|
47 |
+
Dropout probability of the Conformer Attention module.
|
48 |
+
conformer_conv_dropout (`float`, *optional*, defaults to 0.1):
|
49 |
+
Dropout probability of the Conformer Convolution module.
|
50 |
+
conformer_conv_kernel_size (`int`, *optional*, defaults to 31):
|
51 |
+
Kernel size of the Conformer Convolution module.
|
52 |
+
conformer_half_step_residual (`bool`, *optional*, defaults to False):
|
53 |
+
Whether to use half step residual connections.
|
54 |
+
no_syncbatchnorm (`bool`, *optional*, defaults to False):
|
55 |
+
If `True`, SyncBatchNorm is replaced by BatchNorm1D in the Conformer Convolution module.
|
56 |
+
batch_unsafe_relative_shift (`bool`, *optional*, defaults to False):
|
57 |
+
If `True`, the relative_shift implementation disregards padding (returning different results
|
58 |
+
with different amount of padding for the same input) but is faster. This may lead to inconsistencies
|
59 |
+
with different batch sizes.
|
60 |
+
ctc_compress_strategy (`str`, *optional*, defaults to 'none'):
|
61 |
+
Strategy to use when compressing CTC output. Valid strategies are 'none', 'avg', 'weighted', 'softmax',
|
62 |
+
and 'fixed'.
|
63 |
+
ctc_compress_fixed_ratio ('int', *optional*, defaults to 4):
|
64 |
+
If ctc_compress_strategy is set to 'fixed', the fixed ratio controls how many consecutive steps to merge.
|
65 |
+
ctc_compress_max_out_size ('int', *optional*, defaults to -1):
|
66 |
+
If CTC compression is enabled (ctc_compress_strategy != 'none') and this argument is set to a positive
|
67 |
+
number, every input is forced to be at most as long as the value set for this parameter, even though the
|
68 |
+
CTC would not compress it enough. Intuitively, this parameter should be set to 1/4 of the max input length
|
69 |
+
to ensure that the maximum sequence length of the self-attention input is the same as in the case of models
|
70 |
+
having 2 initial convolutions with stride 2.
|
71 |
+
encoder_attention_heads (`int`, *optional*, defaults to 8):
|
72 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
73 |
+
decoder_layers (`int`, *optional*, defaults to 6):
|
74 |
+
Number of decoder layers.
|
75 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
76 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
77 |
+
decoder_attention_heads (`int`, *optional*, defaults to 8):
|
78 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
79 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
80 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for
|
81 |
+
more details.
|
82 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
84 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks.
|
86 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
87 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
88 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
89 |
+
d_model (`int`, *optional*, defaults to 512):
|
90 |
+
Dimensionality of the layers and the pooler layer.
|
91 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
92 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
93 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
94 |
+
The dropout ratio for the attention probabilities.
|
95 |
+
activation_dropout (`float`, *optional*, defaults to 0.1):
|
96 |
+
The dropout ratio for activations inside the fully connected layer.
|
97 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
98 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
99 |
+
decoder_start_token_id (`int`, *optional*, defaults to 2):
|
100 |
+
The initial token ID of the decoder when decoding sequences.
|
101 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether the embeddings are scaled by the square root of `d_model`.
|
103 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
104 |
+
Padding token id.
|
105 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
106 |
+
The id of the beginning-of-sequence token.
|
107 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
108 |
+
The id of the end-of-sequence token.
|
109 |
+
max_source_positions (`int`, *optional*, defaults to 6000):
|
110 |
+
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
|
111 |
+
max_target_positions (`int`, *optional*, defaults to 1024):
|
112 |
+
The maximum sequence length that this model might ever be used with. Typically, set this to something large
|
113 |
+
just in case (e.g., 512 or 1024 or 2048).
|
114 |
+
num_conv_layers (`int`, *optional*, defaults to 2):
|
115 |
+
Number of 1D convolutional layers in the conv module.
|
116 |
+
conv_kernel_sizes (`Tuple[int]`, *optional*, defaults to `(5, 5)`):
|
117 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length
|
118 |
+
of `conv_kernel_sizes` has to match `num_conv_layers`.
|
119 |
+
conv_channels (`int`, *optional*, defaults to 1024):
|
120 |
+
An integer defining the number of output channels of each convolution layers except the final one in the
|
121 |
+
conv module.
|
122 |
+
input_feat_per_channel (`int`, *optional*, defaults to 80):
|
123 |
+
An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank
|
124 |
+
features.
|
125 |
+
input_channels (`int`, *optional*, defaults to 1):
|
126 |
+
An integer specifying number of input channels of the input feature vector.
|
127 |
+
|
128 |
+
Example:
|
129 |
+
|
130 |
+
```python
|
131 |
+
>>> from transformers import Speech2TextConformerConfig, ConformerEncoderDecoderModel
|
132 |
+
|
133 |
+
>>> # Initializing a configuration with default params
|
134 |
+
>>> configuration = Speech2TextConformerConfig()
|
135 |
+
|
136 |
+
>>> # Initializing a model (with random weights) from the default configuration
|
137 |
+
>>> model = ConformerEncoderDecoderModel(configuration)
|
138 |
+
|
139 |
+
>>> # Accessing the model configuration
|
140 |
+
>>> configuration = model.config
|
141 |
+
```"""
|
142 |
+
|
143 |
+
model_type = "conformer_encoder_decoder"
|
144 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
145 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
vocab_size=10000,
|
150 |
+
encoder_layers=12,
|
151 |
+
feed_forward_expansion_factor=4,
|
152 |
+
conv_expansion_factor=2,
|
153 |
+
conformer_feedforward_dropout=0.1,
|
154 |
+
conformer_attention_dropout=0.1,
|
155 |
+
conformer_conv_dropout=0.1,
|
156 |
+
conformer_conv_kernel_size=31,
|
157 |
+
conformer_half_step_residual=True,
|
158 |
+
no_syncbatchnorm=False,
|
159 |
+
batch_unsafe_relative_shift=False,
|
160 |
+
ctc_compress_strategy="none",
|
161 |
+
ctc_compress_fixed_ratio=4,
|
162 |
+
ctc_compress_max_out_size=-1,
|
163 |
+
encoder_attention_heads=8,
|
164 |
+
decoder_layers=6,
|
165 |
+
decoder_ffn_dim=2048,
|
166 |
+
decoder_attention_heads=8,
|
167 |
+
decoder_layerdrop=0.0,
|
168 |
+
use_cache=True,
|
169 |
+
is_encoder_decoder=True,
|
170 |
+
activation_function="relu",
|
171 |
+
d_model=512,
|
172 |
+
dropout=0.1,
|
173 |
+
attention_dropout=0.1,
|
174 |
+
activation_dropout=0.1,
|
175 |
+
init_std=0.02,
|
176 |
+
decoder_start_token_id=2,
|
177 |
+
scale_embedding=True,
|
178 |
+
pad_token_id=1,
|
179 |
+
bos_token_id=0,
|
180 |
+
eos_token_id=2,
|
181 |
+
max_source_positions=6000,
|
182 |
+
max_target_positions=1024,
|
183 |
+
num_conv_layers=2,
|
184 |
+
conv_kernel_sizes=(5, 5),
|
185 |
+
conv_channels=1024,
|
186 |
+
input_feat_per_channel=80,
|
187 |
+
input_channels=1,
|
188 |
+
**kwargs,
|
189 |
+
):
|
190 |
+
self.vocab_size = vocab_size
|
191 |
+
self.d_model = d_model
|
192 |
+
self.feed_forward_expansion_factor = feed_forward_expansion_factor
|
193 |
+
self.conv_expansion_factor = conv_expansion_factor
|
194 |
+
self.conformer_feedforward_dropout = conformer_feedforward_dropout
|
195 |
+
self.conformer_attention_dropout = conformer_attention_dropout
|
196 |
+
self.conformer_conv_dropout = conformer_conv_dropout
|
197 |
+
self.conformer_conv_kernel_size = conformer_conv_kernel_size
|
198 |
+
self.conformer_half_step_residual = conformer_half_step_residual
|
199 |
+
self.no_syncbatchnorm = no_syncbatchnorm
|
200 |
+
self.batch_unsafe_relative_shift = batch_unsafe_relative_shift
|
201 |
+
self.ctc_compress_strategy = ctc_compress_strategy
|
202 |
+
self.ctc_compress_fixed_ratio = ctc_compress_fixed_ratio
|
203 |
+
self.ctc_compress_max_out_size = ctc_compress_max_out_size
|
204 |
+
self.encoder_layers = encoder_layers
|
205 |
+
self.encoder_attention_heads = encoder_attention_heads
|
206 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
207 |
+
self.decoder_layers = decoder_layers
|
208 |
+
self.decoder_attention_heads = decoder_attention_heads
|
209 |
+
self.dropout = dropout
|
210 |
+
self.attention_dropout = attention_dropout
|
211 |
+
self.activation_dropout = activation_dropout
|
212 |
+
self.activation_function = activation_function
|
213 |
+
self.init_std = init_std
|
214 |
+
self.decoder_layerdrop = decoder_layerdrop
|
215 |
+
self.use_cache = use_cache
|
216 |
+
self.num_hidden_layers = encoder_layers
|
217 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
218 |
+
self.max_source_positions = max_source_positions
|
219 |
+
self.max_target_positions = max_target_positions
|
220 |
+
self.num_conv_layers = num_conv_layers
|
221 |
+
self.conv_kernel_sizes = list(conv_kernel_sizes)
|
222 |
+
self.conv_channels = conv_channels
|
223 |
+
self.input_feat_per_channel = input_feat_per_channel
|
224 |
+
self.input_channels = input_channels
|
225 |
+
|
226 |
+
if self.ctc_compress_strategy not in ['none', 'avg', 'weighted', 'softmax', 'fixed']:
|
227 |
+
raise ValueError(
|
228 |
+
f"Configuration value for ctc_compress_strategy is invalid. `{self.ctc_compress_strategy}` is set, "
|
229 |
+
f"but the allowed values are: `none`, `avg`, `weighted`, `softmax`, `fixed`.")
|
230 |
+
|
231 |
+
if len(self.conv_kernel_sizes) != self.num_conv_layers:
|
232 |
+
raise ValueError(
|
233 |
+
"Configuration for convolutional module is incorrect. "
|
234 |
+
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` "
|
235 |
+
f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, "
|
236 |
+
f"`config.num_conv_layers = {self.num_conv_layers}`."
|
237 |
+
)
|
238 |
+
|
239 |
+
super().__init__(
|
240 |
+
pad_token_id=pad_token_id,
|
241 |
+
bos_token_id=bos_token_id,
|
242 |
+
eos_token_id=eos_token_id,
|
243 |
+
is_encoder_decoder=is_encoder_decoder,
|
244 |
+
decoder_start_token_id=decoder_start_token_id,
|
245 |
+
**kwargs,
|
246 |
+
)
|
conformer_model.py
ADDED
@@ -0,0 +1,1106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 FBK
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License
|
14 |
+
# the code below contains parts copied from the Conformer implementation in
|
15 |
+
# https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/models/conformer.py
|
16 |
+
import math
|
17 |
+
from itertools import groupby
|
18 |
+
from typing import Union, Tuple, Optional
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import transformers
|
22 |
+
from torch import nn, Tensor
|
23 |
+
from torch.nn import CrossEntropyLoss, functional as F
|
24 |
+
|
25 |
+
from transformers import Speech2TextPreTrainedModel, add_start_docstrings, GenerationMixin, Speech2TextProcessor, \
|
26 |
+
Speech2TextTokenizer, Speech2TextFeatureExtractor
|
27 |
+
from transformers.modeling_outputs import Seq2SeqModelOutput, BaseModelOutput, Seq2SeqLMOutput
|
28 |
+
from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextDecoder, \
|
29 |
+
SPEECH_TO_TEXT_INPUTS_DOCSTRING, shift_tokens_right
|
30 |
+
from transformers.utils import replace_return_docstrings, add_start_docstrings_to_model_forward, logging
|
31 |
+
|
32 |
+
from .configuration_conformer import Speech2TextConformerConfig
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
_CONFIG_FOR_DOC = "Speech2TextConformerConfig"
|
38 |
+
|
39 |
+
CONFORMER_START_DOCSTRING = r"""
|
40 |
+
This model is an implementation of an attention-based autoregressive encoder-decoder model, in which the encoder
|
41 |
+
is a Conformer Encoder and decoder is a Transformer Decoder. The encoder expects 80-feature spectrograms as input
|
42 |
+
as the [`Speech2TextModel`] and its implementation follows that of the paper:
|
43 |
+
|
44 |
+
`"When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP"
|
45 |
+
(Papi, et al, ACL 2024) <https://aclanthology.org/2024.acl-long.200/>`_.
|
46 |
+
|
47 |
+
This ensures consistency of results regardless of the presence of padding.
|
48 |
+
|
49 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
50 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
51 |
+
etc.)
|
52 |
+
|
53 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
54 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
55 |
+
and behavior.
|
56 |
+
|
57 |
+
Parameters:
|
58 |
+
config ([`Speech2TextConformerConfig`]):
|
59 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
60 |
+
load the weights associated with the model, only the configuration. Check out the
|
61 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
62 |
+
"""
|
63 |
+
|
64 |
+
|
65 |
+
class Conv1dSubsampler(nn.Module):
|
66 |
+
"""Convolutional subsampler: a stack of 1D convolution (along temporal
|
67 |
+
dimension) followed by non-linear activation via gated linear units
|
68 |
+
(https://arxiv.org/abs/1911.08460)
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, config: Speech2TextConformerConfig):
|
72 |
+
super(Conv1dSubsampler, self).__init__()
|
73 |
+
self.n_layers = len(config.conv_kernel_sizes)
|
74 |
+
in_channels = config.input_feat_per_channel * config.input_channels
|
75 |
+
mid_channels = config.conv_channels
|
76 |
+
out_channels = config.d_model
|
77 |
+
self.conv_layers = nn.ModuleList(
|
78 |
+
nn.Conv1d(
|
79 |
+
in_channels if i == 0 else mid_channels // 2,
|
80 |
+
mid_channels if i < self.n_layers - 1 else out_channels * 2,
|
81 |
+
k,
|
82 |
+
stride=2,
|
83 |
+
padding=k // 2,
|
84 |
+
)
|
85 |
+
for i, k in enumerate(config.conv_kernel_sizes)
|
86 |
+
)
|
87 |
+
|
88 |
+
@staticmethod
|
89 |
+
def subsampled_sequence_len(seq_lens, kernel_size=5, padding=1, stride=2):
|
90 |
+
compressed_seq_lens = seq_lens.clone()
|
91 |
+
return ((compressed_seq_lens.float() - kernel_size + 2 * padding) / stride + 1).floor().long()
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def lengths_to_padding_mask(lens: torch.LongTensor) -> torch.BoolTensor:
|
95 |
+
bsz, max_lens = lens.size(0), torch.max(lens).item()
|
96 |
+
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
|
97 |
+
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
|
98 |
+
return mask
|
99 |
+
|
100 |
+
def forward(self, src_tokens: torch.FloatTensor, padding_mask: torch.IntTensor) -> torch.Tensor:
|
101 |
+
x = src_tokens.transpose(1, 2).contiguous() # B x T x (C x D) -> B x (C x D) x T
|
102 |
+
actual_src_lengths = padding_mask.sum(dim=1)
|
103 |
+
for conv in self.conv_layers:
|
104 |
+
x = conv(x)
|
105 |
+
x = nn.functional.glu(x, dim=1)
|
106 |
+
actual_src_lengths = self.subsampled_sequence_len(
|
107 |
+
actual_src_lengths,
|
108 |
+
kernel_size=conv.kernel_size[0],
|
109 |
+
padding=conv.padding[0],
|
110 |
+
stride=conv.stride[0])
|
111 |
+
x = x.masked_fill(
|
112 |
+
self.lengths_to_padding_mask(actual_src_lengths).unsqueeze(1), 0)
|
113 |
+
x = x.transpose(1, 2).transpose(0, 1).contiguous() # -> T x B x (C x D)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
class PositionalEncoding(nn.Module):
|
118 |
+
"""
|
119 |
+
Positional Encoding proposed in "Attention Is All You Need".
|
120 |
+
"Attention Is All You Need" use sine and cosine functions of different frequencies:
|
121 |
+
PE_(pos, 2i) = sin(pos / power(10000, 2i / d_model))
|
122 |
+
PE_(pos, 2i+1) = cos(pos / power(10000, 2i / d_model))
|
123 |
+
The version implemented on Fairseq differs slightly from the paper, this implementation is faithful to the
|
124 |
+
original one. Please see
|
125 |
+
:func:`~fairseq.modules.sinusoidal_positional_embedding.SinusoidalPositionalEmbedding.get_embedding` for more
|
126 |
+
details.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, d_model: int = 512, max_len: int = 10000) -> None:
|
130 |
+
super(PositionalEncoding, self).__init__()
|
131 |
+
pe = torch.zeros(max_len, d_model, requires_grad=False)
|
132 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
133 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
|
134 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
135 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
136 |
+
pe = pe.unsqueeze(0)
|
137 |
+
self.register_buffer('pe', pe)
|
138 |
+
|
139 |
+
def forward(self, length: int) -> Tensor:
|
140 |
+
return self.pe[:, :length]
|
141 |
+
|
142 |
+
|
143 |
+
class RelativeMultiHeadAttention(nn.Module):
|
144 |
+
"""
|
145 |
+
Multi-head attention with relative positional encoding.
|
146 |
+
This concept was proposed in the `"Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
147 |
+
<https://arxiv.org/pdf/1901.02860.pdf>`_.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
d_model (int): The dimension of model
|
151 |
+
num_heads (int): The number of attention heads.
|
152 |
+
dropout_p (float): probability of dropout
|
153 |
+
|
154 |
+
Inputs: query, key, value, pos_embedding, mask
|
155 |
+
query (batch, time, dim): Tensor containing query vector
|
156 |
+
key (batch, time, dim): Tensor containing key vector
|
157 |
+
value (batch, time, dim): Tensor containing value vector
|
158 |
+
pos_embedding (batch, time, dim): Positional embedding tensor
|
159 |
+
mask (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
**outputs**: Tensor produces by relative multi head attention module.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
d_model: int = 512,
|
168 |
+
num_heads: int = 16,
|
169 |
+
dropout_p: float = 0.1,
|
170 |
+
batch_unsafe_relative_shift: bool = False
|
171 |
+
):
|
172 |
+
super(RelativeMultiHeadAttention, self).__init__()
|
173 |
+
assert d_model % num_heads == 0, "d_model % num_heads should be zero."
|
174 |
+
self.d_model = d_model
|
175 |
+
self.d_head = int(d_model / num_heads)
|
176 |
+
self.num_heads = num_heads
|
177 |
+
self.sqrt_dim = math.sqrt(d_model)
|
178 |
+
|
179 |
+
self.query_proj = nn.Linear(d_model, d_model)
|
180 |
+
nn.init.xavier_uniform_(self.query_proj.weight)
|
181 |
+
nn.init.zeros_(self.query_proj.bias)
|
182 |
+
self.key_proj = nn.Linear(d_model, d_model)
|
183 |
+
nn.init.xavier_uniform_(self.key_proj.weight)
|
184 |
+
nn.init.zeros_(self.key_proj.bias)
|
185 |
+
self.value_proj = nn.Linear(d_model, d_model)
|
186 |
+
nn.init.xavier_uniform_(self.value_proj.weight)
|
187 |
+
nn.init.zeros_(self.value_proj.bias)
|
188 |
+
self.pos_proj = nn.Linear(d_model, d_model, bias=False)
|
189 |
+
nn.init.xavier_uniform_(self.pos_proj.weight)
|
190 |
+
|
191 |
+
self.dropout = nn.Dropout(p=dropout_p)
|
192 |
+
# u and v are the trainable parameters of the Transformer-XL attention computation
|
193 |
+
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
194 |
+
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
195 |
+
nn.init.xavier_uniform_(self.u_bias)
|
196 |
+
nn.init.xavier_uniform_(self.v_bias)
|
197 |
+
|
198 |
+
self.out_proj = nn.Linear(d_model, d_model)
|
199 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
200 |
+
nn.init.zeros_(self.out_proj.bias)
|
201 |
+
self.relative_shift_func = self._relative_shift_unsafe if batch_unsafe_relative_shift else self._relative_shift
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self,
|
205 |
+
query: Tensor,
|
206 |
+
key: Tensor,
|
207 |
+
value: Tensor,
|
208 |
+
pos_embedding: Tensor,
|
209 |
+
mask: Optional[Tensor] = None,
|
210 |
+
) -> Tuple[Tensor, Tensor]:
|
211 |
+
batch_size = value.size(0)
|
212 |
+
|
213 |
+
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
|
214 |
+
key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
|
215 |
+
value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
|
216 |
+
pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)
|
217 |
+
|
218 |
+
# Attention weights computation using Q + u as in Transformer-XL
|
219 |
+
content_score = torch.matmul((query + self.u_bias).transpose(1, 2), key.transpose(2, 3))
|
220 |
+
# Relative positional weights computation using Q + v as in Transformer-XL
|
221 |
+
pos_score = torch.matmul((query + self.v_bias).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1))
|
222 |
+
# Right shifting mechanism described in Transformer-XL
|
223 |
+
pos_score = self.relative_shift_func(pos_score, mask)
|
224 |
+
# Final attention weights obtained summing the attention with its relative positional embeddings
|
225 |
+
score = (content_score + pos_score) / self.sqrt_dim
|
226 |
+
|
227 |
+
if mask is not None:
|
228 |
+
mask = mask.unsqueeze(1)
|
229 |
+
score.masked_fill_(mask, -1e9 if mask.dtype == torch.float32 else -1e4)
|
230 |
+
|
231 |
+
attn = F.softmax(score, dim=-1)
|
232 |
+
# set to 0.0 all attention weights of padding elements
|
233 |
+
if mask is not None:
|
234 |
+
attn = attn.masked_fill(mask, 0.0)
|
235 |
+
attn = self.dropout(attn)
|
236 |
+
|
237 |
+
# Attention computation
|
238 |
+
context = torch.matmul(attn, value).transpose(1, 2)
|
239 |
+
context = context.contiguous().view(batch_size, -1, self.d_model)
|
240 |
+
|
241 |
+
return self.out_proj(context), attn
|
242 |
+
|
243 |
+
def _relative_shift(self, pos_score: Tensor, padding_mask: Tensor) -> Tensor:
|
244 |
+
"""
|
245 |
+
This methods performs the relative shift operation row-wise.
|
246 |
+
Although inefficient, it enforces that each row is shifted accounting its padding,
|
247 |
+
which enforces that the result does not change depending on whether a given row
|
248 |
+
is padded or not.
|
249 |
+
"""
|
250 |
+
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
|
251 |
+
assert seq_length1 == seq_length2, "Currently we support only self-attention"
|
252 |
+
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
|
253 |
+
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
|
254 |
+
|
255 |
+
seq_lengths = (seq_length1 - (padding_mask[:, :, 0]).sum(-1)).tolist()
|
256 |
+
for b_i in range(batch_size):
|
257 |
+
padded_batch_pos_scores = padded_pos_score[b_i, :, :seq_lengths[b_i], :seq_lengths[b_i] + 1]
|
258 |
+
padded_batch_pos_scores = padded_batch_pos_scores.reshape(num_heads, seq_lengths[b_i] + 1, seq_lengths[b_i])
|
259 |
+
pos_score[b_i, :, :seq_lengths[b_i], :seq_lengths[b_i]] = padded_batch_pos_scores[:, 1:, :]
|
260 |
+
pos_score.masked_fill_(padding_mask.unsqueeze(1), 0.0)
|
261 |
+
return pos_score
|
262 |
+
|
263 |
+
def _relative_shift_unsafe(self, pos_score: Tensor, padding_mask: Tensor) -> Tensor:
|
264 |
+
"""
|
265 |
+
This implementation reflects other open source ones (e.g. fairseq), which
|
266 |
+
shift the values from the row above in the batch. Although efficient,
|
267 |
+
this leads to inconsistencies in the results, as the same row has different
|
268 |
+
values according to whether it is padded (and how much it is) or not.
|
269 |
+
"""
|
270 |
+
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
|
271 |
+
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
|
272 |
+
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
|
273 |
+
|
274 |
+
padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
|
275 |
+
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
|
276 |
+
|
277 |
+
return pos_score
|
278 |
+
|
279 |
+
|
280 |
+
class MultiHeadedSelfAttentionModule(nn.Module):
|
281 |
+
"""
|
282 |
+
Conformer employ multi-headed self-attention (MHSA) while integrating an important technique from Transformer-XL,
|
283 |
+
the relative sinusoidal positional encoding scheme. The relative positional encoding allows the self-attention
|
284 |
+
module to generalize better on different input length and the resulting encoder is more robust to the variance of
|
285 |
+
the utterance length. Conformer use prenorm residual units with dropout which helps training
|
286 |
+
and regularizing deeper models.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
d_model (int): The dimension of model
|
290 |
+
num_heads (int): The number of attention heads.
|
291 |
+
dropout_p (float): probability of dropout
|
292 |
+
|
293 |
+
Inputs: inputs, mask
|
294 |
+
x (batch, time, dim): Tensor containing input vector
|
295 |
+
mask (batch, time1, time2): Tensor containing indices to be masked
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
**outputs** (batch, time, dim): Tensor produces by relative multi headed self attention module.
|
299 |
+
"""
|
300 |
+
def __init__(self, d_model: int, num_heads: int, dropout_p: float = 0.1, batch_unsafe_relative_shift: bool = False):
|
301 |
+
super(MultiHeadedSelfAttentionModule, self).__init__()
|
302 |
+
self.positional_encoding = PositionalEncoding(d_model)
|
303 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
304 |
+
self.attention = RelativeMultiHeadAttention(d_model, num_heads, dropout_p, batch_unsafe_relative_shift)
|
305 |
+
self.dropout = nn.Dropout(p=dropout_p)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self, x: Tensor, encoder_padding_mask: Optional[Tensor] = None, output_attention: bool = False
|
309 |
+
) -> Tuple[Tensor, Tensor]:
|
310 |
+
batch_size, seq_length, _ = x.size()
|
311 |
+
pos_embedding = self.positional_encoding(seq_length)
|
312 |
+
pos_embedding = pos_embedding.repeat(batch_size, 1, 1)
|
313 |
+
# we need attention padding mask (attn_mask) to be applied during the attention calculation,
|
314 |
+
# we obtain it from the encoder_padding_mask (B x T) by repeating it T times (x.shape[1]) and
|
315 |
+
# taking the logical or to correctly mask both T x T dimensions
|
316 |
+
att_mask = encoder_padding_mask.unsqueeze(1).repeat([1, x.shape[1], 1])
|
317 |
+
att_mask = att_mask.logical_or(att_mask.transpose(1, 2)) # B x T x T
|
318 |
+
|
319 |
+
x = self.layer_norm(x)
|
320 |
+
outputs, attn = self.attention(x, x, x, pos_embedding=pos_embedding, mask=att_mask)
|
321 |
+
|
322 |
+
return self.dropout(outputs), attn if output_attention else None
|
323 |
+
|
324 |
+
|
325 |
+
class FeedForwardModule(nn.Module):
|
326 |
+
"""
|
327 |
+
Conformer Feed Forward Module follow pre-norm residual units and apply layer normalization within the residual unit
|
328 |
+
and on the input before the first linear layer. This module also apply Swish activation and dropout, which helps
|
329 |
+
regularizing the network.
|
330 |
+
|
331 |
+
Args:
|
332 |
+
encoder_dim (int): Dimension of conformer encoder
|
333 |
+
expansion_factor (int): Expansion factor of feed forward module.
|
334 |
+
dropout_p (float): Ratio of dropout
|
335 |
+
|
336 |
+
Inputs: inputs
|
337 |
+
x (batch, time, dim): Tensor contains input sequences
|
338 |
+
|
339 |
+
Outputs: outputs
|
340 |
+
**outputs** (batch, time, dim): Tensor produces by feed forward module.
|
341 |
+
"""
|
342 |
+
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
encoder_dim: int = 512,
|
346 |
+
expansion_factor: int = 4,
|
347 |
+
dropout_p: float = 0.1,
|
348 |
+
) -> None:
|
349 |
+
super(FeedForwardModule, self).__init__()
|
350 |
+
self.layernorm = nn.LayerNorm(encoder_dim)
|
351 |
+
self.dropout_module = nn.Dropout(p=dropout_p)
|
352 |
+
self.first_linear = nn.Linear(encoder_dim, encoder_dim * expansion_factor, bias=True)
|
353 |
+
nn.init.xavier_uniform_(self.first_linear.weight)
|
354 |
+
nn.init.zeros_(self.first_linear.bias)
|
355 |
+
self.second_linear = nn.Linear(encoder_dim * expansion_factor, encoder_dim, bias=True)
|
356 |
+
nn.init.xavier_uniform_(self.second_linear.weight)
|
357 |
+
nn.init.zeros_(self.second_linear.bias)
|
358 |
+
|
359 |
+
def forward(self, x: Tensor) -> Tensor:
|
360 |
+
x = self.layernorm(x)
|
361 |
+
x = self.first_linear(x)
|
362 |
+
x = F.silu(x)
|
363 |
+
x = self.dropout_module(x)
|
364 |
+
x = self.second_linear(x)
|
365 |
+
x = self.dropout_module(x)
|
366 |
+
return x
|
367 |
+
|
368 |
+
|
369 |
+
class ConformerConvModule(nn.Module):
|
370 |
+
"""
|
371 |
+
Conformer convolution module starts with the first pointwise convolution and a gated linear unit (GLU).
|
372 |
+
This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
|
373 |
+
to aid training deep models. Then, Swift (or SiLu) activation function is applied and followed by the second
|
374 |
+
pointwise convolution. The Dropout module is applied in the end.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
in_channels (int): Number of channels in the input
|
378 |
+
kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31
|
379 |
+
dropout_p (float, optional): probability of dropout
|
380 |
+
|
381 |
+
Inputs: inputs
|
382 |
+
x (batch, time, dim): Tensor contains input sequences
|
383 |
+
|
384 |
+
Outputs: outputs
|
385 |
+
**outputs** (batch, time, dim): Tensor produces by conformer convolution module.
|
386 |
+
"""
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
in_channels: int,
|
390 |
+
kernel_size: int = 31,
|
391 |
+
expansion_factor: int = 2,
|
392 |
+
dropout_p: float = 0.1,
|
393 |
+
no_syncbatchnorm: bool = False,
|
394 |
+
) -> None:
|
395 |
+
super(ConformerConvModule, self).__init__()
|
396 |
+
assert (kernel_size - 1) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
|
397 |
+
assert expansion_factor == 2, "Currently, only supports expansion_factor 2"
|
398 |
+
self.layernorm = nn.LayerNorm(in_channels)
|
399 |
+
self.batchnorm = nn.SyncBatchNorm(in_channels) if not no_syncbatchnorm else nn.BatchNorm1d(in_channels)
|
400 |
+
self.first_pointwise_conv1d = nn.Conv1d(
|
401 |
+
in_channels=in_channels,
|
402 |
+
out_channels=in_channels * expansion_factor,
|
403 |
+
kernel_size=(1, ),
|
404 |
+
stride=(1, ),
|
405 |
+
padding=0,
|
406 |
+
bias=True,
|
407 |
+
)
|
408 |
+
self.second_pointwise_conv1d = nn.Conv1d(
|
409 |
+
in_channels=in_channels,
|
410 |
+
out_channels=in_channels,
|
411 |
+
kernel_size=(1, ),
|
412 |
+
stride=(1, ),
|
413 |
+
padding=0,
|
414 |
+
bias=True,
|
415 |
+
)
|
416 |
+
self.depthwise_conv1d = nn.Conv1d(
|
417 |
+
in_channels=in_channels,
|
418 |
+
out_channels=in_channels,
|
419 |
+
kernel_size=(kernel_size, ),
|
420 |
+
stride=(1, ),
|
421 |
+
groups=in_channels,
|
422 |
+
padding=(kernel_size - 1) // 2,
|
423 |
+
bias=False,
|
424 |
+
)
|
425 |
+
self.dropout_module = nn.Dropout(p=dropout_p)
|
426 |
+
|
427 |
+
def forward(self, x: Tensor, encoder_padding_mask: Tensor) -> Tensor:
|
428 |
+
x = self.layernorm(x).transpose(1, 2)
|
429 |
+
x = self.first_pointwise_conv1d(x)
|
430 |
+
x = F.glu(x, dim=1)
|
431 |
+
bool_padding_mask = None
|
432 |
+
if encoder_padding_mask is not None:
|
433 |
+
bool_padding_mask = encoder_padding_mask.unsqueeze(1).bool()
|
434 |
+
if bool_padding_mask is not None:
|
435 |
+
x = x.float().masked_fill(bool_padding_mask, 0.0)
|
436 |
+
x = self.depthwise_conv1d(x)
|
437 |
+
if bool_padding_mask is not None:
|
438 |
+
x = x.float().masked_fill(bool_padding_mask, 0.0)
|
439 |
+
x = self.batchnorm(x)
|
440 |
+
if bool_padding_mask is not None:
|
441 |
+
x = x.float().masked_fill(bool_padding_mask, 0.0)
|
442 |
+
x = F.silu(x)
|
443 |
+
x = self.second_pointwise_conv1d(x)
|
444 |
+
if bool_padding_mask is not None:
|
445 |
+
x = x.float().masked_fill(bool_padding_mask, 0.0)
|
446 |
+
x = self.dropout_module(x)
|
447 |
+
return x.transpose(1, 2)
|
448 |
+
|
449 |
+
|
450 |
+
class ConformerEncoderLayer(nn.Module):
|
451 |
+
"""
|
452 |
+
Conformer block contains two Feed Forward modules sandwiching the Multi-Headed Self-Attention module
|
453 |
+
and the Convolution module. This sandwich structure is inspired by Macaron-Net, which proposes replacing
|
454 |
+
the original feed-forward layer in the Transformer block into two half-step feed-forward layers,
|
455 |
+
one before the attention layer and one after.
|
456 |
+
|
457 |
+
Args:
|
458 |
+
encoder_dim (int, optional): Dimension of conformer encoder
|
459 |
+
num_attention_heads (int, optional): Number of attention heads
|
460 |
+
feed_forward_expansion_factor (int, optional): Expansion factor of feed forward module
|
461 |
+
conv_expansion_factor (int, optional): Expansion factor of conformer convolution module
|
462 |
+
feed_forward_dropout_p (float, optional): Probability of feed forward module dropout
|
463 |
+
attention_dropout_p (float, optional): Probability of attention module dropout
|
464 |
+
conv_dropout_p (float, optional): Probability of conformer convolution module dropout
|
465 |
+
conv_kernel_size (int or tuple, optional): Size of the convolving kernel
|
466 |
+
half_step_residual (bool): Flag indication whether to use half step residual or not
|
467 |
+
|
468 |
+
Inputs: inputs
|
469 |
+
x (time, batch, dim): Tensor containing input vector
|
470 |
+
|
471 |
+
Returns: outputs
|
472 |
+
**outputs** (batch, time, dim): Tensor produces by conformer block.
|
473 |
+
"""
|
474 |
+
|
475 |
+
def __init__(self, config: Speech2TextConformerConfig):
|
476 |
+
super().__init__()
|
477 |
+
self.encoder_dim = config.d_model
|
478 |
+
self.num_attention_heads = config.encoder_attention_heads
|
479 |
+
self.feed_forward_expansion_factor = config.feed_forward_expansion_factor
|
480 |
+
self.conv_expansion_factor = config.conv_expansion_factor
|
481 |
+
self.feed_forward_dropout_p = config.conformer_feedforward_dropout
|
482 |
+
self.attention_dropout_p = config.conformer_attention_dropout
|
483 |
+
self.conv_dropout_p = config.conformer_conv_dropout
|
484 |
+
self.conv_kernel_size = config.conformer_conv_kernel_size
|
485 |
+
self.half_step_residual = config.conformer_half_step_residual
|
486 |
+
self.no_syncbatchnorm = config.no_syncbatchnorm
|
487 |
+
self.batch_unsafe_relative_shift = getattr(config, 'batch_unsafe_relative_shift', False)
|
488 |
+
|
489 |
+
if self.half_step_residual:
|
490 |
+
self.feed_forward_residual_factor = 0.5
|
491 |
+
else:
|
492 |
+
self.feed_forward_residual_factor = 1
|
493 |
+
|
494 |
+
self.first_feed_forward = FeedForwardModule(
|
495 |
+
encoder_dim=self.encoder_dim,
|
496 |
+
expansion_factor=self.feed_forward_expansion_factor,
|
497 |
+
dropout_p=self.feed_forward_dropout_p,
|
498 |
+
)
|
499 |
+
|
500 |
+
self.attention = MultiHeadedSelfAttentionModule(
|
501 |
+
d_model=self.encoder_dim,
|
502 |
+
num_heads=self.num_attention_heads,
|
503 |
+
dropout_p=self.attention_dropout_p,
|
504 |
+
batch_unsafe_relative_shift=self.batch_unsafe_relative_shift,
|
505 |
+
)
|
506 |
+
|
507 |
+
self.conv_module = ConformerConvModule(
|
508 |
+
in_channels=self.encoder_dim,
|
509 |
+
kernel_size=self.conv_kernel_size,
|
510 |
+
expansion_factor=self.conv_expansion_factor,
|
511 |
+
dropout_p=self.conv_dropout_p,
|
512 |
+
no_syncbatchnorm=self.no_syncbatchnorm,
|
513 |
+
)
|
514 |
+
|
515 |
+
self.second_feed_forward = FeedForwardModule(
|
516 |
+
encoder_dim=self.encoder_dim,
|
517 |
+
expansion_factor=self.feed_forward_expansion_factor,
|
518 |
+
dropout_p=self.feed_forward_dropout_p,
|
519 |
+
)
|
520 |
+
|
521 |
+
self.layernorm = nn.LayerNorm(self.encoder_dim)
|
522 |
+
|
523 |
+
def forward(
|
524 |
+
self, x: Tensor, encoder_padding_mask: Tensor, output_attentions: bool = False
|
525 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
526 |
+
x = x.transpose(0, 1) # B x T x C
|
527 |
+
new_x = self.first_feed_forward(x)
|
528 |
+
x = new_x * self.feed_forward_residual_factor + x
|
529 |
+
new_x, attn = self.attention(x, encoder_padding_mask, output_attentions)
|
530 |
+
x = new_x + x
|
531 |
+
new_x = self.conv_module(x, encoder_padding_mask)
|
532 |
+
x = new_x + x
|
533 |
+
new_x = self.second_feed_forward(x)
|
534 |
+
x = new_x * self.feed_forward_residual_factor + x
|
535 |
+
x = self.layernorm(x).transpose(1, 0)
|
536 |
+
return x, attn
|
537 |
+
|
538 |
+
|
539 |
+
class CTCCompressStrategy:
|
540 |
+
FIXED_RATIO = 4
|
541 |
+
@staticmethod
|
542 |
+
def new_lengths(batch_predicted):
|
543 |
+
return [len(p) for p in batch_predicted]
|
544 |
+
|
545 |
+
@staticmethod
|
546 |
+
def avg(prob_ctc, predicted, dtype, device):
|
547 |
+
new_lengths = CTCCompressStrategy.new_lengths(predicted)
|
548 |
+
new_maxlen = max(new_lengths)
|
549 |
+
weights_matrix = torch.zeros((prob_ctc.shape[0], prob_ctc.shape[1], new_maxlen), dtype=dtype)
|
550 |
+
for b_idx, pred in enumerate(predicted):
|
551 |
+
processed_inputs_cnt = 0
|
552 |
+
for t_idx, same in enumerate(pred):
|
553 |
+
new_processed_inputs_cnt = processed_inputs_cnt + same[1]
|
554 |
+
weights_matrix[b_idx, processed_inputs_cnt:new_processed_inputs_cnt, t_idx] = 1.0 / same[1]
|
555 |
+
processed_inputs_cnt = new_processed_inputs_cnt
|
556 |
+
return weights_matrix.to(device), new_lengths
|
557 |
+
|
558 |
+
@staticmethod
|
559 |
+
def weighted(prob_ctc, predicted, dtype, device):
|
560 |
+
new_lengths = CTCCompressStrategy.new_lengths(predicted)
|
561 |
+
new_maxlen = max(new_lengths)
|
562 |
+
weights_matrix = torch.zeros((prob_ctc.shape[0], prob_ctc.shape[1], new_maxlen), dtype=dtype, device=device)
|
563 |
+
for b_idx, pred in enumerate(predicted):
|
564 |
+
processed_inputs_cnt = 0
|
565 |
+
for t_idx, same in enumerate(pred):
|
566 |
+
new_processed_inputs_cnt = processed_inputs_cnt + same[1]
|
567 |
+
# Get the probabilities of the prediction for the different time steps as weight
|
568 |
+
weights = prob_ctc[b_idx, processed_inputs_cnt:new_processed_inputs_cnt, same[0]]
|
569 |
+
weights_matrix[b_idx, processed_inputs_cnt:new_processed_inputs_cnt, t_idx] = \
|
570 |
+
weights / weights.sum()
|
571 |
+
processed_inputs_cnt = new_processed_inputs_cnt
|
572 |
+
return weights_matrix, new_lengths
|
573 |
+
|
574 |
+
@staticmethod
|
575 |
+
def softmax(prob_ctc, predicted, dtype, device):
|
576 |
+
new_lengths = CTCCompressStrategy.new_lengths(predicted)
|
577 |
+
new_maxlen = max(new_lengths)
|
578 |
+
weights_matrix = torch.zeros((prob_ctc.shape[0], prob_ctc.shape[1], new_maxlen), dtype=dtype, device=device)
|
579 |
+
for b_idx, pred in enumerate(predicted):
|
580 |
+
processed_inputs_cnt = 0
|
581 |
+
for t_idx, same in enumerate(pred):
|
582 |
+
new_processed_inputs_cnt = processed_inputs_cnt + same[1]
|
583 |
+
# Get the probabilities of the prediction for the different time steps as weight
|
584 |
+
weights = F.softmax(prob_ctc[b_idx, processed_inputs_cnt:new_processed_inputs_cnt, same[0]])
|
585 |
+
weights_matrix[b_idx, processed_inputs_cnt:new_processed_inputs_cnt, t_idx] = \
|
586 |
+
weights / weights.sum()
|
587 |
+
processed_inputs_cnt = new_processed_inputs_cnt
|
588 |
+
return weights_matrix, new_lengths
|
589 |
+
|
590 |
+
@staticmethod
|
591 |
+
def fixed(prob_ctc, predicted, dtype, device):
|
592 |
+
new_maxlen = math.ceil(prob_ctc.shape[1] / CTCCompressStrategy.FIXED_RATIO)
|
593 |
+
weights_matrix = torch.zeros((prob_ctc.shape[0], prob_ctc.shape[1], new_maxlen), dtype=dtype)
|
594 |
+
new_lengths = []
|
595 |
+
for b_idx, pred in enumerate(predicted):
|
596 |
+
original_len = sum(x[1] for x in pred)
|
597 |
+
new_len = 0
|
598 |
+
for new_t_idx in range(new_maxlen):
|
599 |
+
processed_inputs_cnt = new_t_idx * CTCCompressStrategy.FIXED_RATIO
|
600 |
+
processed_inputs_cnt_end = processed_inputs_cnt + CTCCompressStrategy.FIXED_RATIO
|
601 |
+
if processed_inputs_cnt_end > original_len:
|
602 |
+
processed_inputs_cnt_end = original_len
|
603 |
+
weights_matrix[b_idx, processed_inputs_cnt:processed_inputs_cnt_end, new_t_idx] = \
|
604 |
+
1.0 / (processed_inputs_cnt_end - processed_inputs_cnt)
|
605 |
+
new_len += 1
|
606 |
+
if processed_inputs_cnt_end == original_len:
|
607 |
+
break
|
608 |
+
new_lengths.append(new_len)
|
609 |
+
return weights_matrix.to(device), new_lengths
|
610 |
+
|
611 |
+
|
612 |
+
class ConformerEncoderDecoderPreTrainedModel(Speech2TextPreTrainedModel):
|
613 |
+
config_class = Speech2TextConformerConfig
|
614 |
+
|
615 |
+
|
616 |
+
class ConformerEncoder(ConformerEncoderDecoderPreTrainedModel):
|
617 |
+
"""
|
618 |
+
Conformer encoder consisting of *config.encoder_layers* layers. Each layer is a
|
619 |
+
[`ConformerEncoderLayer`].
|
620 |
+
|
621 |
+
Args:
|
622 |
+
config: Speech2TextConformerConfig
|
623 |
+
"""
|
624 |
+
|
625 |
+
def __init__(self, config: Speech2TextConformerConfig):
|
626 |
+
super().__init__(config)
|
627 |
+
|
628 |
+
self.dropout = config.dropout
|
629 |
+
|
630 |
+
embed_dim = config.d_model
|
631 |
+
self.padding_idx = config.pad_token_id
|
632 |
+
self.max_source_positions = config.max_source_positions
|
633 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
634 |
+
|
635 |
+
self.subsample = Conv1dSubsampler(config)
|
636 |
+
|
637 |
+
self.layers = nn.ModuleList([ConformerEncoderLayer(config) for _ in range(config.encoder_layers)])
|
638 |
+
|
639 |
+
self.ctc_flag = False
|
640 |
+
if config.ctc_compress_strategy != "none":
|
641 |
+
self.ctc_flag = True
|
642 |
+
self.ctc_fc = nn.Linear(config.encoder_embed_dim, config.src_vocab_size)
|
643 |
+
self.ctc_layer = config.ctc_encoder_layer
|
644 |
+
self.ctc_compress_method = getattr(CTCCompressStrategy, config.ctc_compress_strategy)
|
645 |
+
self.ctc_compress_max_out_size = config.ctc_compress_max_out_size
|
646 |
+
CTCCompressStrategy.FIXED_RATIO = config.ctc_compress_fixed_ratio
|
647 |
+
|
648 |
+
self.gradient_checkpointing = False
|
649 |
+
# Initialize weights and apply final processing
|
650 |
+
self.post_init()
|
651 |
+
|
652 |
+
def ensure_max_ctc_out_len(self, batch_predicted):
|
653 |
+
"""
|
654 |
+
Ensures that the output of the CTC compression is not longer than the ctc_compress_max_out_size.
|
655 |
+
If there are samples violating this constraint, consecutive predictions are merged so to shorten the sentence.
|
656 |
+
E.g. if the ctc_compress_max_out_size is set to 3, and the output of the CTC compression would be
|
657 |
+
long 5, the first and second predictions are merged, as well as the third and the fourth. So, the
|
658 |
+
corresponding vectors will be merged according to the CTC compression strategy.
|
659 |
+
"""
|
660 |
+
if self.ctc_compress_max_out_size > 0:
|
661 |
+
|
662 |
+
def merge_sublist(elements):
|
663 |
+
"""
|
664 |
+
Takes a list of Tuples (predicted_element, num_corresponding_vectors) and returns
|
665 |
+
a single tuple with the predicted_element having the highest number of corresponding_vectors
|
666 |
+
(in case of a tie, the first is returned) and the total sum of the num_corresponding_vectors
|
667 |
+
E.g. if the input is [(a, 3), (b, 5), (c, 6), (a, 4)], the output will be (a, 18).
|
668 |
+
"""
|
669 |
+
sum_num_vectors = 0
|
670 |
+
max_element = None
|
671 |
+
max_element_cnt = 0
|
672 |
+
temp_dict = {}
|
673 |
+
for predicted_element, num_corresponding_vectors in elements:
|
674 |
+
if predicted_element in temp_dict:
|
675 |
+
temp_dict[predicted_element] += num_corresponding_vectors
|
676 |
+
else:
|
677 |
+
temp_dict[predicted_element] = num_corresponding_vectors
|
678 |
+
if temp_dict[predicted_element] > max_element_cnt:
|
679 |
+
max_element_cnt = temp_dict[predicted_element]
|
680 |
+
max_element = predicted_element
|
681 |
+
sum_num_vectors += num_corresponding_vectors
|
682 |
+
return max_element, sum_num_vectors
|
683 |
+
|
684 |
+
for b_idx, p in enumerate(batch_predicted):
|
685 |
+
pred_len = len(p)
|
686 |
+
if pred_len > self.ctc_compress_max_out_size:
|
687 |
+
reduction_factor = math.ceil(pred_len / self.ctc_compress_max_out_size)
|
688 |
+
i = 0
|
689 |
+
new_p = []
|
690 |
+
while i < pred_len:
|
691 |
+
new_p.append(merge_sublist(p[i:i + reduction_factor]))
|
692 |
+
i += reduction_factor
|
693 |
+
batch_predicted[b_idx] = new_p
|
694 |
+
|
695 |
+
return batch_predicted
|
696 |
+
|
697 |
+
def average_same_ctc_features(self, x_ctc, x, input_lengths):
|
698 |
+
with torch.no_grad():
|
699 |
+
batch_predicted = []
|
700 |
+
prob_ctc = F.softmax(x_ctc, dim=-1).transpose(0, 1) # from T x B x D to B x T x D
|
701 |
+
for b in range(prob_ctc.shape[0]):
|
702 |
+
predicted = prob_ctc[b][: input_lengths[b]].argmax(-1).tolist()
|
703 |
+
batch_predicted.append([(p[0], len(list(p[1]))) for p in groupby(predicted)])
|
704 |
+
batch_predicted = self.ensure_max_ctc_out_len(batch_predicted)
|
705 |
+
weights_matrix, new_lengths = self.ctc_compress_method(
|
706 |
+
prob_ctc, batch_predicted, x.dtype, x.device)
|
707 |
+
# x is T x B x C -> B x C x T; weights_matrix is B x T x T'
|
708 |
+
compressed_output = x.permute(1, 2, 0).bmm(weights_matrix) # B x C x T'
|
709 |
+
return compressed_output.permute(2, 0, 1), input_lengths.new(new_lengths)
|
710 |
+
|
711 |
+
@staticmethod
|
712 |
+
def lengths_to_padding_mask(lens: torch.LongTensor) -> Tensor:
|
713 |
+
bsz, max_lens = lens.size(0), torch.max(lens).item()
|
714 |
+
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
|
715 |
+
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
|
716 |
+
return mask
|
717 |
+
|
718 |
+
def apply_ctc(self, x, input_lengths):
|
719 |
+
x_ctc = self.ctc_fc(x)
|
720 |
+
x, input_lengths = self.average_same_ctc_features(x_ctc, x, input_lengths)
|
721 |
+
padding_mask = ConformerEncoder.lengths_to_padding_mask(input_lengths)
|
722 |
+
return x, x_ctc, padding_mask
|
723 |
+
|
724 |
+
def forward(
|
725 |
+
self,
|
726 |
+
input_features,
|
727 |
+
attention_mask=None,
|
728 |
+
head_mask=None,
|
729 |
+
output_attentions=None,
|
730 |
+
output_hidden_states=None,
|
731 |
+
return_dict=None,
|
732 |
+
):
|
733 |
+
r"""
|
734 |
+
Args:
|
735 |
+
input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`):
|
736 |
+
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
|
737 |
+
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
|
738 |
+
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
739 |
+
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
|
740 |
+
padding and conversion into a tensor of type `torch.FloatTensor`. See
|
741 |
+
[`~Speech2TextFeatureExtractor.__call__`]
|
742 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
743 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
|
744 |
+
`[0, 1]`:
|
745 |
+
|
746 |
+
- 1 for tokens that are **not masked**,
|
747 |
+
- 0 for tokens that are **masked**.
|
748 |
+
|
749 |
+
[What are attention masks?](../glossary#attention-mask)
|
750 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
751 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
752 |
+
|
753 |
+
- 1 indicates the head is **not masked**,
|
754 |
+
- 0 indicates the head is **masked**.
|
755 |
+
|
756 |
+
output_attentions (`bool`, *optional*):
|
757 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
758 |
+
returned tensors for more detail.
|
759 |
+
output_hidden_states (`bool`, *optional*):
|
760 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
761 |
+
for more detail.
|
762 |
+
return_dict (`bool`, *optional*):
|
763 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
764 |
+
"""
|
765 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
766 |
+
output_hidden_states = (
|
767 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
768 |
+
)
|
769 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
770 |
+
inputs_embeds = self.subsample(input_features, attention_mask)
|
771 |
+
inputs_embeds = self.embed_scale * inputs_embeds
|
772 |
+
|
773 |
+
# subsample attention mask if necessary
|
774 |
+
if attention_mask is not None:
|
775 |
+
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[0], attention_mask)
|
776 |
+
|
777 |
+
hidden_states = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training)
|
778 |
+
|
779 |
+
# expand attention_mask
|
780 |
+
if attention_mask is not None:
|
781 |
+
padding_mask = attention_mask.ne(1).long()
|
782 |
+
else:
|
783 |
+
padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device)
|
784 |
+
|
785 |
+
encoder_states = () if output_hidden_states else None
|
786 |
+
all_attentions = () if output_attentions else None
|
787 |
+
|
788 |
+
# TODO: implement head mask
|
789 |
+
assert head_mask is None, "Head masking is not yet implemented for Conformer model"
|
790 |
+
|
791 |
+
for idx, encoder_layer in enumerate(self.layers):
|
792 |
+
if output_hidden_states:
|
793 |
+
encoder_states = encoder_states + (hidden_states.transpose(0, 1),)
|
794 |
+
if self.gradient_checkpointing and self.training:
|
795 |
+
layer_outputs = self._gradient_checkpointing_func(
|
796 |
+
encoder_layer.__call__,
|
797 |
+
hidden_states,
|
798 |
+
padding_mask,
|
799 |
+
output_attentions,
|
800 |
+
)
|
801 |
+
else:
|
802 |
+
layer_outputs = encoder_layer(
|
803 |
+
hidden_states,
|
804 |
+
padding_mask,
|
805 |
+
output_attentions=output_attentions,
|
806 |
+
)
|
807 |
+
|
808 |
+
hidden_states = layer_outputs[0]
|
809 |
+
|
810 |
+
if output_attentions:
|
811 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
812 |
+
|
813 |
+
if self.ctc_flag and self.ctc_layer == idx + 1:
|
814 |
+
hidden_states, ctc_output, padding_mask = self.apply_ctc(hidden_states, attention_mask.sum(dim=1))
|
815 |
+
attention_mask = padding_mask.ne(1).long()
|
816 |
+
|
817 |
+
hidden_states = hidden_states.transpose(0, 1) # T x B x C -> B x T x C
|
818 |
+
if output_hidden_states:
|
819 |
+
encoder_states = encoder_states + (hidden_states,)
|
820 |
+
|
821 |
+
if not return_dict:
|
822 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
823 |
+
return BaseModelOutput(
|
824 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
825 |
+
)
|
826 |
+
|
827 |
+
|
828 |
+
@add_start_docstrings(
|
829 |
+
"The bare Conformer Model outputting raw hidden-states without any specific head on top.",
|
830 |
+
CONFORMER_START_DOCSTRING,
|
831 |
+
)
|
832 |
+
class ConformerEncoderDecoderModel(ConformerEncoderDecoderPreTrainedModel):
|
833 |
+
def __init__(self, config: Speech2TextConformerConfig):
|
834 |
+
super().__init__(config)
|
835 |
+
|
836 |
+
self.encoder = ConformerEncoder(config)
|
837 |
+
self.decoder = Speech2TextDecoder(config)
|
838 |
+
|
839 |
+
# Initialize weights and apply final processing
|
840 |
+
self.post_init()
|
841 |
+
|
842 |
+
def get_input_embeddings(self):
|
843 |
+
return self.decoder.embed_tokens
|
844 |
+
|
845 |
+
def set_input_embeddings(self, value):
|
846 |
+
self.decoder.embed_tokens = value
|
847 |
+
|
848 |
+
def get_encoder(self):
|
849 |
+
return self.encoder
|
850 |
+
|
851 |
+
def get_decoder(self):
|
852 |
+
return self.decoder
|
853 |
+
|
854 |
+
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
|
855 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
856 |
+
def forward(
|
857 |
+
self,
|
858 |
+
input_features: Optional[torch.LongTensor] = None,
|
859 |
+
attention_mask: Optional[torch.Tensor] = None,
|
860 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
861 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
862 |
+
head_mask: Optional[torch.Tensor] = None,
|
863 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
864 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
865 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
866 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
867 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
868 |
+
use_cache: Optional[bool] = None,
|
869 |
+
output_attentions: Optional[bool] = None,
|
870 |
+
output_hidden_states: Optional[bool] = None,
|
871 |
+
return_dict: Optional[bool] = None,
|
872 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
873 |
+
r"""
|
874 |
+
Returns:
|
875 |
+
|
876 |
+
Example:
|
877 |
+
|
878 |
+
```python
|
879 |
+
>>> import torch
|
880 |
+
>>> from transformers import AutoFeatureExtractor, AutoModel
|
881 |
+
>>> from datasets import load_dataset
|
882 |
+
|
883 |
+
>>> model = AutoModel.from_pretrained("FBK-MT/balbetto-asr-small-test")
|
884 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("FBK-MT/balbetto-asr-small-test")
|
885 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
886 |
+
>>> inputs = feature_extractor(
|
887 |
+
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
|
888 |
+
... )
|
889 |
+
>>> input_features = inputs.input_features
|
890 |
+
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
891 |
+
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
892 |
+
>>> list(last_hidden_state.shape)
|
893 |
+
[1, 2, 256]
|
894 |
+
```"""
|
895 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
896 |
+
output_hidden_states = (
|
897 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
898 |
+
)
|
899 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
900 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
901 |
+
|
902 |
+
if encoder_outputs is None:
|
903 |
+
encoder_outputs = self.encoder(
|
904 |
+
input_features,
|
905 |
+
attention_mask=attention_mask,
|
906 |
+
head_mask=head_mask,
|
907 |
+
output_attentions=output_attentions,
|
908 |
+
output_hidden_states=output_hidden_states,
|
909 |
+
return_dict=return_dict,
|
910 |
+
)
|
911 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
912 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
913 |
+
encoder_outputs = BaseModelOutput(
|
914 |
+
last_hidden_state=encoder_outputs[0],
|
915 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
916 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
917 |
+
)
|
918 |
+
|
919 |
+
# downsample encoder attention mask
|
920 |
+
if attention_mask is not None:
|
921 |
+
encoder_attention_mask = self._get_feature_vector_attention_mask(
|
922 |
+
encoder_outputs[0].shape[1], attention_mask
|
923 |
+
)
|
924 |
+
else:
|
925 |
+
encoder_attention_mask = None
|
926 |
+
|
927 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
928 |
+
decoder_outputs = self.decoder(
|
929 |
+
input_ids=decoder_input_ids,
|
930 |
+
attention_mask=decoder_attention_mask,
|
931 |
+
encoder_hidden_states=encoder_outputs[0],
|
932 |
+
encoder_attention_mask=encoder_attention_mask,
|
933 |
+
head_mask=decoder_head_mask,
|
934 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
935 |
+
past_key_values=past_key_values,
|
936 |
+
inputs_embeds=decoder_inputs_embeds,
|
937 |
+
use_cache=use_cache,
|
938 |
+
output_attentions=output_attentions,
|
939 |
+
output_hidden_states=output_hidden_states,
|
940 |
+
return_dict=return_dict,
|
941 |
+
)
|
942 |
+
|
943 |
+
if not return_dict:
|
944 |
+
return decoder_outputs + encoder_outputs
|
945 |
+
|
946 |
+
return Seq2SeqModelOutput(
|
947 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
948 |
+
past_key_values=decoder_outputs.past_key_values,
|
949 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
950 |
+
decoder_attentions=decoder_outputs.attentions,
|
951 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
952 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
953 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
954 |
+
encoder_attentions=encoder_outputs.attentions,
|
955 |
+
)
|
956 |
+
|
957 |
+
|
958 |
+
@add_start_docstrings(
|
959 |
+
"The Conformer Model with a language modeling head.",
|
960 |
+
CONFORMER_START_DOCSTRING,
|
961 |
+
)
|
962 |
+
class ConformerEncoderDecoderForConditionalGeneration(ConformerEncoderDecoderPreTrainedModel, GenerationMixin):
|
963 |
+
base_model_prefix = "model"
|
964 |
+
_tied_weights_keys = ["lm_head.weight"]
|
965 |
+
|
966 |
+
def __init__(self, config: Speech2TextConformerConfig):
|
967 |
+
super().__init__(config)
|
968 |
+
self.model = ConformerEncoderDecoderModel(config)
|
969 |
+
self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False)
|
970 |
+
|
971 |
+
# Initialize weights and apply final processing
|
972 |
+
self.post_init()
|
973 |
+
|
974 |
+
def get_encoder(self):
|
975 |
+
return self.model.get_encoder()
|
976 |
+
|
977 |
+
def get_decoder(self):
|
978 |
+
return self.model.get_decoder()
|
979 |
+
|
980 |
+
def get_output_embeddings(self):
|
981 |
+
return self.lm_head
|
982 |
+
|
983 |
+
def set_output_embeddings(self, new_embeddings):
|
984 |
+
self.lm_head = new_embeddings
|
985 |
+
|
986 |
+
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
|
987 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
988 |
+
def forward(
|
989 |
+
self,
|
990 |
+
input_features: Optional[torch.LongTensor] = None,
|
991 |
+
attention_mask: Optional[torch.Tensor] = None,
|
992 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
993 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
994 |
+
head_mask: Optional[torch.Tensor] = None,
|
995 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
996 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
997 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
998 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
999 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1000 |
+
labels: Optional[torch.LongTensor] = None,
|
1001 |
+
use_cache: Optional[bool] = None,
|
1002 |
+
output_attentions: Optional[bool] = None,
|
1003 |
+
output_hidden_states: Optional[bool] = None,
|
1004 |
+
return_dict: Optional[bool] = None,
|
1005 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1006 |
+
r"""
|
1007 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1008 |
+
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
|
1009 |
+
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
|
1010 |
+
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1011 |
+
|
1012 |
+
Returns:
|
1013 |
+
|
1014 |
+
Example:
|
1015 |
+
|
1016 |
+
```python
|
1017 |
+
>>> import torch
|
1018 |
+
>>> import transformers
|
1019 |
+
>>> from datasets import load_dataset
|
1020 |
+
|
1021 |
+
>>> pipe = transformers.pipeline(
|
1022 |
+
... "automatic-speech-recognition",
|
1023 |
+
... model='FBK-MT/balbetto-asr-small-test',
|
1024 |
+
... feature_extractor='FBK-MT/balbetto-asr-small-test',
|
1025 |
+
... trust_remote_code=True)
|
1026 |
+
|
1027 |
+
|
1028 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
1029 |
+
|
1030 |
+
>>> generated_ids = pipe(ds[0]["audio"])
|
1031 |
+
|
1032 |
+
>>> transcription = pipe.feature_extractor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
1033 |
+
>>> transcription
|
1034 |
+
'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel'
|
1035 |
+
```"""
|
1036 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1037 |
+
|
1038 |
+
if labels is not None:
|
1039 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1040 |
+
decoder_input_ids = shift_tokens_right(
|
1041 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
outputs = self.model(
|
1045 |
+
input_features,
|
1046 |
+
attention_mask=attention_mask,
|
1047 |
+
decoder_input_ids=decoder_input_ids,
|
1048 |
+
encoder_outputs=encoder_outputs,
|
1049 |
+
decoder_attention_mask=decoder_attention_mask,
|
1050 |
+
head_mask=head_mask,
|
1051 |
+
decoder_head_mask=decoder_head_mask,
|
1052 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1053 |
+
past_key_values=past_key_values,
|
1054 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1055 |
+
use_cache=use_cache,
|
1056 |
+
output_attentions=output_attentions,
|
1057 |
+
output_hidden_states=output_hidden_states,
|
1058 |
+
return_dict=return_dict,
|
1059 |
+
)
|
1060 |
+
lm_logits = self.lm_head(outputs[0])
|
1061 |
+
|
1062 |
+
loss = None
|
1063 |
+
if labels is not None:
|
1064 |
+
loss_fct = CrossEntropyLoss()
|
1065 |
+
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1066 |
+
|
1067 |
+
if not return_dict:
|
1068 |
+
output = (lm_logits,) + outputs[1:]
|
1069 |
+
return ((loss,) + output) if loss is not None else output
|
1070 |
+
|
1071 |
+
return Seq2SeqLMOutput(
|
1072 |
+
loss=loss,
|
1073 |
+
logits=lm_logits,
|
1074 |
+
past_key_values=outputs.past_key_values,
|
1075 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1076 |
+
decoder_attentions=outputs.decoder_attentions,
|
1077 |
+
cross_attentions=outputs.cross_attentions,
|
1078 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1079 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1080 |
+
encoder_attentions=outputs.encoder_attentions,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
@staticmethod
|
1084 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1085 |
+
reordered_past = ()
|
1086 |
+
for layer_past in past_key_values:
|
1087 |
+
reordered_past += (
|
1088 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1089 |
+
)
|
1090 |
+
return reordered_past
|
1091 |
+
|
1092 |
+
|
1093 |
+
Speech2TextConformerConfig.register_for_auto_class()
|
1094 |
+
ConformerEncoderDecoderForConditionalGeneration.register_for_auto_class("AutoModel")
|
1095 |
+
ConformerEncoderDecoderForConditionalGeneration.register_for_auto_class("AutoModelForSpeechSeq2Seq")
|
1096 |
+
|
1097 |
+
transformers.AutoConfig.register("conformer_encoder_decoder", Speech2TextConformerConfig)
|
1098 |
+
transformers.AutoModel.register(
|
1099 |
+
Speech2TextConformerConfig, ConformerEncoderDecoderForConditionalGeneration)
|
1100 |
+
transformers.AutoModelForSpeechSeq2Seq.register(
|
1101 |
+
Speech2TextConformerConfig, ConformerEncoderDecoderForConditionalGeneration)
|
1102 |
+
transformers.AutoProcessor.register(Speech2TextConformerConfig, Speech2TextProcessor)
|
1103 |
+
transformers.models.auto.modeling_auto.MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES['conformer_encoder_decoder'] = \
|
1104 |
+
"ConformerEncoderDecoderForConditionalGeneration"
|
1105 |
+
transformers.TOKENIZER_MAPPING.register(Speech2TextConformerConfig, (Speech2TextTokenizer, None))
|
1106 |
+
transformers.FEATURE_EXTRACTOR_MAPPING.register(Speech2TextConformerConfig, Speech2TextFeatureExtractor)
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"decoder_start_token_id": 2,
|
5 |
+
"early_stopping": true,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"max_length": 200,
|
8 |
+
"num_beams": 5,
|
9 |
+
"pad_token_id": 1,
|
10 |
+
"transformers_version": "4.48.1"
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d14abb88a1a139b63757428950ef9c2d3079923bf2cb05bec203eec1fc6b8cad
|
3 |
+
size 2263765176
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_ceptral_normalize": true,
|
3 |
+
"feature_extractor_type": "Speech2TextFeatureExtractor",
|
4 |
+
"feature_size": 80,
|
5 |
+
"normalize_means": true,
|
6 |
+
"normalize_vars": true,
|
7 |
+
"num_mel_bins": 80,
|
8 |
+
"padding_side": "right",
|
9 |
+
"padding_value": 0.0,
|
10 |
+
"processor_class": "Speech2TextProcessor",
|
11 |
+
"return_attention_mask": true,
|
12 |
+
"sampling_rate": 16000
|
13 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bdd22451ef0da74acc077f40a074170163aa2601c1a57bad29e93dbbe0fc903
|
3 |
+
size 524584
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"additional_special_tokens": [],
|
37 |
+
"bos_token": "<s>",
|
38 |
+
"clean_up_tokenization_spaces": false,
|
39 |
+
"do_lower_case": false,
|
40 |
+
"do_upper_case": false,
|
41 |
+
"eos_token": "</s>",
|
42 |
+
"extra_special_tokens": {},
|
43 |
+
"lang_codes": null,
|
44 |
+
"langs": [
|
45 |
+
"it",
|
46 |
+
"en"
|
47 |
+
],
|
48 |
+
"model_max_length": 1000000000000000019884624838656,
|
49 |
+
"pad_token": "<pad>",
|
50 |
+
"processor_class": "Speech2TextProcessor",
|
51 |
+
"sp_model_kwargs": {},
|
52 |
+
"tgt_lang": null,
|
53 |
+
"tokenizer_class": "Speech2TextTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|