Commit
·
e3da3b8
1
Parent(s):
6dd4c18
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased-finetuned-sst-2-english
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: twitter_distilbert_sentiment_model
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# twitter_distilbert_sentiment_model
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3731
|
21 |
+
- Accuracy: 0.7445
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 2
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 0.6506 | 0.2 | 100 | 0.5897 | 0.4885 |
|
54 |
+
| 0.5579 | 0.4 | 200 | 0.5109 | 0.669 |
|
55 |
+
| 0.475 | 0.6 | 300 | 0.4178 | 0.724 |
|
56 |
+
| 0.4342 | 0.8 | 400 | 0.4080 | 0.7125 |
|
57 |
+
| 0.4214 | 1.0 | 500 | 0.3867 | 0.736 |
|
58 |
+
| 0.4048 | 1.2 | 600 | 0.3910 | 0.7365 |
|
59 |
+
| 0.3791 | 1.4 | 700 | 0.3858 | 0.7405 |
|
60 |
+
| 0.3793 | 1.6 | 800 | 0.3779 | 0.745 |
|
61 |
+
| 0.3752 | 1.8 | 900 | 0.3722 | 0.7445 |
|
62 |
+
| 0.3422 | 2.0 | 1000 | 0.3731 | 0.7445 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.35.0
|
68 |
+
- Pytorch 2.1.0+cu118
|
69 |
+
- Datasets 2.14.6
|
70 |
+
- Tokenizers 0.14.1
|