Faith-theAnalyst commited on
Commit
e3da3b8
·
1 Parent(s): 6dd4c18

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased-finetuned-sst-2-english
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: twitter_distilbert_sentiment_model
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # twitter_distilbert_sentiment_model
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.3731
21
+ - Accuracy: 0.7445
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 500
47
+ - num_epochs: 2
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 0.6506 | 0.2 | 100 | 0.5897 | 0.4885 |
54
+ | 0.5579 | 0.4 | 200 | 0.5109 | 0.669 |
55
+ | 0.475 | 0.6 | 300 | 0.4178 | 0.724 |
56
+ | 0.4342 | 0.8 | 400 | 0.4080 | 0.7125 |
57
+ | 0.4214 | 1.0 | 500 | 0.3867 | 0.736 |
58
+ | 0.4048 | 1.2 | 600 | 0.3910 | 0.7365 |
59
+ | 0.3791 | 1.4 | 700 | 0.3858 | 0.7405 |
60
+ | 0.3793 | 1.6 | 800 | 0.3779 | 0.745 |
61
+ | 0.3752 | 1.8 | 900 | 0.3722 | 0.7445 |
62
+ | 0.3422 | 2.0 | 1000 | 0.3731 | 0.7445 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.35.0
68
+ - Pytorch 2.1.0+cu118
69
+ - Datasets 2.14.6
70
+ - Tokenizers 0.14.1