wlsaidhi commited on
Commit
2628b9a
·
verified ·
1 Parent(s): 1fc4f6a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -2,7 +2,7 @@
2
  license: apache-2.0
3
  ---
4
 
5
- # FastVideo FastWan2.2-TI2V-5B-Diffusers Model
6
  <p align="center">
7
  <img src="https://raw.githubusercontent.com/hao-ai-lab/FastVideo/main/assets/logo.png" width="200"/>
8
  </p>
@@ -22,7 +22,7 @@ license: apache-2.0
22
  ## Introduction
23
  We're excited to introduce the **FastWan2.2 series**—a new line of models finetuned with our novel **Sparse-distill** strategy. This approach jointly integrates DMD and VSA in a single training process, combining the benefits of both **distillation** to shorten diffusion steps and **sparse attention** to reduce attention computations, enabling even faster video generation.
24
 
25
- FastWan2.2-TI2V-5B-Diffusers is built upon Wan-AI/Wan2.2-TI2V-5B-Diffusers. It supports efficient **3-step inference** and produces high-quality videos at 121×704×1280 resolution. For training, we used simulated forward for the generator model, making the process data-free. **The current FastWan2.2-TI2V-5B-Diffusers model is trained using only DMD**.
26
 
27
  ---
28
 
@@ -37,7 +37,7 @@ FastWan2.2-TI2V-5B-Diffusers is built upon Wan-AI/Wan2.2-TI2V-5B-Diffusers. It s
37
  ```python
38
  num_gpus=1
39
  export FASTVIDEO_ATTENTION_BACKEND=FLASH_ATTN
40
- export MODEL_BASE=FastVideo/FastWan2.2-TI2V-5B-Diffusers
41
  # export MODEL_BASE=hunyuanvideo-community/HunyuanVideo
42
  # You can either use --prompt or --prompt-txt, but not both.
43
  fastvideo generate \
@@ -62,7 +62,7 @@ fastvideo generate \
62
 
63
  Training was conducted on **8 nodes with 64 H200 GPUs** in total, using a `global batch size = 64`, and training runs for **3000 steps (~12 hours)**
64
 
65
- If you use the FastWan2.2-TI2V-5B-Diffusers model for your research, please cite our paper:
66
  ```
67
  @article{zhang2025vsa,
68
  title={VSA: Faster Video Diffusion with Trainable Sparse Attention},
 
2
  license: apache-2.0
3
  ---
4
 
5
+ # FastVideo FastWan2.2-TI2V-5B-Full-Diffusers Model
6
  <p align="center">
7
  <img src="https://raw.githubusercontent.com/hao-ai-lab/FastVideo/main/assets/logo.png" width="200"/>
8
  </p>
 
22
  ## Introduction
23
  We're excited to introduce the **FastWan2.2 series**—a new line of models finetuned with our novel **Sparse-distill** strategy. This approach jointly integrates DMD and VSA in a single training process, combining the benefits of both **distillation** to shorten diffusion steps and **sparse attention** to reduce attention computations, enabling even faster video generation.
24
 
25
+ FastWan2.2-TI2V-5B-Full-Diffusers is built upon Wan-AI/Wan2.2-TI2V-5B-Diffusers. It supports efficient **3-step inference** and produces high-quality videos at 121×704×1280 resolution. For training, we used simulated forward for the generator model, making the process data-free. **The current FastWan2.2-TI2V-5B-Full-Diffusers model is trained using only DMD**.
26
 
27
  ---
28
 
 
37
  ```python
38
  num_gpus=1
39
  export FASTVIDEO_ATTENTION_BACKEND=FLASH_ATTN
40
+ export MODEL_BASE=FastVideo/FastWan2.2-TI2V-5B-Full-Diffusers
41
  # export MODEL_BASE=hunyuanvideo-community/HunyuanVideo
42
  # You can either use --prompt or --prompt-txt, but not both.
43
  fastvideo generate \
 
62
 
63
  Training was conducted on **8 nodes with 64 H200 GPUs** in total, using a `global batch size = 64`, and training runs for **3000 steps (~12 hours)**
64
 
65
+ If you use the FastWan2.2-TI2V-5B-Full-Diffusers model for your research, please cite our paper:
66
  ```
67
  @article{zhang2025vsa,
68
  title={VSA: Faster Video Diffusion with Trainable Sparse Attention},