bweng commited on
Commit
28f24a7
·
verified ·
1 Parent(s): 3a14317

Delete TokenDurationPrediction.mlmodelc

Browse files
TokenDurationPrediction.mlmodelc/analytics/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d844856c854d42e6a58215dae5f75f82ea4da7cb7dbefb60db082a56c3a223dc
3
- size 243
 
 
 
 
TokenDurationPrediction.mlmodelc/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:03bd0964aae75139a64e2d25090b2c25c4aabe234bc5f63ae23d5e4d616d25d3
3
- size 424
 
 
 
 
TokenDurationPrediction.mlmodelc/metadata.json DELETED
@@ -1,85 +0,0 @@
1
- [
2
- {
3
- "shortDescription" : "Token and duration prediction for TDT decoder",
4
- "metadataOutputVersion" : "3.0",
5
- "outputSchema" : [
6
- {
7
- "hasShapeFlexibility" : "0",
8
- "isOptional" : "0",
9
- "dataType" : "Int32",
10
- "formattedType" : "MultiArray (Int32 1)",
11
- "shortDescription" : "",
12
- "shape" : "[1]",
13
- "name" : "var_17",
14
- "type" : "MultiArray"
15
- },
16
- {
17
- "hasShapeFlexibility" : "0",
18
- "isOptional" : "0",
19
- "dataType" : "Float16",
20
- "formattedType" : "MultiArray (Float16 1)",
21
- "shortDescription" : "",
22
- "shape" : "[1]",
23
- "name" : "reduce_max_0",
24
- "type" : "MultiArray"
25
- },
26
- {
27
- "hasShapeFlexibility" : "0",
28
- "isOptional" : "0",
29
- "dataType" : "Int32",
30
- "formattedType" : "MultiArray (Int32 1)",
31
- "shortDescription" : "",
32
- "shape" : "[1]",
33
- "name" : "var_24",
34
- "type" : "MultiArray"
35
- }
36
- ],
37
- "version" : "1.0",
38
- "modelParameters" : [
39
-
40
- ],
41
- "author" : "FluidAudio",
42
- "specificationVersion" : 7,
43
- "mlProgramOperationTypeHistogram" : {
44
- "SliceByIndex" : 2,
45
- "Ios16.reduceArgmax" : 2,
46
- "Ios16.reshape" : 1,
47
- "Ios16.reduceMax" : 1
48
- },
49
- "computePrecision" : "Mixed (Float16, Int32)",
50
- "stateSchema" : [
51
-
52
- ],
53
- "isUpdatable" : "0",
54
- "availability" : {
55
- "macOS" : "13.0",
56
- "tvOS" : "16.0",
57
- "visionOS" : "1.0",
58
- "watchOS" : "9.0",
59
- "iOS" : "16.0",
60
- "macCatalyst" : "16.0"
61
- },
62
- "modelType" : {
63
- "name" : "MLModelType_mlProgram"
64
- },
65
- "inputSchema" : [
66
- {
67
- "hasShapeFlexibility" : "0",
68
- "isOptional" : "0",
69
- "dataType" : "Float16",
70
- "formattedType" : "MultiArray (Float16 1 × 1 × 1 × 1030)",
71
- "shortDescription" : "",
72
- "shape" : "[1, 1, 1, 1030]",
73
- "name" : "logits",
74
- "type" : "MultiArray"
75
- }
76
- ],
77
- "userDefinedMetadata" : {
78
- "com.github.apple.coremltools.source_dialect" : "TorchScript",
79
- "com.github.apple.coremltools.source" : "torch==2.5.0",
80
- "com.github.apple.coremltools.version" : "8.3.0"
81
- },
82
- "generatedClassName" : "TokenDurationPrediction",
83
- "method" : "predict"
84
- }
85
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TokenDurationPrediction.mlmodelc/model.mil DELETED
@@ -1,25 +0,0 @@
1
- program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
- {
4
- func main<ios16>(tensor<fp16, [1, 1, 1, 1030]> logits) {
5
- tensor<int32, [1]> var_3 = const()[name = tensor<string, []>("op_3"), val = tensor<int32, [1]>([-1])];
6
- tensor<fp16, [1030]> flattened_cast_fp16 = reshape(shape = var_3, x = logits)[name = tensor<string, []>("flattened_cast_fp16")];
7
- tensor<int32, [1]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [1]>([0])];
8
- tensor<int32, [1]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [1]>([1025])];
9
- tensor<bool, [1]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [1]>([false])];
10
- tensor<fp16, [1025]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = flattened_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
11
- tensor<int32, [1]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [1]>([1025])];
12
- tensor<int32, [1]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [1]>([1])];
13
- tensor<bool, [1]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [1]>([true])];
14
- tensor<fp16, [5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = flattened_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
15
- tensor<int32, []> var_17_axis_0 = const()[name = tensor<string, []>("op_17_axis_0"), val = tensor<int32, []>(0)];
16
- tensor<bool, []> var_17_keep_dims_0 = const()[name = tensor<string, []>("op_17_keep_dims_0"), val = tensor<bool, []>(true)];
17
- tensor<int32, [1]> var_17 = reduce_argmax(axis = var_17_axis_0, keep_dims = var_17_keep_dims_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_17_cast_fp16")];
18
- tensor<int32, [1]> reduce_max_0_axes_0 = const()[name = tensor<string, []>("reduce_max_0_axes_0"), val = tensor<int32, [1]>([0])];
19
- tensor<bool, []> reduce_max_0_keep_dims_0 = const()[name = tensor<string, []>("reduce_max_0_keep_dims_0"), val = tensor<bool, []>(true)];
20
- tensor<fp16, [1]> reduce_max_0 = reduce_max(axes = reduce_max_0_axes_0, keep_dims = reduce_max_0_keep_dims_0, x = token_logits_cast_fp16)[name = tensor<string, []>("reduce_max_0_cast_fp16")];
21
- tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
22
- tensor<bool, []> var_24_keep_dims_0 = const()[name = tensor<string, []>("op_24_keep_dims_0"), val = tensor<bool, []>(true)];
23
- tensor<int32, [1]> var_24 = reduce_argmax(axis = var_24_axis_0, keep_dims = var_24_keep_dims_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
24
- } -> (var_17, reduce_max_0, var_24);
25
- }