program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}, {"coremltools-component-torch", "2.4.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})] { func main(tensor decoder_outputs, tensor encoder_outputs) [FlexibleShapeInformation = tuple, dict, tensor>>, tuple, dict, list, ?>>>>((("DefaultShapes", {{"decoder_outputs", [1, 1, 1]}, {"encoder_outputs", [1, 1, 1]}}), ("RangeDims", {{"decoder_outputs", [[1, 100], [1, 1025], [1, 640]]}, {"encoder_outputs", [[1, 100], [1, 1025], [1, 1024]]}})))] { tensor encoder_outputs_to_fp16_dtype_0 = const()[name = tensor("encoder_outputs_to_fp16_dtype_0"), val = tensor("fp16")]; tensor joint_enc_weight_to_fp16 = const()[name = tensor("joint_enc_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor joint_enc_bias_to_fp16 = const()[name = tensor("joint_enc_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1310848)))]; tensor cast_2 = cast(dtype = encoder_outputs_to_fp16_dtype_0, x = encoder_outputs)[name = tensor("cast_2")]; tensor linear_0_cast_fp16 = linear(bias = joint_enc_bias_to_fp16, weight = joint_enc_weight_to_fp16, x = cast_2)[name = tensor("linear_0_cast_fp16")]; tensor decoder_outputs_to_fp16_dtype_0 = const()[name = tensor("decoder_outputs_to_fp16_dtype_0"), val = tensor("fp16")]; tensor joint_pred_weight_to_fp16 = const()[name = tensor("joint_pred_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1312192)))]; tensor joint_pred_bias_to_fp16 = const()[name = tensor("joint_pred_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2131456)))]; tensor cast_1 = cast(dtype = decoder_outputs_to_fp16_dtype_0, x = decoder_outputs)[name = tensor("cast_1")]; tensor linear_1_cast_fp16 = linear(bias = joint_pred_bias_to_fp16, weight = joint_pred_weight_to_fp16, x = cast_1)[name = tensor("linear_1_cast_fp16")]; tensor f_axes_0 = const()[name = tensor("f_axes_0"), val = tensor([2])]; tensor f_cast_fp16 = expand_dims(axes = f_axes_0, x = linear_0_cast_fp16)[name = tensor("f_cast_fp16")]; tensor g_axes_0 = const()[name = tensor("g_axes_0"), val = tensor([1])]; tensor g_cast_fp16 = expand_dims(axes = g_axes_0, x = linear_1_cast_fp16)[name = tensor("g_cast_fp16")]; tensor input_1_cast_fp16 = add(x = f_cast_fp16, y = g_cast_fp16)[name = tensor("input_1_cast_fp16")]; tensor input_3_cast_fp16 = relu(x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor joint_joint_net_2_weight_to_fp16 = const()[name = tensor("joint_joint_net_2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2132800)))]; tensor joint_joint_net_2_bias_to_fp16 = const()[name = tensor("joint_joint_net_2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3451264)))]; tensor linear_2_cast_fp16 = linear(bias = joint_joint_net_2_bias_to_fp16, weight = joint_joint_net_2_weight_to_fp16, x = input_3_cast_fp16)[name = tensor("linear_2_cast_fp16")]; tensor var_29 = const()[name = tensor("op_29"), val = tensor(-1)]; tensor var_31_softmax_cast_fp16 = softmax(axis = var_29, x = linear_2_cast_fp16)[name = tensor("op_31_softmax_cast_fp16")]; tensor var_31_epsilon_0_to_fp16 = const()[name = tensor("op_31_epsilon_0_to_fp16"), val = tensor(0x0p+0)]; tensor var_31_cast_fp16 = log(epsilon = var_31_epsilon_0_to_fp16, x = var_31_softmax_cast_fp16)[name = tensor("op_31_cast_fp16")]; tensor var_31_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("op_31_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; tensor logits = cast(dtype = var_31_cast_fp16_to_fp32_dtype_0, x = var_31_cast_fp16)[name = tensor("cast_0")]; } -> (logits); }