Upload 4 files
Browse files
RNNTJoint.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6123e6464c990b52c62d86bd580a11c746cfcb5a01ae51b9ecbe92cfcef68852
|
3 |
size 243
|
RNNTJoint.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f1dc6e96c2f63c8636f5a09968abd2bff0ded029e5a205886c10228421a029b
|
3 |
+
size 394
|
RNNTJoint.mlmodelc/model.mil
CHANGED
@@ -1,57 +1,31 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "
|
3 |
{
|
4 |
-
func main<ios15>(tensor<fp32, [?, ?,
|
5 |
tensor<string, []> encoder_outputs_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_outputs_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
6 |
-
tensor<fp16, [?, ?, 1024]> encoder_outputs_to_fp16 = cast(dtype = encoder_outputs_to_fp16_dtype_0, x = encoder_outputs)[name = tensor<string, []>("cast_5")];
|
7 |
-
tensor<int32, [3]> var_11_shape_cast_fp16 = shape(x = encoder_outputs_to_fp16)[name = tensor<string, []>("op_11_shape_cast_fp16")];
|
8 |
-
tensor<int32, []> gather_0_indices_0 = const()[name = tensor<string, []>("gather_0_indices_0"), val = tensor<int32, []>(0)];
|
9 |
-
tensor<int32, []> gather_0_axis_0 = const()[name = tensor<string, []>("gather_0_axis_0"), val = tensor<int32, []>(0)];
|
10 |
-
tensor<int32, []> gather_0 = gather(axis = gather_0_axis_0, indices = gather_0_indices_0, x = var_11_shape_cast_fp16)[name = tensor<string, []>("gather_0")];
|
11 |
-
tensor<int32, []> gather_1_indices_0 = const()[name = tensor<string, []>("gather_1_indices_0"), val = tensor<int32, []>(1)];
|
12 |
-
tensor<int32, []> gather_1_axis_0 = const()[name = tensor<string, []>("gather_1_axis_0"), val = tensor<int32, []>(0)];
|
13 |
-
tensor<int32, []> gather_1 = gather(axis = gather_1_axis_0, indices = gather_1_indices_0, x = var_11_shape_cast_fp16)[name = tensor<string, []>("gather_1")];
|
14 |
-
tensor<int32, []> const_0 = const()[name = tensor<string, []>("const_0"), val = tensor<int32, []>(0)];
|
15 |
-
tensor<int32, []> const_1 = const()[name = tensor<string, []>("const_1"), val = tensor<int32, []>(1)];
|
16 |
-
tensor<int32, [?]> time_indices_1 = range_1d(end = gather_1, start = const_0, step = const_1)[name = tensor<string, []>("time_indices_1")];
|
17 |
-
tensor<int32, [1]> var_25_axes_0 = const()[name = tensor<string, []>("op_25_axes_0"), val = tensor<int32, [1]>([0])];
|
18 |
-
tensor<int32, [1, ?]> var_25 = expand_dims(axes = var_25_axes_0, x = time_indices_1)[name = tensor<string, []>("op_25")];
|
19 |
-
tensor<int32, []> concat_0_axis_0 = const()[name = tensor<string, []>("concat_0_axis_0"), val = tensor<int32, []>(0)];
|
20 |
-
tensor<bool, []> concat_0_interleave_0 = const()[name = tensor<string, []>("concat_0_interleave_0"), val = tensor<bool, []>(false)];
|
21 |
-
tensor<int32, [2]> concat_0 = concat(axis = concat_0_axis_0, interleave = concat_0_interleave_0, values = (gather_0, gather_1))[name = tensor<string, []>("concat_0")];
|
22 |
-
tensor<int32, [2]> shape_0 = shape(x = var_25)[name = tensor<string, []>("shape_0")];
|
23 |
-
tensor<int32, [2]> real_div_0 = real_div(x = concat_0, y = shape_0)[name = tensor<string, []>("real_div_0")];
|
24 |
-
tensor<int32, [?, ?]> time_indices = tile(reps = real_div_0, x = var_25)[name = tensor<string, []>("time_indices")];
|
25 |
-
tensor<int32, [1]> encoder_length_expanded_axes_0 = const()[name = tensor<string, []>("encoder_length_expanded_axes_0"), val = tensor<int32, [1]>([1])];
|
26 |
-
tensor<int32, [?, 1]> encoder_length_expanded = expand_dims(axes = encoder_length_expanded_axes_0, x = encoder_length)[name = tensor<string, []>("encoder_length_expanded")];
|
27 |
-
tensor<bool, [?, ?]> encoder_mask = less(x = time_indices, y = encoder_length_expanded)[name = tensor<string, []>("encoder_mask")];
|
28 |
-
tensor<int32, [1]> var_33_axes_0 = const()[name = tensor<string, []>("op_33_axes_0"), val = tensor<int32, [1]>([-1])];
|
29 |
-
tensor<bool, [?, ?, 1]> var_33 = expand_dims(axes = var_33_axes_0, x = encoder_mask)[name = tensor<string, []>("op_33")];
|
30 |
-
tensor<string, []> cast_1_to_fp16_dtype_0 = const()[name = tensor<string, []>("cast_1_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
31 |
-
tensor<fp16, [?, ?, 1]> var_33_to_fp16 = cast(dtype = cast_1_to_fp16_dtype_0, x = var_33)[name = tensor<string, []>("cast_4")];
|
32 |
-
tensor<fp16, [?, ?, 1024]> input_1_cast_fp16 = mul(x = encoder_outputs_to_fp16, y = var_33_to_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
|
33 |
tensor<fp16, [640, 1024]> joint_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
34 |
tensor<fp16, [640]> joint_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
|
35 |
-
tensor<fp16, [?, ?,
|
|
|
36 |
tensor<string, []> decoder_outputs_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_outputs_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
37 |
tensor<fp16, [640, 640]> joint_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
|
38 |
tensor<fp16, [640]> joint_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
|
39 |
-
tensor<fp16, [?, ?,
|
40 |
tensor<fp16, [?, ?, 640]> linear_1_cast_fp16 = linear(bias = joint_pred_bias_to_fp16, weight = joint_pred_weight_to_fp16, x = decoder_outputs_to_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
|
41 |
tensor<int32, [1]> f_axes_0 = const()[name = tensor<string, []>("f_axes_0"), val = tensor<int32, [1]>([2])];
|
42 |
tensor<fp16, [?, ?, 1, 640]> f_cast_fp16 = expand_dims(axes = f_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("f_cast_fp16")];
|
43 |
tensor<int32, [1]> g_axes_0 = const()[name = tensor<string, []>("g_axes_0"), val = tensor<int32, [1]>([1])];
|
44 |
tensor<fp16, [?, 1, ?, 640]> g_cast_fp16 = expand_dims(axes = g_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("g_cast_fp16")];
|
45 |
-
tensor<fp16, [?, ?, ?, 640]>
|
46 |
-
tensor<fp16, [?, ?, ?, 640]>
|
47 |
tensor<fp16, [8198, 640]> joint_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_joint_net_2_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
|
48 |
tensor<fp16, [8198]> joint_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_joint_net_2_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12626304)))];
|
49 |
-
tensor<fp16, [?, ?, ?, 8198]> linear_2_cast_fp16 = linear(bias = joint_joint_net_2_bias_to_fp16, weight = joint_joint_net_2_weight_to_fp16, x =
|
50 |
-
tensor<int32, []>
|
51 |
-
tensor<fp16, [?, ?, ?, 8198]>
|
52 |
-
tensor<fp16, []>
|
53 |
-
tensor<fp16, [?, ?, ?, 8198]>
|
54 |
-
tensor<string, []>
|
55 |
-
tensor<fp32, [?, ?, ?, 8198]> logits = cast(dtype =
|
56 |
} -> (logits);
|
57 |
}
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
|
3 |
{
|
4 |
+
func main<ios15>(tensor<fp32, [?, ?, ?]> decoder_outputs, tensor<fp32, [?, ?, ?]> encoder_outputs) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, list<tensor<int32, [2]>, ?>>>>((("DefaultShapes", {{"decoder_outputs", [1, 1, 1]}, {"encoder_outputs", [1, 1, 1]}}), ("RangeDims", {{"decoder_outputs", [[1, 100], [1, 1025], [1, 640]]}, {"encoder_outputs", [[1, 100], [1, 1025], [1, 1024]]}})))] {
|
5 |
tensor<string, []> encoder_outputs_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_outputs_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tensor<fp16, [640, 1024]> joint_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
7 |
tensor<fp16, [640]> joint_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
|
8 |
+
tensor<fp16, [?, ?, ?]> encoder_outputs_to_fp16 = cast(dtype = encoder_outputs_to_fp16_dtype_0, x = encoder_outputs)[name = tensor<string, []>("cast_2")];
|
9 |
+
tensor<fp16, [?, ?, 640]> linear_0_cast_fp16 = linear(bias = joint_enc_bias_to_fp16, weight = joint_enc_weight_to_fp16, x = encoder_outputs_to_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
|
10 |
tensor<string, []> decoder_outputs_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_outputs_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
11 |
tensor<fp16, [640, 640]> joint_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
|
12 |
tensor<fp16, [640]> joint_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
|
13 |
+
tensor<fp16, [?, ?, ?]> decoder_outputs_to_fp16 = cast(dtype = decoder_outputs_to_fp16_dtype_0, x = decoder_outputs)[name = tensor<string, []>("cast_1")];
|
14 |
tensor<fp16, [?, ?, 640]> linear_1_cast_fp16 = linear(bias = joint_pred_bias_to_fp16, weight = joint_pred_weight_to_fp16, x = decoder_outputs_to_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
|
15 |
tensor<int32, [1]> f_axes_0 = const()[name = tensor<string, []>("f_axes_0"), val = tensor<int32, [1]>([2])];
|
16 |
tensor<fp16, [?, ?, 1, 640]> f_cast_fp16 = expand_dims(axes = f_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("f_cast_fp16")];
|
17 |
tensor<int32, [1]> g_axes_0 = const()[name = tensor<string, []>("g_axes_0"), val = tensor<int32, [1]>([1])];
|
18 |
tensor<fp16, [?, 1, ?, 640]> g_cast_fp16 = expand_dims(axes = g_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("g_cast_fp16")];
|
19 |
+
tensor<fp16, [?, ?, ?, 640]> input_1_cast_fp16 = add(x = f_cast_fp16, y = g_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
|
20 |
+
tensor<fp16, [?, ?, ?, 640]> input_3_cast_fp16 = relu(x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
21 |
tensor<fp16, [8198, 640]> joint_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_joint_net_2_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
|
22 |
tensor<fp16, [8198]> joint_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_joint_net_2_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12626304)))];
|
23 |
+
tensor<fp16, [?, ?, ?, 8198]> linear_2_cast_fp16 = linear(bias = joint_joint_net_2_bias_to_fp16, weight = joint_joint_net_2_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
|
24 |
+
tensor<int32, []> var_29 = const()[name = tensor<string, []>("op_29"), val = tensor<int32, []>(-1)];
|
25 |
+
tensor<fp16, [?, ?, ?, 8198]> var_31_softmax_cast_fp16 = softmax(axis = var_29, x = linear_2_cast_fp16)[name = tensor<string, []>("op_31_softmax_cast_fp16")];
|
26 |
+
tensor<fp16, []> var_31_epsilon_0_to_fp16 = const()[name = tensor<string, []>("op_31_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
27 |
+
tensor<fp16, [?, ?, ?, 8198]> var_31_cast_fp16 = log(epsilon = var_31_epsilon_0_to_fp16, x = var_31_softmax_cast_fp16)[name = tensor<string, []>("op_31_cast_fp16")];
|
28 |
+
tensor<string, []> var_31_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_31_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
29 |
+
tensor<fp32, [?, ?, ?, 8198]> logits = cast(dtype = var_31_cast_fp16_to_fp32_dtype_0, x = var_31_cast_fp16)[name = tensor<string, []>("cast_0")];
|
30 |
} -> (logits);
|
31 |
}
|