Upload 16 files
Browse files- Multitask/README.md +202 -0
- Multitask/adapter_config.json +39 -0
- Multitask/adapter_model.safetensors +3 -0
- Multitask/latest +1 -0
- Multitask/rng_state_0.pth +3 -0
- Multitask/rng_state_1.pth +3 -0
- Multitask/rng_state_2.pth +3 -0
- Multitask/rng_state_3.pth +3 -0
- Multitask/scheduler.pt +3 -0
- Multitask/special_tokens_map.json +24 -0
- Multitask/tokenizer.json +0 -0
- Multitask/tokenizer.model +3 -0
- Multitask/tokenizer_config.json +47 -0
- Multitask/trainer_state.json +1426 -0
- Multitask/training_args.bin +3 -0
- Multitask/zero_to_fp32.py +760 -0
Multitask/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: /home/bingxing2/ailab/gaoben/models/Mistral-7B-Instruct/Mistral-7B-Instruct-v0.2/AI-ModelScope/Mistral-7B-Instruct-v0___2
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.15.1
|
Multitask/adapter_config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "/home/bingxing2/ailab/gaoben/models/Mistral-7B-Instruct/Mistral-7B-Instruct-v0.2/AI-ModelScope/Mistral-7B-Instruct-v0___2",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 128,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.0,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"r": 64,
|
| 24 |
+
"rank_pattern": {},
|
| 25 |
+
"revision": null,
|
| 26 |
+
"target_modules": [
|
| 27 |
+
"gate_proj",
|
| 28 |
+
"q_proj",
|
| 29 |
+
"down_proj",
|
| 30 |
+
"o_proj",
|
| 31 |
+
"v_proj",
|
| 32 |
+
"up_proj",
|
| 33 |
+
"k_proj"
|
| 34 |
+
],
|
| 35 |
+
"task_type": "CAUSAL_LM",
|
| 36 |
+
"trainable_token_indices": null,
|
| 37 |
+
"use_dora": false,
|
| 38 |
+
"use_rslora": false
|
| 39 |
+
}
|
Multitask/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66c1a723e86dc9e67dd728d08922e3d823c3d0d9887376028c7d0b8597435cd
|
| 3 |
+
size 335605144
|
Multitask/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1748
|
Multitask/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7d74de51245105e1fbf57a6707ef3538b353952485508f6e2f8f74dc5d479d4
|
| 3 |
+
size 15024
|
Multitask/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0617c9eb6cf7df57b2e0bb53cfe17c05f0910de56fe5b14427fe39ab54a44782
|
| 3 |
+
size 15024
|
Multitask/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed68a365057022897d9645ee60902a77102f43215dcdf2ddd5d3842b6a8446d8
|
| 3 |
+
size 15024
|
Multitask/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63ebaa0c302cadbdfcd9f8ee2289e35ecf9c9fc8c9968fc0c05f100dac20c6b9
|
| 3 |
+
size 15024
|
Multitask/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d84bce0dc28d54d9c075e29d38cb4d4e03938d7b6ffa3b8d32674f5dbaa337a
|
| 3 |
+
size 1064
|
Multitask/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
Multitask/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Multitask/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
| 3 |
+
size 493443
|
Multitask/tokenizer_config.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"additional_special_tokens": [],
|
| 32 |
+
"bos_token": "<s>",
|
| 33 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
| 34 |
+
"clean_up_tokenization_spaces": false,
|
| 35 |
+
"eos_token": "</s>",
|
| 36 |
+
"extra_special_tokens": {},
|
| 37 |
+
"legacy": true,
|
| 38 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 39 |
+
"pad_token": "</s>",
|
| 40 |
+
"padding_side": "right",
|
| 41 |
+
"sp_model_kwargs": {},
|
| 42 |
+
"spaces_between_special_tokens": false,
|
| 43 |
+
"split_special_tokens": false,
|
| 44 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 45 |
+
"unk_token": "<unk>",
|
| 46 |
+
"use_default_system_prompt": false
|
| 47 |
+
}
|
Multitask/trainer_state.json
ADDED
|
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 14.993576017130621,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 1740,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.08565310492505353,
|
| 14 |
+
"grad_norm": 5.411635875701904,
|
| 15 |
+
"learning_rate": 9.999339889379647e-06,
|
| 16 |
+
"loss": 1.5609,
|
| 17 |
+
"num_input_tokens_seen": 255328,
|
| 18 |
+
"step": 10
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"epoch": 0.17130620985010706,
|
| 22 |
+
"grad_norm": 0.7214002013206482,
|
| 23 |
+
"learning_rate": 9.997058249278764e-06,
|
| 24 |
+
"loss": 0.2055,
|
| 25 |
+
"num_input_tokens_seen": 510640,
|
| 26 |
+
"step": 20
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.2569593147751606,
|
| 30 |
+
"grad_norm": 0.47501006722450256,
|
| 31 |
+
"learning_rate": 9.993147673772869e-06,
|
| 32 |
+
"loss": 0.184,
|
| 33 |
+
"num_input_tokens_seen": 763808,
|
| 34 |
+
"step": 30
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"epoch": 0.3426124197002141,
|
| 38 |
+
"grad_norm": 0.20641829073429108,
|
| 39 |
+
"learning_rate": 9.987609437626955e-06,
|
| 40 |
+
"loss": 0.1767,
|
| 41 |
+
"num_input_tokens_seen": 1017472,
|
| 42 |
+
"step": 40
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"epoch": 0.4282655246252677,
|
| 46 |
+
"grad_norm": 0.49966660141944885,
|
| 47 |
+
"learning_rate": 9.98044534618898e-06,
|
| 48 |
+
"loss": 0.1821,
|
| 49 |
+
"num_input_tokens_seen": 1273488,
|
| 50 |
+
"step": 50
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.5139186295503212,
|
| 54 |
+
"grad_norm": 0.8994255065917969,
|
| 55 |
+
"learning_rate": 9.971657734801385e-06,
|
| 56 |
+
"loss": 0.1819,
|
| 57 |
+
"num_input_tokens_seen": 1527744,
|
| 58 |
+
"step": 60
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.5995717344753747,
|
| 62 |
+
"grad_norm": 1.7688418626785278,
|
| 63 |
+
"learning_rate": 9.961249468039806e-06,
|
| 64 |
+
"loss": 0.1797,
|
| 65 |
+
"num_input_tokens_seen": 1785520,
|
| 66 |
+
"step": 70
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.6852248394004282,
|
| 70 |
+
"grad_norm": 0.7211973071098328,
|
| 71 |
+
"learning_rate": 9.949223938779286e-06,
|
| 72 |
+
"loss": 0.1765,
|
| 73 |
+
"num_input_tokens_seen": 2037648,
|
| 74 |
+
"step": 80
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.7708779443254818,
|
| 78 |
+
"grad_norm": 0.94338458776474,
|
| 79 |
+
"learning_rate": 9.935585067088276e-06,
|
| 80 |
+
"loss": 0.1766,
|
| 81 |
+
"num_input_tokens_seen": 2292464,
|
| 82 |
+
"step": 90
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 0.8565310492505354,
|
| 86 |
+
"grad_norm": 0.6227909326553345,
|
| 87 |
+
"learning_rate": 9.920337298950767e-06,
|
| 88 |
+
"loss": 0.1714,
|
| 89 |
+
"num_input_tokens_seen": 2547872,
|
| 90 |
+
"step": 100
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"epoch": 0.9421841541755889,
|
| 94 |
+
"grad_norm": 0.5941164493560791,
|
| 95 |
+
"learning_rate": 9.903485604816993e-06,
|
| 96 |
+
"loss": 0.1728,
|
| 97 |
+
"num_input_tokens_seen": 2801536,
|
| 98 |
+
"step": 110
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 1.0342612419700214,
|
| 102 |
+
"grad_norm": 0.4057783782482147,
|
| 103 |
+
"learning_rate": 9.885035477983184e-06,
|
| 104 |
+
"loss": 0.1868,
|
| 105 |
+
"num_input_tokens_seen": 3074416,
|
| 106 |
+
"step": 120
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"epoch": 1.119914346895075,
|
| 110 |
+
"grad_norm": 0.5549430251121521,
|
| 111 |
+
"learning_rate": 9.864992932800845e-06,
|
| 112 |
+
"loss": 0.1679,
|
| 113 |
+
"num_input_tokens_seen": 3327568,
|
| 114 |
+
"step": 130
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 1.2055674518201285,
|
| 118 |
+
"grad_norm": 0.41472136974334717,
|
| 119 |
+
"learning_rate": 9.843364502716225e-06,
|
| 120 |
+
"loss": 0.1671,
|
| 121 |
+
"num_input_tokens_seen": 3582240,
|
| 122 |
+
"step": 140
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 1.291220556745182,
|
| 126 |
+
"grad_norm": 0.5156757235527039,
|
| 127 |
+
"learning_rate": 9.820157238140535e-06,
|
| 128 |
+
"loss": 0.1682,
|
| 129 |
+
"num_input_tokens_seen": 3838160,
|
| 130 |
+
"step": 150
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 1.3768736616702355,
|
| 134 |
+
"grad_norm": 0.5046593546867371,
|
| 135 |
+
"learning_rate": 9.795378704151675e-06,
|
| 136 |
+
"loss": 0.1651,
|
| 137 |
+
"num_input_tokens_seen": 4092304,
|
| 138 |
+
"step": 160
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"epoch": 1.462526766595289,
|
| 142 |
+
"grad_norm": 0.5588434338569641,
|
| 143 |
+
"learning_rate": 9.76903697802817e-06,
|
| 144 |
+
"loss": 0.1649,
|
| 145 |
+
"num_input_tokens_seen": 4346640,
|
| 146 |
+
"step": 170
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 1.5481798715203428,
|
| 150 |
+
"grad_norm": 0.46262454986572266,
|
| 151 |
+
"learning_rate": 9.741140646616161e-06,
|
| 152 |
+
"loss": 0.1669,
|
| 153 |
+
"num_input_tokens_seen": 4602192,
|
| 154 |
+
"step": 180
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"epoch": 1.633832976445396,
|
| 158 |
+
"grad_norm": 0.45427972078323364,
|
| 159 |
+
"learning_rate": 9.711698803530253e-06,
|
| 160 |
+
"loss": 0.1674,
|
| 161 |
+
"num_input_tokens_seen": 4858240,
|
| 162 |
+
"step": 190
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"epoch": 1.7194860813704498,
|
| 166 |
+
"grad_norm": 0.4514879882335663,
|
| 167 |
+
"learning_rate": 9.68072104618921e-06,
|
| 168 |
+
"loss": 0.1641,
|
| 169 |
+
"num_input_tokens_seen": 5113408,
|
| 170 |
+
"step": 200
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 1.805139186295503,
|
| 174 |
+
"grad_norm": 0.7933849692344666,
|
| 175 |
+
"learning_rate": 9.648217472687385e-06,
|
| 176 |
+
"loss": 0.1614,
|
| 177 |
+
"num_input_tokens_seen": 5368352,
|
| 178 |
+
"step": 210
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 1.8907922912205568,
|
| 182 |
+
"grad_norm": 0.6207934021949768,
|
| 183 |
+
"learning_rate": 9.614198678502965e-06,
|
| 184 |
+
"loss": 0.163,
|
| 185 |
+
"num_input_tokens_seen": 5622128,
|
| 186 |
+
"step": 220
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"epoch": 1.9764453961456103,
|
| 190 |
+
"grad_norm": 0.8193040490150452,
|
| 191 |
+
"learning_rate": 9.57867575304406e-06,
|
| 192 |
+
"loss": 0.1589,
|
| 193 |
+
"num_input_tokens_seen": 5876816,
|
| 194 |
+
"step": 230
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 2.068522483940043,
|
| 198 |
+
"grad_norm": 1.0469202995300293,
|
| 199 |
+
"learning_rate": 9.541660276033795e-06,
|
| 200 |
+
"loss": 0.1755,
|
| 201 |
+
"num_input_tokens_seen": 6145392,
|
| 202 |
+
"step": 240
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 2.154175588865096,
|
| 206 |
+
"grad_norm": 0.9274189472198486,
|
| 207 |
+
"learning_rate": 9.503164313735566e-06,
|
| 208 |
+
"loss": 0.1595,
|
| 209 |
+
"num_input_tokens_seen": 6399504,
|
| 210 |
+
"step": 250
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"epoch": 2.23982869379015,
|
| 214 |
+
"grad_norm": 0.6875982880592346,
|
| 215 |
+
"learning_rate": 9.46320041501969e-06,
|
| 216 |
+
"loss": 0.1563,
|
| 217 |
+
"num_input_tokens_seen": 6654160,
|
| 218 |
+
"step": 260
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 2.325481798715203,
|
| 222 |
+
"grad_norm": 0.5835751295089722,
|
| 223 |
+
"learning_rate": 9.421781607272741e-06,
|
| 224 |
+
"loss": 0.1554,
|
| 225 |
+
"num_input_tokens_seen": 6910752,
|
| 226 |
+
"step": 270
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 2.411134903640257,
|
| 230 |
+
"grad_norm": 0.6475698351860046,
|
| 231 |
+
"learning_rate": 9.378921392150893e-06,
|
| 232 |
+
"loss": 0.1579,
|
| 233 |
+
"num_input_tokens_seen": 7166960,
|
| 234 |
+
"step": 280
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 2.4967880085653107,
|
| 238 |
+
"grad_norm": 0.6029316782951355,
|
| 239 |
+
"learning_rate": 9.33463374117867e-06,
|
| 240 |
+
"loss": 0.1577,
|
| 241 |
+
"num_input_tokens_seen": 7420288,
|
| 242 |
+
"step": 290
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 2.582441113490364,
|
| 246 |
+
"grad_norm": 0.6444355845451355,
|
| 247 |
+
"learning_rate": 9.288933091194524e-06,
|
| 248 |
+
"loss": 0.1564,
|
| 249 |
+
"num_input_tokens_seen": 7675184,
|
| 250 |
+
"step": 300
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"epoch": 2.6680942184154177,
|
| 254 |
+
"grad_norm": 0.5541071891784668,
|
| 255 |
+
"learning_rate": 9.241834339644726e-06,
|
| 256 |
+
"loss": 0.1528,
|
| 257 |
+
"num_input_tokens_seen": 7926976,
|
| 258 |
+
"step": 310
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 2.753747323340471,
|
| 262 |
+
"grad_norm": 0.6703725457191467,
|
| 263 |
+
"learning_rate": 9.193352839727122e-06,
|
| 264 |
+
"loss": 0.1549,
|
| 265 |
+
"num_input_tokens_seen": 8184992,
|
| 266 |
+
"step": 320
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 2.8394004282655247,
|
| 270 |
+
"grad_norm": 0.6515584588050842,
|
| 271 |
+
"learning_rate": 9.143504395386302e-06,
|
| 272 |
+
"loss": 0.157,
|
| 273 |
+
"num_input_tokens_seen": 8439712,
|
| 274 |
+
"step": 330
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"epoch": 2.925053533190578,
|
| 278 |
+
"grad_norm": 0.5527693629264832,
|
| 279 |
+
"learning_rate": 9.09230525616186e-06,
|
| 280 |
+
"loss": 0.157,
|
| 281 |
+
"num_input_tokens_seen": 8694080,
|
| 282 |
+
"step": 340
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 3.017130620985011,
|
| 286 |
+
"grad_norm": 0.6593677401542664,
|
| 287 |
+
"learning_rate": 9.039772111891383e-06,
|
| 288 |
+
"loss": 0.1672,
|
| 289 |
+
"num_input_tokens_seen": 8965488,
|
| 290 |
+
"step": 350
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 3.102783725910064,
|
| 294 |
+
"grad_norm": 0.5042828917503357,
|
| 295 |
+
"learning_rate": 8.985922087269916e-06,
|
| 296 |
+
"loss": 0.1483,
|
| 297 |
+
"num_input_tokens_seen": 9220480,
|
| 298 |
+
"step": 360
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"epoch": 3.188436830835118,
|
| 302 |
+
"grad_norm": 0.4123888611793518,
|
| 303 |
+
"learning_rate": 8.930772736267675e-06,
|
| 304 |
+
"loss": 0.1532,
|
| 305 |
+
"num_input_tokens_seen": 9477024,
|
| 306 |
+
"step": 370
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 3.274089935760171,
|
| 310 |
+
"grad_norm": 0.7851901054382324,
|
| 311 |
+
"learning_rate": 8.874342036407815e-06,
|
| 312 |
+
"loss": 0.1508,
|
| 313 |
+
"num_input_tokens_seen": 9731840,
|
| 314 |
+
"step": 380
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 3.359743040685225,
|
| 318 |
+
"grad_norm": 0.7545840740203857,
|
| 319 |
+
"learning_rate": 8.816648382906154e-06,
|
| 320 |
+
"loss": 0.1516,
|
| 321 |
+
"num_input_tokens_seen": 9986704,
|
| 322 |
+
"step": 390
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"epoch": 3.445396145610278,
|
| 326 |
+
"grad_norm": 0.7439327239990234,
|
| 327 |
+
"learning_rate": 8.757710582674708e-06,
|
| 328 |
+
"loss": 0.1506,
|
| 329 |
+
"num_input_tokens_seen": 10238720,
|
| 330 |
+
"step": 400
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"epoch": 3.531049250535332,
|
| 334 |
+
"grad_norm": 0.8343164920806885,
|
| 335 |
+
"learning_rate": 8.697547848191037e-06,
|
| 336 |
+
"loss": 0.1516,
|
| 337 |
+
"num_input_tokens_seen": 10491856,
|
| 338 |
+
"step": 410
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 3.6167023554603857,
|
| 342 |
+
"grad_norm": 0.817565381526947,
|
| 343 |
+
"learning_rate": 8.63617979123539e-06,
|
| 344 |
+
"loss": 0.1542,
|
| 345 |
+
"num_input_tokens_seen": 10744240,
|
| 346 |
+
"step": 420
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 3.702355460385439,
|
| 350 |
+
"grad_norm": 0.5334470272064209,
|
| 351 |
+
"learning_rate": 8.573626416497669e-06,
|
| 352 |
+
"loss": 0.1446,
|
| 353 |
+
"num_input_tokens_seen": 10996768,
|
| 354 |
+
"step": 430
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"epoch": 3.7880085653104922,
|
| 358 |
+
"grad_norm": 0.9441611766815186,
|
| 359 |
+
"learning_rate": 8.509908115056334e-06,
|
| 360 |
+
"loss": 0.1515,
|
| 361 |
+
"num_input_tokens_seen": 11254560,
|
| 362 |
+
"step": 440
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 3.873661670235546,
|
| 366 |
+
"grad_norm": 0.6177489757537842,
|
| 367 |
+
"learning_rate": 8.445045657731329e-06,
|
| 368 |
+
"loss": 0.1513,
|
| 369 |
+
"num_input_tokens_seen": 11512992,
|
| 370 |
+
"step": 450
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 3.9593147751605997,
|
| 374 |
+
"grad_norm": 0.5743350982666016,
|
| 375 |
+
"learning_rate": 8.379060188313244e-06,
|
| 376 |
+
"loss": 0.1458,
|
| 377 |
+
"num_input_tokens_seen": 11765808,
|
| 378 |
+
"step": 460
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"epoch": 4.0513918629550325,
|
| 382 |
+
"grad_norm": 0.8525713086128235,
|
| 383 |
+
"learning_rate": 8.311973216670888e-06,
|
| 384 |
+
"loss": 0.1598,
|
| 385 |
+
"num_input_tokens_seen": 12036784,
|
| 386 |
+
"step": 470
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 4.137044967880086,
|
| 390 |
+
"grad_norm": 0.6399952173233032,
|
| 391 |
+
"learning_rate": 8.243806611739516e-06,
|
| 392 |
+
"loss": 0.1448,
|
| 393 |
+
"num_input_tokens_seen": 12290592,
|
| 394 |
+
"step": 480
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 4.222698072805139,
|
| 398 |
+
"grad_norm": 0.657546877861023,
|
| 399 |
+
"learning_rate": 8.17458259439202e-06,
|
| 400 |
+
"loss": 0.144,
|
| 401 |
+
"num_input_tokens_seen": 12542464,
|
| 402 |
+
"step": 490
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 4.308351177730192,
|
| 406 |
+
"grad_norm": 0.6414650678634644,
|
| 407 |
+
"learning_rate": 8.104323730195407e-06,
|
| 408 |
+
"loss": 0.1406,
|
| 409 |
+
"num_input_tokens_seen": 12796848,
|
| 410 |
+
"step": 500
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 4.394004282655247,
|
| 414 |
+
"grad_norm": 0.7480872869491577,
|
| 415 |
+
"learning_rate": 8.033052922054882e-06,
|
| 416 |
+
"loss": 0.1436,
|
| 417 |
+
"num_input_tokens_seen": 13051760,
|
| 418 |
+
"step": 510
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 4.4796573875803,
|
| 422 |
+
"grad_norm": 0.7025752067565918,
|
| 423 |
+
"learning_rate": 7.960793402748001e-06,
|
| 424 |
+
"loss": 0.147,
|
| 425 |
+
"num_input_tokens_seen": 13305808,
|
| 426 |
+
"step": 520
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"epoch": 4.565310492505353,
|
| 430 |
+
"grad_norm": 0.5708986520767212,
|
| 431 |
+
"learning_rate": 7.887568727351262e-06,
|
| 432 |
+
"loss": 0.1456,
|
| 433 |
+
"num_input_tokens_seen": 13563056,
|
| 434 |
+
"step": 530
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 4.650963597430406,
|
| 438 |
+
"grad_norm": 0.6903087496757507,
|
| 439 |
+
"learning_rate": 7.813402765561664e-06,
|
| 440 |
+
"loss": 0.143,
|
| 441 |
+
"num_input_tokens_seen": 13816992,
|
| 442 |
+
"step": 540
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"epoch": 4.736616702355461,
|
| 446 |
+
"grad_norm": 0.6083903908729553,
|
| 447 |
+
"learning_rate": 7.738319693915673e-06,
|
| 448 |
+
"loss": 0.1439,
|
| 449 |
+
"num_input_tokens_seen": 14071936,
|
| 450 |
+
"step": 550
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 4.822269807280514,
|
| 454 |
+
"grad_norm": 0.6583831906318665,
|
| 455 |
+
"learning_rate": 7.662343987908195e-06,
|
| 456 |
+
"loss": 0.147,
|
| 457 |
+
"num_input_tokens_seen": 14327440,
|
| 458 |
+
"step": 560
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 4.907922912205567,
|
| 462 |
+
"grad_norm": 0.8827478885650635,
|
| 463 |
+
"learning_rate": 7.585500414014077e-06,
|
| 464 |
+
"loss": 0.1467,
|
| 465 |
+
"num_input_tokens_seen": 14582832,
|
| 466 |
+
"step": 570
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"epoch": 4.993576017130621,
|
| 470 |
+
"grad_norm": 0.8274891972541809,
|
| 471 |
+
"learning_rate": 7.507814021614761e-06,
|
| 472 |
+
"loss": 0.1478,
|
| 473 |
+
"num_input_tokens_seen": 14839136,
|
| 474 |
+
"step": 580
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"epoch": 5.085653104925053,
|
| 478 |
+
"grad_norm": 1.3195112943649292,
|
| 479 |
+
"learning_rate": 7.429310134832709e-06,
|
| 480 |
+
"loss": 0.1517,
|
| 481 |
+
"num_input_tokens_seen": 15109264,
|
| 482 |
+
"step": 590
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 5.1713062098501075,
|
| 486 |
+
"grad_norm": 0.7981224656105042,
|
| 487 |
+
"learning_rate": 7.35001434427628e-06,
|
| 488 |
+
"loss": 0.1396,
|
| 489 |
+
"num_input_tokens_seen": 15363824,
|
| 490 |
+
"step": 600
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 5.256959314775161,
|
| 494 |
+
"grad_norm": 0.6522560715675354,
|
| 495 |
+
"learning_rate": 7.269952498697734e-06,
|
| 496 |
+
"loss": 0.142,
|
| 497 |
+
"num_input_tokens_seen": 15618576,
|
| 498 |
+
"step": 610
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"epoch": 5.342612419700214,
|
| 502 |
+
"grad_norm": 0.7629905343055725,
|
| 503 |
+
"learning_rate": 7.189150696567081e-06,
|
| 504 |
+
"loss": 0.1384,
|
| 505 |
+
"num_input_tokens_seen": 15871056,
|
| 506 |
+
"step": 620
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 5.428265524625267,
|
| 510 |
+
"grad_norm": 0.9554848670959473,
|
| 511 |
+
"learning_rate": 7.10763527756453e-06,
|
| 512 |
+
"loss": 0.1405,
|
| 513 |
+
"num_input_tokens_seen": 16124976,
|
| 514 |
+
"step": 630
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 5.5139186295503215,
|
| 518 |
+
"grad_norm": 0.8175866603851318,
|
| 519 |
+
"learning_rate": 7.025432813994315e-06,
|
| 520 |
+
"loss": 0.1357,
|
| 521 |
+
"num_input_tokens_seen": 16381680,
|
| 522 |
+
"step": 640
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"epoch": 5.599571734475375,
|
| 526 |
+
"grad_norm": 0.7990790009498596,
|
| 527 |
+
"learning_rate": 6.942570102122679e-06,
|
| 528 |
+
"loss": 0.1387,
|
| 529 |
+
"num_input_tokens_seen": 16638048,
|
| 530 |
+
"step": 650
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 5.685224839400428,
|
| 534 |
+
"grad_norm": 0.9116854667663574,
|
| 535 |
+
"learning_rate": 6.859074153442864e-06,
|
| 536 |
+
"loss": 0.1414,
|
| 537 |
+
"num_input_tokens_seen": 16894688,
|
| 538 |
+
"step": 660
|
| 539 |
+
},
|
| 540 |
+
{
|
| 541 |
+
"epoch": 5.770877944325482,
|
| 542 |
+
"grad_norm": 0.7633938789367676,
|
| 543 |
+
"learning_rate": 6.774972185869928e-06,
|
| 544 |
+
"loss": 0.1389,
|
| 545 |
+
"num_input_tokens_seen": 17147808,
|
| 546 |
+
"step": 670
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 5.856531049250536,
|
| 550 |
+
"grad_norm": 0.8924551606178284,
|
| 551 |
+
"learning_rate": 6.690291614868287e-06,
|
| 552 |
+
"loss": 0.1361,
|
| 553 |
+
"num_input_tokens_seen": 17403280,
|
| 554 |
+
"step": 680
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 5.942184154175589,
|
| 558 |
+
"grad_norm": 0.8566009998321533,
|
| 559 |
+
"learning_rate": 6.60506004451485e-06,
|
| 560 |
+
"loss": 0.1356,
|
| 561 |
+
"num_input_tokens_seen": 17657888,
|
| 562 |
+
"step": 690
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 6.034261241970022,
|
| 566 |
+
"grad_norm": 0.9057173132896423,
|
| 567 |
+
"learning_rate": 6.5193052585006666e-06,
|
| 568 |
+
"loss": 0.1483,
|
| 569 |
+
"num_input_tokens_seen": 17927520,
|
| 570 |
+
"step": 700
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 6.119914346895075,
|
| 574 |
+
"grad_norm": 0.9895085692405701,
|
| 575 |
+
"learning_rate": 6.433055211074042e-06,
|
| 576 |
+
"loss": 0.1308,
|
| 577 |
+
"num_input_tokens_seen": 18184352,
|
| 578 |
+
"step": 710
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 6.205567451820128,
|
| 582 |
+
"grad_norm": 1.0845868587493896,
|
| 583 |
+
"learning_rate": 6.346338017928036e-06,
|
| 584 |
+
"loss": 0.1269,
|
| 585 |
+
"num_input_tokens_seen": 18437792,
|
| 586 |
+
"step": 720
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"epoch": 6.291220556745182,
|
| 590 |
+
"grad_norm": 1.021283745765686,
|
| 591 |
+
"learning_rate": 6.2591819470353424e-06,
|
| 592 |
+
"loss": 0.1301,
|
| 593 |
+
"num_input_tokens_seen": 18690144,
|
| 594 |
+
"step": 730
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"epoch": 6.376873661670236,
|
| 598 |
+
"grad_norm": 1.1350120306015015,
|
| 599 |
+
"learning_rate": 6.171615409433525e-06,
|
| 600 |
+
"loss": 0.1275,
|
| 601 |
+
"num_input_tokens_seen": 18944688,
|
| 602 |
+
"step": 740
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 6.462526766595289,
|
| 606 |
+
"grad_norm": 1.0572874546051025,
|
| 607 |
+
"learning_rate": 6.0836669499636255e-06,
|
| 608 |
+
"loss": 0.1264,
|
| 609 |
+
"num_input_tokens_seen": 19199984,
|
| 610 |
+
"step": 750
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"epoch": 6.548179871520342,
|
| 614 |
+
"grad_norm": 1.1884225606918335,
|
| 615 |
+
"learning_rate": 5.995365237965144e-06,
|
| 616 |
+
"loss": 0.1294,
|
| 617 |
+
"num_input_tokens_seen": 19452032,
|
| 618 |
+
"step": 760
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 6.6338329764453965,
|
| 622 |
+
"grad_norm": 0.9745492339134216,
|
| 623 |
+
"learning_rate": 5.906739057930439e-06,
|
| 624 |
+
"loss": 0.1262,
|
| 625 |
+
"num_input_tokens_seen": 19707040,
|
| 626 |
+
"step": 770
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 6.71948608137045,
|
| 630 |
+
"grad_norm": 1.090391755104065,
|
| 631 |
+
"learning_rate": 5.817817300121592e-06,
|
| 632 |
+
"loss": 0.1266,
|
| 633 |
+
"num_input_tokens_seen": 19962960,
|
| 634 |
+
"step": 780
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 6.805139186295503,
|
| 638 |
+
"grad_norm": 1.1640676259994507,
|
| 639 |
+
"learning_rate": 5.728628951152799e-06,
|
| 640 |
+
"loss": 0.1324,
|
| 641 |
+
"num_input_tokens_seen": 20219008,
|
| 642 |
+
"step": 790
|
| 643 |
+
},
|
| 644 |
+
{
|
| 645 |
+
"epoch": 6.890792291220556,
|
| 646 |
+
"grad_norm": 0.9813507199287415,
|
| 647 |
+
"learning_rate": 5.639203084541338e-06,
|
| 648 |
+
"loss": 0.1338,
|
| 649 |
+
"num_input_tokens_seen": 20473664,
|
| 650 |
+
"step": 800
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 6.9764453961456105,
|
| 654 |
+
"grad_norm": 1.11289644241333,
|
| 655 |
+
"learning_rate": 5.549568851230219e-06,
|
| 656 |
+
"loss": 0.1273,
|
| 657 |
+
"num_input_tokens_seen": 20727296,
|
| 658 |
+
"step": 810
|
| 659 |
+
},
|
| 660 |
+
{
|
| 661 |
+
"epoch": 7.0685224839400425,
|
| 662 |
+
"grad_norm": 1.5624918937683105,
|
| 663 |
+
"learning_rate": 5.459755470085595e-06,
|
| 664 |
+
"loss": 0.1332,
|
| 665 |
+
"num_input_tokens_seen": 20996432,
|
| 666 |
+
"step": 820
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"epoch": 7.154175588865097,
|
| 670 |
+
"grad_norm": 1.3339862823486328,
|
| 671 |
+
"learning_rate": 5.369792218372026e-06,
|
| 672 |
+
"loss": 0.1104,
|
| 673 |
+
"num_input_tokens_seen": 21252272,
|
| 674 |
+
"step": 830
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 7.23982869379015,
|
| 678 |
+
"grad_norm": 1.5236716270446777,
|
| 679 |
+
"learning_rate": 5.2797084222087105e-06,
|
| 680 |
+
"loss": 0.1114,
|
| 681 |
+
"num_input_tokens_seen": 21508208,
|
| 682 |
+
"step": 840
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 7.325481798715203,
|
| 686 |
+
"grad_norm": 1.4154669046401978,
|
| 687 |
+
"learning_rate": 5.189533447009795e-06,
|
| 688 |
+
"loss": 0.1134,
|
| 689 |
+
"num_input_tokens_seen": 21765536,
|
| 690 |
+
"step": 850
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 7.4111349036402565,
|
| 694 |
+
"grad_norm": 1.5260732173919678,
|
| 695 |
+
"learning_rate": 5.099296687911858e-06,
|
| 696 |
+
"loss": 0.1102,
|
| 697 |
+
"num_input_tokens_seen": 22020160,
|
| 698 |
+
"step": 860
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"epoch": 7.496788008565311,
|
| 702 |
+
"grad_norm": 1.2989623546600342,
|
| 703 |
+
"learning_rate": 5.009027560191732e-06,
|
| 704 |
+
"loss": 0.1122,
|
| 705 |
+
"num_input_tokens_seen": 22274400,
|
| 706 |
+
"step": 870
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 7.582441113490364,
|
| 710 |
+
"grad_norm": 1.4925442934036255,
|
| 711 |
+
"learning_rate": 4.918755489677729e-06,
|
| 712 |
+
"loss": 0.1094,
|
| 713 |
+
"num_input_tokens_seen": 22526464,
|
| 714 |
+
"step": 880
|
| 715 |
+
},
|
| 716 |
+
{
|
| 717 |
+
"epoch": 7.668094218415417,
|
| 718 |
+
"grad_norm": 1.3059921264648438,
|
| 719 |
+
"learning_rate": 4.828509903157451e-06,
|
| 720 |
+
"loss": 0.1128,
|
| 721 |
+
"num_input_tokens_seen": 22779664,
|
| 722 |
+
"step": 890
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 7.7537473233404715,
|
| 726 |
+
"grad_norm": 1.6819276809692383,
|
| 727 |
+
"learning_rate": 4.738320218785281e-06,
|
| 728 |
+
"loss": 0.1146,
|
| 729 |
+
"num_input_tokens_seen": 23036160,
|
| 730 |
+
"step": 900
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 7.839400428265525,
|
| 734 |
+
"grad_norm": 1.3909580707550049,
|
| 735 |
+
"learning_rate": 4.648215836492682e-06,
|
| 736 |
+
"loss": 0.1145,
|
| 737 |
+
"num_input_tokens_seen": 23292016,
|
| 738 |
+
"step": 910
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 7.925053533190578,
|
| 742 |
+
"grad_norm": 1.7210851907730103,
|
| 743 |
+
"learning_rate": 4.5582261284044385e-06,
|
| 744 |
+
"loss": 0.1156,
|
| 745 |
+
"num_input_tokens_seen": 23544800,
|
| 746 |
+
"step": 920
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 8.01713062098501,
|
| 750 |
+
"grad_norm": 1.2723944187164307,
|
| 751 |
+
"learning_rate": 4.468380429263973e-06,
|
| 752 |
+
"loss": 0.1197,
|
| 753 |
+
"num_input_tokens_seen": 23816288,
|
| 754 |
+
"step": 930
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"epoch": 8.102783725910065,
|
| 758 |
+
"grad_norm": 1.9091925621032715,
|
| 759 |
+
"learning_rate": 4.378708026870825e-06,
|
| 760 |
+
"loss": 0.0916,
|
| 761 |
+
"num_input_tokens_seen": 24071488,
|
| 762 |
+
"step": 940
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"epoch": 8.188436830835117,
|
| 766 |
+
"grad_norm": 1.7839370965957642,
|
| 767 |
+
"learning_rate": 4.289238152533465e-06,
|
| 768 |
+
"loss": 0.0893,
|
| 769 |
+
"num_input_tokens_seen": 24324720,
|
| 770 |
+
"step": 950
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"epoch": 8.274089935760172,
|
| 774 |
+
"grad_norm": 2.00311541557312,
|
| 775 |
+
"learning_rate": 4.199999971540489e-06,
|
| 776 |
+
"loss": 0.0889,
|
| 777 |
+
"num_input_tokens_seen": 24579648,
|
| 778 |
+
"step": 960
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 8.359743040685224,
|
| 782 |
+
"grad_norm": 2.047337293624878,
|
| 783 |
+
"learning_rate": 4.111022573653366e-06,
|
| 784 |
+
"loss": 0.0873,
|
| 785 |
+
"num_input_tokens_seen": 24833840,
|
| 786 |
+
"step": 970
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 8.445396145610278,
|
| 790 |
+
"grad_norm": 1.9115785360336304,
|
| 791 |
+
"learning_rate": 4.0223349636237766e-06,
|
| 792 |
+
"loss": 0.0904,
|
| 793 |
+
"num_input_tokens_seen": 25089776,
|
| 794 |
+
"step": 980
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 8.531049250535332,
|
| 798 |
+
"grad_norm": 1.8445810079574585,
|
| 799 |
+
"learning_rate": 3.933966051738684e-06,
|
| 800 |
+
"loss": 0.088,
|
| 801 |
+
"num_input_tokens_seen": 25345264,
|
| 802 |
+
"step": 990
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 8.616702355460385,
|
| 806 |
+
"grad_norm": 1.6529115438461304,
|
| 807 |
+
"learning_rate": 3.845944644396194e-06,
|
| 808 |
+
"loss": 0.0919,
|
| 809 |
+
"num_input_tokens_seen": 25598112,
|
| 810 |
+
"step": 1000
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 8.702355460385439,
|
| 814 |
+
"grad_norm": 2.129995346069336,
|
| 815 |
+
"learning_rate": 3.758299434715268e-06,
|
| 816 |
+
"loss": 0.0906,
|
| 817 |
+
"num_input_tokens_seen": 25851728,
|
| 818 |
+
"step": 1010
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"epoch": 8.788008565310493,
|
| 822 |
+
"grad_norm": 2.1039373874664307,
|
| 823 |
+
"learning_rate": 3.6710589931823837e-06,
|
| 824 |
+
"loss": 0.0895,
|
| 825 |
+
"num_input_tokens_seen": 26104704,
|
| 826 |
+
"step": 1020
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 8.873661670235546,
|
| 830 |
+
"grad_norm": 2.058598518371582,
|
| 831 |
+
"learning_rate": 3.584251758338151e-06,
|
| 832 |
+
"loss": 0.0923,
|
| 833 |
+
"num_input_tokens_seen": 26361680,
|
| 834 |
+
"step": 1030
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"epoch": 8.9593147751606,
|
| 838 |
+
"grad_norm": 1.8930065631866455,
|
| 839 |
+
"learning_rate": 3.4979060275069576e-06,
|
| 840 |
+
"loss": 0.0908,
|
| 841 |
+
"num_input_tokens_seen": 26617536,
|
| 842 |
+
"step": 1040
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 9.051391862955033,
|
| 846 |
+
"grad_norm": 1.8233646154403687,
|
| 847 |
+
"learning_rate": 3.4120499475726266e-06,
|
| 848 |
+
"loss": 0.0847,
|
| 849 |
+
"num_input_tokens_seen": 26888160,
|
| 850 |
+
"step": 1050
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 9.137044967880085,
|
| 854 |
+
"grad_norm": 2.1758053302764893,
|
| 855 |
+
"learning_rate": 3.3267115058031418e-06,
|
| 856 |
+
"loss": 0.0657,
|
| 857 |
+
"num_input_tokens_seen": 27142528,
|
| 858 |
+
"step": 1060
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 9.222698072805139,
|
| 862 |
+
"grad_norm": 2.0327367782592773,
|
| 863 |
+
"learning_rate": 3.2419185207273816e-06,
|
| 864 |
+
"loss": 0.0662,
|
| 865 |
+
"num_input_tokens_seen": 27394144,
|
| 866 |
+
"step": 1070
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"epoch": 9.308351177730193,
|
| 870 |
+
"grad_norm": 2.2035434246063232,
|
| 871 |
+
"learning_rate": 3.157698633066863e-06,
|
| 872 |
+
"loss": 0.0665,
|
| 873 |
+
"num_input_tokens_seen": 27649488,
|
| 874 |
+
"step": 1080
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 9.394004282655246,
|
| 878 |
+
"grad_norm": 1.9066494703292847,
|
| 879 |
+
"learning_rate": 3.0740792967254606e-06,
|
| 880 |
+
"loss": 0.0642,
|
| 881 |
+
"num_input_tokens_seen": 27904992,
|
| 882 |
+
"step": 1090
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"epoch": 9.4796573875803,
|
| 886 |
+
"grad_norm": 2.2175674438476562,
|
| 887 |
+
"learning_rate": 2.991087769840001e-06,
|
| 888 |
+
"loss": 0.0625,
|
| 889 |
+
"num_input_tokens_seen": 28160336,
|
| 890 |
+
"step": 1100
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"epoch": 9.565310492505354,
|
| 894 |
+
"grad_norm": 2.435115337371826,
|
| 895 |
+
"learning_rate": 2.9087511058947014e-06,
|
| 896 |
+
"loss": 0.0643,
|
| 897 |
+
"num_input_tokens_seen": 28417360,
|
| 898 |
+
"step": 1110
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 9.650963597430406,
|
| 902 |
+
"grad_norm": 2.237015724182129,
|
| 903 |
+
"learning_rate": 2.827096144902289e-06,
|
| 904 |
+
"loss": 0.0645,
|
| 905 |
+
"num_input_tokens_seen": 28670512,
|
| 906 |
+
"step": 1120
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 9.73661670235546,
|
| 910 |
+
"grad_norm": 2.473604202270508,
|
| 911 |
+
"learning_rate": 2.7461495046547436e-06,
|
| 912 |
+
"loss": 0.068,
|
| 913 |
+
"num_input_tokens_seen": 28927232,
|
| 914 |
+
"step": 1130
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 9.822269807280513,
|
| 918 |
+
"grad_norm": 2.220705270767212,
|
| 919 |
+
"learning_rate": 2.665937572046432e-06,
|
| 920 |
+
"loss": 0.0647,
|
| 921 |
+
"num_input_tokens_seen": 29182768,
|
| 922 |
+
"step": 1140
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 9.907922912205567,
|
| 926 |
+
"grad_norm": 2.652024269104004,
|
| 927 |
+
"learning_rate": 2.586486494472572e-06,
|
| 928 |
+
"loss": 0.0644,
|
| 929 |
+
"num_input_tokens_seen": 29437936,
|
| 930 |
+
"step": 1150
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"epoch": 9.993576017130621,
|
| 934 |
+
"grad_norm": 2.180983304977417,
|
| 935 |
+
"learning_rate": 2.5078221713057048e-06,
|
| 936 |
+
"loss": 0.0658,
|
| 937 |
+
"num_input_tokens_seen": 29690944,
|
| 938 |
+
"step": 1160
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"epoch": 10.085653104925054,
|
| 942 |
+
"grad_norm": 1.6538355350494385,
|
| 943 |
+
"learning_rate": 2.4299702454530605e-06,
|
| 944 |
+
"loss": 0.053,
|
| 945 |
+
"num_input_tokens_seen": 29964448,
|
| 946 |
+
"step": 1170
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"epoch": 10.171306209850107,
|
| 950 |
+
"grad_norm": 2.229673147201538,
|
| 951 |
+
"learning_rate": 2.3529560949975184e-06,
|
| 952 |
+
"loss": 0.0446,
|
| 953 |
+
"num_input_tokens_seen": 30215952,
|
| 954 |
+
"step": 1180
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 10.25695931477516,
|
| 958 |
+
"grad_norm": 1.8106822967529297,
|
| 959 |
+
"learning_rate": 2.2768048249248648e-06,
|
| 960 |
+
"loss": 0.0449,
|
| 961 |
+
"num_input_tokens_seen": 30471952,
|
| 962 |
+
"step": 1190
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 10.342612419700215,
|
| 966 |
+
"grad_norm": 2.150508403778076,
|
| 967 |
+
"learning_rate": 2.201541258940129e-06,
|
| 968 |
+
"loss": 0.0422,
|
| 969 |
+
"num_input_tokens_seen": 30727376,
|
| 970 |
+
"step": 1200
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 10.428265524625267,
|
| 974 |
+
"grad_norm": 2.0471906661987305,
|
| 975 |
+
"learning_rate": 2.12718993137555e-06,
|
| 976 |
+
"loss": 0.0461,
|
| 977 |
+
"num_input_tokens_seen": 30983760,
|
| 978 |
+
"step": 1210
|
| 979 |
+
},
|
| 980 |
+
{
|
| 981 |
+
"epoch": 10.513918629550322,
|
| 982 |
+
"grad_norm": 2.299278497695923,
|
| 983 |
+
"learning_rate": 2.0537750791929296e-06,
|
| 984 |
+
"loss": 0.0458,
|
| 985 |
+
"num_input_tokens_seen": 31238720,
|
| 986 |
+
"step": 1220
|
| 987 |
+
},
|
| 988 |
+
{
|
| 989 |
+
"epoch": 10.599571734475374,
|
| 990 |
+
"grad_norm": 2.1924257278442383,
|
| 991 |
+
"learning_rate": 1.981320634082873e-06,
|
| 992 |
+
"loss": 0.0434,
|
| 993 |
+
"num_input_tokens_seen": 31494560,
|
| 994 |
+
"step": 1230
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 10.685224839400428,
|
| 998 |
+
"grad_norm": 2.3524584770202637,
|
| 999 |
+
"learning_rate": 1.909850214663575e-06,
|
| 1000 |
+
"loss": 0.0452,
|
| 1001 |
+
"num_input_tokens_seen": 31750784,
|
| 1002 |
+
"step": 1240
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"epoch": 10.770877944325482,
|
| 1006 |
+
"grad_norm": 2.2468934059143066,
|
| 1007 |
+
"learning_rate": 1.8393871187816526e-06,
|
| 1008 |
+
"loss": 0.0447,
|
| 1009 |
+
"num_input_tokens_seen": 32005120,
|
| 1010 |
+
"step": 1250
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 10.856531049250535,
|
| 1014 |
+
"grad_norm": 2.448117971420288,
|
| 1015 |
+
"learning_rate": 1.7699543159175215e-06,
|
| 1016 |
+
"loss": 0.0449,
|
| 1017 |
+
"num_input_tokens_seen": 32258480,
|
| 1018 |
+
"step": 1260
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 10.942184154175589,
|
| 1022 |
+
"grad_norm": 2.0848143100738525,
|
| 1023 |
+
"learning_rate": 1.7015744396978557e-06,
|
| 1024 |
+
"loss": 0.0442,
|
| 1025 |
+
"num_input_tokens_seen": 32510944,
|
| 1026 |
+
"step": 1270
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 11.034261241970022,
|
| 1030 |
+
"grad_norm": 1.6036432981491089,
|
| 1031 |
+
"learning_rate": 1.634269780517483e-06,
|
| 1032 |
+
"loss": 0.0435,
|
| 1033 |
+
"num_input_tokens_seen": 32780608,
|
| 1034 |
+
"step": 1280
|
| 1035 |
+
},
|
| 1036 |
+
{
|
| 1037 |
+
"epoch": 11.119914346895074,
|
| 1038 |
+
"grad_norm": 3.015963315963745,
|
| 1039 |
+
"learning_rate": 1.568062278273197e-06,
|
| 1040 |
+
"loss": 0.0286,
|
| 1041 |
+
"num_input_tokens_seen": 33034112,
|
| 1042 |
+
"step": 1290
|
| 1043 |
+
},
|
| 1044 |
+
{
|
| 1045 |
+
"epoch": 11.205567451820128,
|
| 1046 |
+
"grad_norm": 1.6929532289505005,
|
| 1047 |
+
"learning_rate": 1.5029735152118125e-06,
|
| 1048 |
+
"loss": 0.0308,
|
| 1049 |
+
"num_input_tokens_seen": 33290224,
|
| 1050 |
+
"step": 1300
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"epoch": 11.291220556745182,
|
| 1054 |
+
"grad_norm": 1.9741885662078857,
|
| 1055 |
+
"learning_rate": 1.4390247088948073e-06,
|
| 1056 |
+
"loss": 0.0309,
|
| 1057 |
+
"num_input_tokens_seen": 33544448,
|
| 1058 |
+
"step": 1310
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"epoch": 11.376873661670235,
|
| 1062 |
+
"grad_norm": 1.5955508947372437,
|
| 1063 |
+
"learning_rate": 1.3762367052818527e-06,
|
| 1064 |
+
"loss": 0.0275,
|
| 1065 |
+
"num_input_tokens_seen": 33799536,
|
| 1066 |
+
"step": 1320
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 11.462526766595289,
|
| 1070 |
+
"grad_norm": 2.293123245239258,
|
| 1071 |
+
"learning_rate": 1.3146299719354544e-06,
|
| 1072 |
+
"loss": 0.0304,
|
| 1073 |
+
"num_input_tokens_seen": 34055952,
|
| 1074 |
+
"step": 1330
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 11.548179871520343,
|
| 1078 |
+
"grad_norm": 1.8011912107467651,
|
| 1079 |
+
"learning_rate": 1.254224591348983e-06,
|
| 1080 |
+
"loss": 0.0299,
|
| 1081 |
+
"num_input_tokens_seen": 34310000,
|
| 1082 |
+
"step": 1340
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 11.633832976445396,
|
| 1086 |
+
"grad_norm": 1.8339879512786865,
|
| 1087 |
+
"learning_rate": 1.1950402544001849e-06,
|
| 1088 |
+
"loss": 0.0311,
|
| 1089 |
+
"num_input_tokens_seen": 34565680,
|
| 1090 |
+
"step": 1350
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 11.71948608137045,
|
| 1094 |
+
"grad_norm": 1.6808807849884033,
|
| 1095 |
+
"learning_rate": 1.1370962539323837e-06,
|
| 1096 |
+
"loss": 0.0314,
|
| 1097 |
+
"num_input_tokens_seen": 34820768,
|
| 1098 |
+
"step": 1360
|
| 1099 |
+
},
|
| 1100 |
+
{
|
| 1101 |
+
"epoch": 11.805139186295504,
|
| 1102 |
+
"grad_norm": 1.7647879123687744,
|
| 1103 |
+
"learning_rate": 1.0804114784654158e-06,
|
| 1104 |
+
"loss": 0.0311,
|
| 1105 |
+
"num_input_tokens_seen": 35074016,
|
| 1106 |
+
"step": 1370
|
| 1107 |
+
},
|
| 1108 |
+
{
|
| 1109 |
+
"epoch": 11.890792291220556,
|
| 1110 |
+
"grad_norm": 1.753990650177002,
|
| 1111 |
+
"learning_rate": 1.0250044060383734e-06,
|
| 1112 |
+
"loss": 0.0299,
|
| 1113 |
+
"num_input_tokens_seen": 35328272,
|
| 1114 |
+
"step": 1380
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 11.97644539614561,
|
| 1118 |
+
"grad_norm": 2.10841965675354,
|
| 1119 |
+
"learning_rate": 9.708930981861603e-07,
|
| 1120 |
+
"loss": 0.03,
|
| 1121 |
+
"num_input_tokens_seen": 35582880,
|
| 1122 |
+
"step": 1390
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 12.068522483940043,
|
| 1126 |
+
"grad_norm": 1.4194451570510864,
|
| 1127 |
+
"learning_rate": 9.180951940518002e-07,
|
| 1128 |
+
"loss": 0.026,
|
| 1129 |
+
"num_input_tokens_seen": 35853280,
|
| 1130 |
+
"step": 1400
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 12.154175588865096,
|
| 1134 |
+
"grad_norm": 1.612318515777588,
|
| 1135 |
+
"learning_rate": 8.666279046364595e-07,
|
| 1136 |
+
"loss": 0.0208,
|
| 1137 |
+
"num_input_tokens_seen": 36106816,
|
| 1138 |
+
"step": 1410
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 12.23982869379015,
|
| 1142 |
+
"grad_norm": 1.6022765636444092,
|
| 1143 |
+
"learning_rate": 8.165080071890208e-07,
|
| 1144 |
+
"loss": 0.0205,
|
| 1145 |
+
"num_input_tokens_seen": 36359232,
|
| 1146 |
+
"step": 1420
|
| 1147 |
+
},
|
| 1148 |
+
{
|
| 1149 |
+
"epoch": 12.325481798715204,
|
| 1150 |
+
"grad_norm": 1.608430027961731,
|
| 1151 |
+
"learning_rate": 7.677518397370548e-07,
|
| 1152 |
+
"loss": 0.0228,
|
| 1153 |
+
"num_input_tokens_seen": 36614176,
|
| 1154 |
+
"step": 1430
|
| 1155 |
+
},
|
| 1156 |
+
{
|
| 1157 |
+
"epoch": 12.411134903640257,
|
| 1158 |
+
"grad_norm": 1.4423803091049194,
|
| 1159 |
+
"learning_rate": 7.203752957609672e-07,
|
| 1160 |
+
"loss": 0.0207,
|
| 1161 |
+
"num_input_tokens_seen": 36868400,
|
| 1162 |
+
"step": 1440
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 12.49678800856531,
|
| 1166 |
+
"grad_norm": 1.6684809923171997,
|
| 1167 |
+
"learning_rate": 6.743938190130616e-07,
|
| 1168 |
+
"loss": 0.0215,
|
| 1169 |
+
"num_input_tokens_seen": 37121536,
|
| 1170 |
+
"step": 1450
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"epoch": 12.582441113490365,
|
| 1174 |
+
"grad_norm": 1.7179003953933716,
|
| 1175 |
+
"learning_rate": 6.298223984832047e-07,
|
| 1176 |
+
"loss": 0.0216,
|
| 1177 |
+
"num_input_tokens_seen": 37377168,
|
| 1178 |
+
"step": 1460
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 12.668094218415417,
|
| 1182 |
+
"grad_norm": 1.6454778909683228,
|
| 1183 |
+
"learning_rate": 5.866755635127247e-07,
|
| 1184 |
+
"loss": 0.0207,
|
| 1185 |
+
"num_input_tokens_seen": 37632992,
|
| 1186 |
+
"step": 1470
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 12.753747323340471,
|
| 1190 |
+
"grad_norm": 1.8044767379760742,
|
| 1191 |
+
"learning_rate": 5.449673790581611e-07,
|
| 1192 |
+
"loss": 0.0217,
|
| 1193 |
+
"num_input_tokens_seen": 37888640,
|
| 1194 |
+
"step": 1480
|
| 1195 |
+
},
|
| 1196 |
+
{
|
| 1197 |
+
"epoch": 12.839400428265524,
|
| 1198 |
+
"grad_norm": 1.874295711517334,
|
| 1199 |
+
"learning_rate": 5.04711441106382e-07,
|
| 1200 |
+
"loss": 0.0197,
|
| 1201 |
+
"num_input_tokens_seen": 38143760,
|
| 1202 |
+
"step": 1490
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 12.925053533190578,
|
| 1206 |
+
"grad_norm": 1.3250926733016968,
|
| 1207 |
+
"learning_rate": 4.659208722425806e-07,
|
| 1208 |
+
"loss": 0.0207,
|
| 1209 |
+
"num_input_tokens_seen": 38398560,
|
| 1210 |
+
"step": 1500
|
| 1211 |
+
},
|
| 1212 |
+
{
|
| 1213 |
+
"epoch": 13.01713062098501,
|
| 1214 |
+
"grad_norm": 1.2411588430404663,
|
| 1215 |
+
"learning_rate": 4.2860831737258857e-07,
|
| 1216 |
+
"loss": 0.0216,
|
| 1217 |
+
"num_input_tokens_seen": 38670912,
|
| 1218 |
+
"step": 1510
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"epoch": 13.102783725910065,
|
| 1222 |
+
"grad_norm": 1.3138427734375,
|
| 1223 |
+
"learning_rate": 3.9278593960090873e-07,
|
| 1224 |
+
"loss": 0.0167,
|
| 1225 |
+
"num_input_tokens_seen": 38925872,
|
| 1226 |
+
"step": 1520
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"epoch": 13.188436830835117,
|
| 1230 |
+
"grad_norm": 1.362457036972046,
|
| 1231 |
+
"learning_rate": 3.5846541626579026e-07,
|
| 1232 |
+
"loss": 0.0159,
|
| 1233 |
+
"num_input_tokens_seen": 39183632,
|
| 1234 |
+
"step": 1530
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 13.274089935760172,
|
| 1238 |
+
"grad_norm": 1.515376091003418,
|
| 1239 |
+
"learning_rate": 3.256579351326744e-07,
|
| 1240 |
+
"loss": 0.0156,
|
| 1241 |
+
"num_input_tokens_seen": 39440864,
|
| 1242 |
+
"step": 1540
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 13.359743040685224,
|
| 1246 |
+
"grad_norm": 1.4070255756378174,
|
| 1247 |
+
"learning_rate": 2.94374190747212e-07,
|
| 1248 |
+
"loss": 0.0166,
|
| 1249 |
+
"num_input_tokens_seen": 39695712,
|
| 1250 |
+
"step": 1550
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"epoch": 13.445396145610278,
|
| 1254 |
+
"grad_norm": 1.4853448867797852,
|
| 1255 |
+
"learning_rate": 2.64624380949069e-07,
|
| 1256 |
+
"loss": 0.0173,
|
| 1257 |
+
"num_input_tokens_seen": 39950304,
|
| 1258 |
+
"step": 1560
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 13.531049250535332,
|
| 1262 |
+
"grad_norm": 1.542286992073059,
|
| 1263 |
+
"learning_rate": 2.3641820354764755e-07,
|
| 1264 |
+
"loss": 0.0165,
|
| 1265 |
+
"num_input_tokens_seen": 40203616,
|
| 1266 |
+
"step": 1570
|
| 1267 |
+
},
|
| 1268 |
+
{
|
| 1269 |
+
"epoch": 13.616702355460385,
|
| 1270 |
+
"grad_norm": 1.565663456916809,
|
| 1271 |
+
"learning_rate": 2.0976485316080375e-07,
|
| 1272 |
+
"loss": 0.0167,
|
| 1273 |
+
"num_input_tokens_seen": 40458464,
|
| 1274 |
+
"step": 1580
|
| 1275 |
+
},
|
| 1276 |
+
{
|
| 1277 |
+
"epoch": 13.702355460385439,
|
| 1278 |
+
"grad_norm": 1.3701163530349731,
|
| 1279 |
+
"learning_rate": 1.846730182175993e-07,
|
| 1280 |
+
"loss": 0.017,
|
| 1281 |
+
"num_input_tokens_seen": 40711216,
|
| 1282 |
+
"step": 1590
|
| 1283 |
+
},
|
| 1284 |
+
{
|
| 1285 |
+
"epoch": 13.788008565310493,
|
| 1286 |
+
"grad_norm": 1.4886751174926758,
|
| 1287 |
+
"learning_rate": 1.6115087812605123e-07,
|
| 1288 |
+
"loss": 0.015,
|
| 1289 |
+
"num_input_tokens_seen": 40965856,
|
| 1290 |
+
"step": 1600
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 13.873661670235546,
|
| 1294 |
+
"grad_norm": 1.2140471935272217,
|
| 1295 |
+
"learning_rate": 1.392061006068246e-07,
|
| 1296 |
+
"loss": 0.0169,
|
| 1297 |
+
"num_input_tokens_seen": 41220736,
|
| 1298 |
+
"step": 1610
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 13.9593147751606,
|
| 1302 |
+
"grad_norm": 1.314063549041748,
|
| 1303 |
+
"learning_rate": 1.1884583919371251e-07,
|
| 1304 |
+
"loss": 0.0164,
|
| 1305 |
+
"num_input_tokens_seen": 41473952,
|
| 1306 |
+
"step": 1620
|
| 1307 |
+
},
|
| 1308 |
+
{
|
| 1309 |
+
"epoch": 14.051391862955033,
|
| 1310 |
+
"grad_norm": 1.2103674411773682,
|
| 1311 |
+
"learning_rate": 1.0007673090173808e-07,
|
| 1312 |
+
"loss": 0.0168,
|
| 1313 |
+
"num_input_tokens_seen": 41742832,
|
| 1314 |
+
"step": 1630
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 14.137044967880085,
|
| 1318 |
+
"grad_norm": 1.250216007232666,
|
| 1319 |
+
"learning_rate": 8.29048940636279e-08,
|
| 1320 |
+
"loss": 0.0153,
|
| 1321 |
+
"num_input_tokens_seen": 41998320,
|
| 1322 |
+
"step": 1640
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"epoch": 14.222698072805139,
|
| 1326 |
+
"grad_norm": 1.114964485168457,
|
| 1327 |
+
"learning_rate": 6.733592633536124e-08,
|
| 1328 |
+
"loss": 0.0148,
|
| 1329 |
+
"num_input_tokens_seen": 42253104,
|
| 1330 |
+
"step": 1650
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"epoch": 14.308351177730193,
|
| 1334 |
+
"grad_norm": 1.3133609294891357,
|
| 1335 |
+
"learning_rate": 5.3374902871456965e-08,
|
| 1336 |
+
"loss": 0.0151,
|
| 1337 |
+
"num_input_tokens_seen": 42509584,
|
| 1338 |
+
"step": 1660
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"epoch": 14.394004282655246,
|
| 1342 |
+
"grad_norm": 1.3046901226043701,
|
| 1343 |
+
"learning_rate": 4.102637467057746e-08,
|
| 1344 |
+
"loss": 0.0144,
|
| 1345 |
+
"num_input_tokens_seen": 42764768,
|
| 1346 |
+
"step": 1670
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 14.4796573875803,
|
| 1350 |
+
"grad_norm": 1.3270611763000488,
|
| 1351 |
+
"learning_rate": 3.029436709200084e-08,
|
| 1352 |
+
"loss": 0.0142,
|
| 1353 |
+
"num_input_tokens_seen": 43019376,
|
| 1354 |
+
"step": 1680
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 14.565310492505354,
|
| 1358 |
+
"grad_norm": 1.1487038135528564,
|
| 1359 |
+
"learning_rate": 2.1182378543438408e-08,
|
| 1360 |
+
"loss": 0.0159,
|
| 1361 |
+
"num_input_tokens_seen": 43273248,
|
| 1362 |
+
"step": 1690
|
| 1363 |
+
},
|
| 1364 |
+
{
|
| 1365 |
+
"epoch": 14.650963597430406,
|
| 1366 |
+
"grad_norm": 1.1392930746078491,
|
| 1367 |
+
"learning_rate": 1.3693379340626867e-08,
|
| 1368 |
+
"loss": 0.0148,
|
| 1369 |
+
"num_input_tokens_seen": 43529200,
|
| 1370 |
+
"step": 1700
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 14.73661670235546,
|
| 1374 |
+
"grad_norm": 1.24246084690094,
|
| 1375 |
+
"learning_rate": 7.829810739069521e-09,
|
| 1376 |
+
"loss": 0.0144,
|
| 1377 |
+
"num_input_tokens_seen": 43781760,
|
| 1378 |
+
"step": 1710
|
| 1379 |
+
},
|
| 1380 |
+
{
|
| 1381 |
+
"epoch": 14.822269807280513,
|
| 1382 |
+
"grad_norm": 1.2764571905136108,
|
| 1383 |
+
"learning_rate": 3.593584138237294e-09,
|
| 1384 |
+
"loss": 0.0142,
|
| 1385 |
+
"num_input_tokens_seen": 44036144,
|
| 1386 |
+
"step": 1720
|
| 1387 |
+
},
|
| 1388 |
+
{
|
| 1389 |
+
"epoch": 14.907922912205567,
|
| 1390 |
+
"grad_norm": 1.4254299402236938,
|
| 1391 |
+
"learning_rate": 9.860804584937988e-10,
|
| 1392 |
+
"loss": 0.0144,
|
| 1393 |
+
"num_input_tokens_seen": 44292256,
|
| 1394 |
+
"step": 1730
|
| 1395 |
+
},
|
| 1396 |
+
{
|
| 1397 |
+
"epoch": 14.993576017130621,
|
| 1398 |
+
"grad_norm": 1.1011109352111816,
|
| 1399 |
+
"learning_rate": 8.149690943204391e-12,
|
| 1400 |
+
"loss": 0.014,
|
| 1401 |
+
"num_input_tokens_seen": 44548112,
|
| 1402 |
+
"step": 1740
|
| 1403 |
+
}
|
| 1404 |
+
],
|
| 1405 |
+
"logging_steps": 10,
|
| 1406 |
+
"max_steps": 1740,
|
| 1407 |
+
"num_input_tokens_seen": 44548112,
|
| 1408 |
+
"num_train_epochs": 15,
|
| 1409 |
+
"save_steps": 500,
|
| 1410 |
+
"stateful_callbacks": {
|
| 1411 |
+
"TrainerControl": {
|
| 1412 |
+
"args": {
|
| 1413 |
+
"should_epoch_stop": false,
|
| 1414 |
+
"should_evaluate": false,
|
| 1415 |
+
"should_log": false,
|
| 1416 |
+
"should_save": true,
|
| 1417 |
+
"should_training_stop": true
|
| 1418 |
+
},
|
| 1419 |
+
"attributes": {}
|
| 1420 |
+
}
|
| 1421 |
+
},
|
| 1422 |
+
"total_flos": 1.9454424851110953e+18,
|
| 1423 |
+
"train_batch_size": 2,
|
| 1424 |
+
"trial_name": null,
|
| 1425 |
+
"trial_params": null
|
| 1426 |
+
}
|
Multitask/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee78070b6948641e9d45d7eb61fba486bdbaaa146690d84abf77b19e6e3f5333
|
| 3 |
+
size 7480
|
Multitask/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|