---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:1700
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte
widget:
- text: Who likes Grilled Cheese Sandwiches?
- text: Who likes Disco Music?
- text: ' Reily Cano likes Walking Leaves, Chainsaws, Shorts, Anteaters, Painters,
Ho Hos, Banana Splits, French Toast, Historical Fiction.'
- text: ' Kristoffer Blanchard likes Protea Flowers, Soap Dishes, Zucchini, Jasmine,
Catharsis, Sitars, Olives, Caramel deLites, the Detroit Lions, Actuaries.'
- text: ' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar,
Cobras.'
pipeline_tag: feature-extraction
library_name: sentence-transformers
---
# Asymmetric Inference-free SPLADE Sparse Encoder
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
- **Base model:** [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Router(
(sub_modules): ModuleDict(
(query): Sequential(
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
)
(document): Sequential(
(0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'log1p_relu', 'word_embedding_dimension': 30522})
)
)
)
)
```
### Metrics
```
{
"NDCG": {
"NDCG@2": 0.90484,
"NDCG@10": 0.91822,
"NDCG@20": 0.9204,
"NDCG@100": 0.92605
},
"MAP": {
"MAP@2": 0.90125,
"MAP@10": 0.91146,
"MAP@20": 0.91216,
"MAP@100": 0.91316
},
"Recall": {
"Recall@2": 0.9045,
"Recall@10": 0.931,
"Recall@20": 0.938,
"Recall@100": 0.963
},
"Precision": {
"P@2": 0.9045,
"P@10": 0.1862,
"P@20": 0.0938,
"P@100": 0.01926
}
}
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("Frinkleko/opensearch-project_opensearch-neural-sparse-encoding-doc-v3-gte-limit-samples-1700")
# Run inference
queries = [
"Who likes Sonatas?",
]
documents = [
' Kamron Rose likes Landscaping, Spinning, Rugs, Model Building, Figure Skating, Extension Cords, Doctors, Sonatas, Owls.',
' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar, Cobras.',
' Codey Luna likes Bodyboarding, Keys, Tarantulas, Bonsai Trees, Balsamic Vinegar, Kale, Ticket to Ride, Ricotta, Tuning Forks, Silver, Sperm Whales, The Roaring Twenties, Manchego.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[16.2629, 6.6099, 5.9649]])
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,700 training samples
* Columns: query
and document
* Approximate statistics based on the first 1000 samples:
| | query | document |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
Who likes Sunflowers?
| Rasmus Logan likes Dark Chocolate, Documentary Series, Washing Machines, Softball, Sunflowers, Gregorian chants, Za'atar, Abacuses, Dolphins, Root Beer Floats, Cumin, Coconut Flour.
|
| Who likes Shaved Ice?
| Abdulkarem Boyer likes Stag Beetles, Acacia Trees, Olives, Landscape Photography, Neoclassicism, Guinea Pigs, Mentoring, Parsley, Chemistry, Vases, Shaved Ice.
|
| Who likes Rock Balancing?
| Tanay Melton likes Poetry Slams, Sperm Whales, Tonic Water, Bat Flowers, Rock Balancing.
|
* Loss: [SpladeLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
"document_regularizer_weight": 3e-05,
"query_regularizer_weight": 5e-05
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 85
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
- `router_mapping`: {'query': 'query', 'document': 'document'}
#### All Hyperparameters