Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- nvidia/OpenCodeReasoning-2
|
| 4 |
+
base_model:
|
| 5 |
+
- openai/gpt-oss-20b
|
| 6 |
+
library_name: transformers
|
| 7 |
+
tags:
|
| 8 |
+
- text-generation-inference
|
| 9 |
+
- code
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
### Overview
|
| 13 |
+
|
| 14 |
+
- Base model: `openai/gpt-oss-20b`
|
| 15 |
+
- Objective: Supervised fine-tuning for competitive programming and algorithmic reasoning
|
| 16 |
+
- Dataset: `nvidia/OpenCodeReasoning-2` (OCR-2), combining `python` and `cpp` splits. Each sample reconstructs the upstream question and uses the dataset's `r1_generation` as the assistant response
|
| 17 |
+
- Context length: 4096 tokens
|
| 18 |
+
- Training method: LoRA SFT via TRL `SFTTrainer`
|
| 19 |
+
|
| 20 |
+
### Intended Use
|
| 21 |
+
|
| 22 |
+
- Intended: Generating Python/C++ solutions and reasoning for competitive programming tasks
|
| 23 |
+
- Out of scope: Safety-critical applications. May hallucinate or produce incorrect/inefficient code
|
| 24 |
+
|
| 25 |
+
### Prompt Format
|
| 26 |
+
|
| 27 |
+
This model was trained in a chat format. Recommended structure:
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
messages = [
|
| 31 |
+
{"role": "system", "content": "You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful."},
|
| 32 |
+
{"role": "user", "content": problem_text},
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
prompt = tokenizer.apply_chat_template(
|
| 36 |
+
messages,
|
| 37 |
+
tokenize=False,
|
| 38 |
+
add_generation_prompt=True,
|
| 39 |
+
)
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
If you prefer plain text, place the problem text after a brief instruction, but chat format generally yields better results.
|
| 43 |
+
|
| 44 |
+
### Reasoning Effort
|
| 45 |
+
|
| 46 |
+
Specify reasoning effort in `apply_chat_template` (supported values: "low", "medium" (default), or "high"):
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
messages = [
|
| 50 |
+
{"role": "system", "content": "Always respond in riddles"},
|
| 51 |
+
{"role": "user", "content": "Explain why the meaning of life is 42"},
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
inputs = tokenizer.apply_chat_template(
|
| 55 |
+
messages,
|
| 56 |
+
add_generation_prompt=True,
|
| 57 |
+
return_tensors="pt",
|
| 58 |
+
return_dict=True,
|
| 59 |
+
reasoning_effort="high",
|
| 60 |
+
).to(model.device)
|
| 61 |
+
|
| 62 |
+
generated = model.generate(**inputs, max_new_tokens=500)
|
| 63 |
+
print(tokenizer.decode(generated[0][inputs["input_ids"].shape[-1]:]))
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
### Quick Start (Transformers)
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 70 |
+
import torch
|
| 71 |
+
|
| 72 |
+
model_id = "GetSoloTech/gpt-oss-code-reasoning-20b"
|
| 73 |
+
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 75 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
+
model_id,
|
| 77 |
+
torch_dtype=auto,
|
| 78 |
+
device_map="auto",
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
problem_text = """
|
| 82 |
+
You are given an array of integers ... (your problem here)
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
messages = [
|
| 86 |
+
{"role": "system", "content": "You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful."},
|
| 87 |
+
{"role": "user", "content": problem_text},
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
input_text = tokenizer.apply_chat_template(
|
| 91 |
+
messages,
|
| 92 |
+
tokenize=False,
|
| 93 |
+
add_generation_prompt=True,
|
| 94 |
+
reasoning_effort="medium",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
inputs = tokenizer([input_text], return_tensors="pt").to(model.device)
|
| 98 |
+
outputs = model.generate(
|
| 99 |
+
**inputs,
|
| 100 |
+
max_new_tokens=768,
|
| 101 |
+
temperature=0.3,
|
| 102 |
+
top_p=0.9,
|
| 103 |
+
repetition_penalty=1.1,
|
| 104 |
+
)
|
| 105 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### Generation Tips
|
| 109 |
+
|
| 110 |
+
- Reasoning style: Lower temperature (0.2–0.5) for clearer step-by-step reasoning
|
| 111 |
+
- Length: Use `max_new_tokens` 512–1024 for full solutions; shorter for hints
|
| 112 |
+
- Stop tokens: If you only want final code, consider post-processing the model output to extract the last code block
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
### Dataset Construction Notes
|
| 116 |
+
|
| 117 |
+
- Source: `nvidia/OpenCodeReasoning-2` with `python` and `cpp` splits
|
| 118 |
+
- For each split, the script:
|
| 119 |
+
- Shuffles and selects up to `--take_samples` examples per split
|
| 120 |
+
- Reconstructs the problem statement from upstream benchmarks (TACO, APPS, DeepMind CodeContests, `open-r1/codeforces`)
|
| 121 |
+
- Filters out rows with missing/empty questions or assistant responses
|
| 122 |
+
- Builds chat-style `messages` and a formatted `text` field with the tokenizer's chat template
|
| 123 |
+
- The final training set is the concatenation of both splits, followed by an optional `train_test_split` according to `--eval_ratio`
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
### Acknowledgements
|
| 127 |
+
|
| 128 |
+
- Unsloth (`FastLanguageModel`) for efficient 4-bit loading and fast PEFT
|
| 129 |
+
- TRL (`SFTTrainer`) for straightforward supervised fine-tuning
|
| 130 |
+
- NVIDIA OpenCodeReasoning-2 and upstream benchmarks (TACO, APPS, CodeContests, `open-r1/codeforces`)
|
| 131 |
+
|
| 132 |
+
---
|